
Unbalanced Optimal Transport through
Non-negative Penalized Linear Regression

Laetitia Chapel∗
IRISA, Université Bretagne-Sud

Vannes, France
laetitia.chapel@irisa.fr

Rémi Flamary∗
CMAP, Ecole Polytechnique

Palaiseau, France
remi.flamary@polytechnique.edu

Haoran Wu
LITIS & IRISA

Rouen & Vannes, France
haoran.wu@univ-ubs.fr

Cédric Févotte
IRIT, Université de Toulouse, CNRS

Toulouse, France
cedric.fevotte@irit.fr

Gilles Gasso
LITIS, INSA Rouen Normandie

Rouen, France
gilles.gasso@insa-rouen.fr

Abstract

This paper addresses the problem of Unbalanced Optimal Transport (UOT) in
which the marginal conditions are relaxed (using weighted penalties in lieu of
equality) and no additional regularization is enforced on the OT plan. In this
context, we show that the corresponding optimization problem can be reformulated
as a non-negative penalized linear regression problem. This reformulation allows
us to propose novel algorithms inspired from inverse problems and nonnegative
matrix factorization. In particular, we consider majorization-minimization which
leads in our setting to efficient multiplicative updates for a variety of penalties.
Furthermore, we derive for the first time an efficient algorithm to compute the
regularization path of UOT with quadratic penalties. The proposed algorithm
provides a continuity of piece-wise linear OT plans converging to the solution
of balanced OT (corresponding to infinite penalty weights). We perform several
numerical experiments on simulated and real data illustrating the new algorithms,
and provide a detailed discussion about more sophisticated optimization tools that
can further be used to solve OT problems thanks to our reformulation.

1 Introduction

Optimal Transport (OT) theory provides powerful tools for comparing probability distributions and
has been successfully employed in a wide range of machine learning applications such as supervised
learning (Frogner et al., 2015), clustering (Ho et al., 2017), generative modelling (Arjovsky et al.,
2017), domain adaptation (Courty et al., 2017), learning of structured data (Maretic et al., 2019;
Vayer et al., 2019) or natural language processing (Kusner et al., 2015), among many others. One
reason for those recent successes is the introduction of entropy-regularized OT that can be solved
with the efficient Sinkhorn-Knopp matrix scaling algorithm (Cuturi, 2013). However, the classical
OT problem seeks the optimal cost to transport all the mass from a source distribution to a target one

∗First two authors have equal contribution

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

(Villani, 2009), greatly limiting its use in scenarii where the measures have different masses or when
they contain noisy observations or outliers.

Unbalanced Optimal Transport (UOT) (Benamou, 2003) has been introduced to tackle this shortcom-
ing, allowing some mass variation in the transportation problem. It is expressed as a relaxation of the
Kantorovich formulation (Kantorovich, 1942) by penalizing the divergence between the marginals of
the transportation plan and the given distributions. Several divergences can be considered, such as the
Kullback-Leiber (KL) divergence (Frogner et al., 2015; Liero et al., 2018), the `1 norm corresponding
to the partial optimal transport problem (Caffarelli and McCann, 2010; Figalli, 2010), or the squared
`2 norm (Benamou, 2003). Regarding numerical solutions, Chizat et al. (2018) considered an entropic-
regularized version of UOT leading to a class of scaling algorithms in the vein of the Sinkhorn-Knopp
approach (Sinkhorn and Knopp, 1967). The introduction of this entropic regularization improves the
scalability of OT, but involves a spreading of the mass and a loss of sparsity in the OT plan. When a
sparse transport plan is sought, the convergence is slowed down, necessitating the use of acceleration
strategies (Thibault et al., 2021). Regarding UOT with the (squared) `2 norm, Blondel et al. (2018)
showed that the resulting OT plan is sparse and proposed to use an efficient L-BFGS-B algorithm
(Byrd et al., 1995) to address this case. Note that the L-BFGS-B method can be used to solve UOT
with differentiable divergences even without the entropic-regularization on the OT plan that induces
the Sinkhorn-like iterations. Also note that, as for balanced OT, UOT can be solved more efficiently
when the data has a specific structure, such as unidimensional distributions (Bonneel and Coeurjolly,
2019) or distributions supported on trees (Sato et al., 2020). Finally, recent work investigated UOT
between Gaussians and provided closed form solutions for the regularized Janati et al. (2020) and
unregularized (Janati, 2021, Eq. 2.72) versions of UOT associated with a KL divergence.

Contributions. In this paper, we show after some preliminaries that UOT can be recast as a convex
penalized linear regression problem with non-negativity constraints (Section 2.2). The main interest
of this reformulation resides in the fact that non-negative linear regression has been extensively
studied in inverse problems and machine learning, offering a large panel of tools for devising new
numerical algorithms. Our reformulation involves a design/dictionary matrix that is structured and
sparse. Leveraging this structure, we propose two new families of algorithms for solving the exact
(i.e., without regularization of the plan) UOT problem in Section 3.

We first derive in Section 3.1 a new Majorization-Minimization (MM) algorithm for solving UOT
with Bregman divergences, and more specifically KL and `2-penalized UOT. The MM approach
results in multiplicative updates that have appealing features: i) they are easy to implement, ii)
have low complexity per iteration and can be instantiated on GPU, iii) ensure monotonicity of
the objective function and inherit existing convergence results. Our methodology is inspired by
well-known algorithms in image restoration (Richardson, 1972; De Pierro, 1993) and non-negative
matrix factorization (NMF) (Lee and Seung, 2001; Dhillon and Sra, 2005; Févotte and Idier, 2011).
Interestingly, the resulting multiplicative updates bear a similarity with the celebrated Sinkhorn
scaling algorithm, with some key differences that are discussed.

Next, we derive in Section 3.2 an efficient algorithm to compute the regularization path in `2-
penalized UOT. To do so, we build on our proposed reformulation and more precisely on the fact that
`2-penalized UOT can be reformulated as a weighted Lasso problem. We propose a new methodology
inspired by LARS (Efron et al., 2004; Hastie et al., 2004), which, to the best of our knowledge, is the
first regularization path algorithm for OT problems. It brings a novel understanding of the properties
of the evolution of the support of OT plans, besides the practical interest of computing the complete
regularization path when hyperparameter validation is necessary.

Our new families of algorithms (MM for general UOT, LARS for `2-penalized UOT) are showcased
in the numerical experiments of Section 4. Python implementation of the algorithms, provided in
supplementary, will be released with MIT license on GitHub. The connection between UOT and linear
regression that we reveal in the paper opens the door to further fruitful developments and in particular
to more efficient algorithms, thanks to the large literature dealing with non-negative penalized linear
regression. We discuss those possible research directions in Section 5, before concluding the paper.

Notations. Vectors such as m are written with lower case and bold font, with coefficients mi or
[m]i, according to context. The |A|-dimensional sub-vector with indexes in set A is written mA.
Matrices such asM are written with upper case and bold font, with coefficients Mi,j . We introduce
a vectorization operator defined by m = vec(M) = [M1,1,M1,2, . . . ,Mn,m−1,Mn,m]>, i.e., the

2

concatenation of the rows of the matrix, following the Numpy/C memory convention. 1n is a vector
of n ones and M ≥ 0 denotes entry-wise non-negativity. Finally, Dϕ is the Bregman divergence
generated by the strictly convex and differentiable function ϕ, i.e., Dϕ(u,v) =

∑
i dϕ(ui, vi) =∑

i[ϕ(ui)− ϕ(vi)− ϕ′(vi)(ui − vi)].

2 Reformulation of UOT as non-negative penalized linear regression

2.1 Background on Optimal Transport

Let us consider two clouds of pointsX = {xi}ni=1 and Y = {yj}mj=1. Let a ∈ R+
n and b ∈ R+

m be
two discrete distributions of mass onX and Y , such that ai (resp. bj) is the mass at xi (resp. yj).
The balanced OT problem, as defined by Kantorovich (1942), is a linear problem that computes the
minimum cost of moving a to b:

OT(a, b) = min
T≥0
〈C,T 〉 such that (s.t.) T1m = a,T>1n = b (1)

where 〈·, ·〉 is the Frobenius inner product, T ∈ R+
n×m is the transport plan and C ∈ R+

n×m is the
cost matrix. The entry Ci,j of C represents the cost of moving point xi to yj . The Wasserstein 1-
distance (also known as the earth mover’s distance) is obtained for Ci,j = ‖xi−yj‖. The constraints
on the transport plan T require that ‖a‖1 = ‖b‖1 and that all the mass from a is transported to b.
These constraints can be alleviated through relaxation, leading to UOT (Benamou, 2003):

UOTλ(a, b) = min
T≥0

〈C,T 〉+ λ1Dϕ(T1m,a) + λ2Dϕ(T>1n, b). (2)

The deviations from the true marginals are penalized by means of a given Bregman divergence Dϕ, as
introduced in Chizat et al. (2018), where λ1 and λ2 are hyperparameters that represent the strengths
of penalization. Note that, in the case of ‖a‖1 = ‖b‖1, balanced OT (Eq. 1) is recovered when
λ1 = λ2 → ∞. Furthermore, when λ1 or λ2 → ∞, we recover semi-relaxed OT (Rabin et al.,
2014). In practice, authors often set λ1 = λ2 = λ for UOT in order to reduce the necessity of
hyperparameter tuning. Various divergences have been considered in the literature. The `1 norm
gives rise to so-called partial optimal transport (Caffarelli and McCann, 2010). The squared `2 norm
provides a sparse and smooth transport plan (Blondel et al., 2018) when introducing a strongly convex
term in Eq. (2). Chizat et al. (2018) derive efficient algorithms to solve Eq. (2) for several divergences
by adding an additional regularization term λregDϕ(T ,ab>). In particular, entropic regularization is
obtained when the KL divergence is used, promoting a dense transport plan unlike exact UOT.

2.2 Reformulation of UOT

UOT cast as regression. Let t = vec(T), c = vec(C) and y> = [a>, b>]. Problem (2) can be
re-written as

min
t≥0

Fλ(t)
def
=

1

λ
c>t+Dϕ(Ht,y) (3)

and as such be expressed as a non-negative penalized linear regression problem, where the design
matrixH = [H>r ,H

>
c]> is the concatenation of the matricesHr andHc that compute sums of the

rows and columns of T , respectively (see expressions in Section A.1 of the supplementary material).
Note that, for the sake of simplicity, we consider here λ1 = λ2 = λ but this hypothesis could be
easily alleviated for a given family of divergences (see Sec. 5 for a discussion). Important features of
Eq. (3) should be discussed. First, Fλ(t) is convex thanks to the convexity of Bregman divergences
w.r.t. their first argument. Second,H is very structured and sparse (with a ratio of only 1

m+n non-zero
coefficients) which will allow for more efficient computations and updates than with a dense H .
Finally, since t ≥ 0 and c ≥ 0, the linear term can be expressed as 1

λc
>t = 1

λ

∑
i citi = 1

λ

∑
i ci|ti|.

This corresponds to a weighted `1 regularization, promoting sparsity in t and hence in the transport
plans. Note that the “sparse” regularization is here controlled by 1

λ (instead of λ in classical penalized
linear regression), meaning that the sparsity promoting term will be more aggressive for small λ.

Solving problem (3). Problems of the form of Eq. (3) are well-known in inverse problems and NMF.
In inverse problems, t typically acts as a clean image degraded by operatorH (e.g., a convolution) and
noise. The data fitting term Dϕ(Ht,y) captures assumptions about the noise corrupting the observed

3

image y. Sparsity is a common regularizer of t. In NMF, given a set of nonnegative samples {yl}
one wants to learn a non-negative dictionary H and non-negative lower-dimensional embeddings
{tl} such that yl ≈Htl (Lee and Seung, 1999). Updating the latter involves optimization problems
of form (3) (with or without sparse regularization). In contrast to problem (3), the data fitting term is
more commonly Dϕ(y,Ht) instead of Dϕ(Ht,y) in inverse problems and NMF. This is because
the former is a log-likelihood in disguise for the mean-parametrized exponential family, and takes
important noise models as special cases, such as Poisson, additive Gaussian or multiplicative Gamma
noise (Févotte and Idier, 2011). Using such penalizations with reversed arguments would be possible
in our case as well but we stick to the now standard formulation of (Liero et al., 2018; Chizat et al.,
2018) for simplicity.

In the next section, we will first leverage a classical family of algorithms in inverse problems and
NMF, namely MM, to obtain new algorithms for KL and `2-penalized UOT (possibly with entropic
regularization in the first case). Second, we will leverage results about non-negative Lasso to design
an efficient algorithm to compute the regularization path of `2-penalized UOT.

3 Novel numerical solvers for UOT

3.1 Majorization-Minimization (MM) for UOT

General MM framework. MM algorithms have been around a long time in inverse problems and
NMF to solve problems of form (3). Classical algorithms for NMF such as (Lee and Seung, 2001)
have built on seminal MM algorithms for inverse problems such as (Richardson, 1972; De Pierro,
1993). Subsequent works in NMF such as (Dhillon and Sra, 2005; Févotte and Idier, 2011; Yang and
Oja, 2011) have further contributed novel MM algorithms for larger classes of problems, including
larger families of divergences. In a nutshell, MM consists in iteratively building and minimizing an
upper bound of the objective function which is tight at the current parameter estimate (and referred
to as auxiliary function), see Hunter and Lange (2004); Sun et al. (2017) for tutorials. In NMF, a
common approach consists of alternating the updates of the dictionary H and of the embeddings.
In our case,H is fixed and we may use the results of (Dhillon and Sra, 2005) to build an auxiliary
function for term Dϕ(Ht,y), to which we may simply add the linear term c>t/λ to obtain a valid
auxiliary function for Fλ(t). Let t̃ denote the current estimate of t, Z̃i,j =

Hi,j t̃j∑
lHi,l t̃l

and

Gλ(t, t̃) =
∑
i,j

Z̃i,jϕ

(
Hi,jtj

Z̃i,j

)
+
∑
j

[
cj
λ
−
∑
i

Hi,jϕ
′(yi)

]
tj + cst, (4)

where cst =
∑
i[ϕ
′(yi)yi − ϕ(yi]. Then, Gλ(t, t̃) is an auxiliary function for Fλ(t), i.e., ∀t,

Gλ(t, t̃) ≥ Fλ(t) and Gλ(t̃, t̃) = Fλ(t̃). Let t(k+1) = argmint≥0Gλ(t, t(k)), then Fλ(t(k)) =

Gλ(t(k), t(k)) ≥ Gλ(t(k+1), t(k)) ≥ Fλ(t(k+1)), producing a descent algorithm over F . The trick to
obtain G is to apply Jensen inequality to ϕ(

∑
j Hi,jtj) = ϕ(

∑
j Z̃i,j

Hi,j
Z̃i,j

tj) ≤
∑
j Z̃i,jϕ(

Hi,j
Z̃i,j

tj),
thanks to the convexity of ϕ, see details in (Dhillon and Sra, 2005). We provide below the resulting
algorithms for the KL and `2 penalizations, with detailed computations available in Section A.2 of
the supplementary.

MM for KL-penalized UOT. The KL divergence is obtained with ϕ(y) = y log y−y. Minimizing
Gλ(t, t(k)) in that case leads to following multiplicative update:

t
(k+1)
j = t

(k)
j exp

(
[H> log(y)−H> log

(
Ht(k)

)
]j − 1

λcj

[H>1]j

)
. (5)

Owing to the structure of t andH , the update can be re-written in the following matrix form:

T (k+1) = diag
(

a

T (k)1m

) 1
2
(
T (k) � exp

(
−C

2λ

))
diag

(
b

T (k)>1n

) 1
2

, (6)

where � is entrywise multiplication and divisions are taken entrywise as well. The multiplicative
update (6) is remarkably similar to the well-known Sinkhorn-Knopp algorithm that has been used in

4

numerous OT problems involving KL regularization. But instead of two separate steps for the left
and right scaling, Eq. (6) applies these scalings simultaneously in a unique update using the diagonal
matrices (and a form of geometrical average). Also note how the scaling factor exp

(
− C2λ

)
penalizes

along iterations the coefficients of the transport plan with large costs.

MM for `2-penalized UOT. The quadratic loss is obtained with ϕ(y) = y2

2 . In that case, minimiz-
ing Gλ(t, t(k)) s.t. non-negativity leads to following multiplicative update:

T (k+1) = T (k) �
max

(
0,a1>m + 1nb

> − 1
λC
)

T (k)Om + OnT
(k)

with O` = 1`1
>
` . (7)

Interestingly enough, update (7) prunes any coefficient Ti,j in T such that ai + bj − 1
λCi,j < 0 from

the very first iteration, providing a useful certificate on the support of the solution.

3.2 Regularization path for `2-penalized UOT

Let us focus on the case where Dϕ is a quadratic divergence. As mentioned in Section 2.2, Eq. (3) is
then a positive weighted Lasso problem, allowing us to derive the first regularization path algorithm
for computing the whole set of solutions for a varying λ from 0 to +∞. Note that the path’s extreme
point recovers the balanced OT solution. We show that the path is piecewise linear in 1/λ between
changes in the active set A = supp(tλ), where tλ = vec(T λ) and T λ is the OT plan for given
hyperparameter λ. The main steps of the algorithm are roughly as follows: given a current solution
(λk,T

λk) and a current active set Ak, we look for the next value λk+1 > λk such that the active
set changes (i.e., Ak+1 6= Ak), either because one component enters or leaves the active set. We
describe our algorithm below.

KKT conditions of the `2-penalized UOT problem. The Lagrangian for problem (3) writes:

Lλ(t,γ) =
1

λ
c>t+

1

2
(Ht− y)>(Ht− y)− γ>t (8)

where γ represents the Lagrange parameters. We denote m = H>y = vec(a1>m + 1nb
>). KKT

optimality conditions state that i)∇tLλ(t, λ) = 1
λc+H>Ht−m−γ = 0 (stationarity condition),

ii) γ � t = 0 (complementary condition) and iii) γ ≥ 0 (feasibility condition).

Piecewise linearity of the path. Assume that, at iteration k, we know the current active setA = Ak
and we look for tλA (the other values of tA being 0). LetHA,mA and cA denote the corresponding
sub-matrix and vectors (see Appendix A.3 for rigorous definitions). Because of the complementary
condition, we have γA = 0. Using λ = λk + ε, with ε > 0 small enough to ensure that the active set
remains the same, the stationarity condition writes:

H>AHAt
λ
A = mA −

1

λ
cA ⇒ tλA = m̃A −

1

λ
c̃A (9)

with m̃A = (H>AHA)−1mA and c̃A = (H>AHA)−1cA . Eq. (9) shows that the optimal tλA (and
hence tλ) can be solved for any λ ∈ [λk, λk+1], i.e., when the active set A remains the same, by
solving a linear problem. It also reveals the piecewise linearity in λ−1 of the path when A is fixed.
As expected, balanced OT is recovered when λ→∞.

Finding (λk+1,Ak+1) given (λk,Ak). Given a current solution (λk, t
λk) and λ = λk + ε, we

increase the ε until we reach a change in the set of active components. This happens whenever the
first of the following two situations occurs.

•One component inA becomes inactive. In that case, we remove the index i ∈ A with the smallest
λr > λk that violates the constraint. In such case, [m̃A]i = [c̃A]i/λ and we may write

λr = min
>λk

(
c̃A
m̃A

)
(10)

where min>λk indicates the minimum value in the vector greater than λk and the division is entrywise.

5

Algorithm 1 Regularization path of `2-penalized UOT
Require: a, b, C, λ0 = 0, t0 = 0, A = A0 = ∅, k = 1

λ1 = min
cĀ
mĀ

, A = A1 = arg min
cĀ
mĀ

,H>AHA = 2

tλ1

A1
= mA

2 − 1
λ1

cA
2

while (Htλk − y)>(Htλk − y) 6= 0 do
λr, λa← Compute as in Eq. (10) and Eq. (11)
λk+1 ← min(λr, λa)

t
λk+1

A ← (H>AHA)−1mA − 1
λk+1

(H>AHA)−1cA
A = Ak+1 ← Update active set for next iteration.
(H>AHA)−1 ← Update from (H>AkHAk)−1 with Schur complement (see supplementary A.3)

k ← k + 1
end while
return (λk, t

λk)k

• One component in Ā becomes active. This occurs when the KKT positivity constraint γĀ ≥ 0
becomes violated. Assume this happens at index i ∈ Ā for the smallest value λa > λk of λ. In such
case, the stationarity condition outside the active set can be rewritten:

[
1

λ
cĀ +

[
H>H

(
m̃+

1

λ
c̃
)]
Ā
−mĀ

]
i

= [γĀ]i ⇒ λa = min
>λk

(
cĀ −

[
H>Hc̃

]
Ā

mĀ −
[
H>Hm̃

]
Ā

)
, (11)

where m̃ (resp. c̃) equals m̃A (resp. c̃A) on A and zero on Ā.

In practice, at each step of the path, we compute both λr and λa and set λk+1 = min{λr, λa}. The
active set Ak+1 is obtained by either removing the index i ∈ A correponding of the arg min of eq.
(10) (case λk+1 = λr) or by adding the index i ∈ Ā corresponding to the arg min of eq. (11) (case
λk+1 = λa).

Numerical computation of the entire path. Eq. (9) involves the computation of the matrix
(H>AHA)−1, which is of size |A| × |A|. As only one index leaves or enters the active set at each
iteration, we can use the Schur complement of the matrix to compute its value from (H>AkHAk)−1,
alleviating the computational burden of the algorithm as it only involves matrix-vector computations
(see Section A.3 of supplementary). Algorithm 1 sums up the different steps of the full path computa-
tion. At each iteration, we compute λa, λr, update the inverse matrix (H>AkHAk)−1 and estimate
the solution tλk+1 with a complexity of O(nm).

Regularization path of the semi-relaxed `2-penalized UOT. As a side result, let us consider the
semi-relaxed OT problem SROTλ(a, b) = minT≥0,T>1n =b 〈C,T 〉 + λ‖T1m − a‖2. The main
difference with UOT is that the equality constraint T>1n = b (equivalent toHct = b) must always
be met. This leads to the following Lagrangian:

Lλ(t,γ,u) =
1

λ
c>t+

1

2
(Hrt− a)>(Hrt− a) + (Hct− b)>u− γ>t, (12)

where u ∈ Rm contains the Lagrange parameters associated to the m equality constraints. The KKT
optimality conditions now dictate that i)∇tLλ(t,γ,u) = 1

λc+H>r Hrt−H>r a+H>c u−γ = 0,
ii) γ�t = 0, iii) γ ≥ 0 andHct−b = 0. We can use the same reasoning than previously to compute
the entire path. Details are provided in Section A.4 of the supplementary. The main difference lies in
solving, at each iteration, a linear system of size (m + |A|) to comply with the marginal equality
constraint. The path is initialized as follows: the jth column of T 0 for λ0 = 0 is set to the weighted
canonical vector bi?ei? , where i? = argmin{Ci,j}i.

6

0 1 2

Ci,j

Cost matrix

b1 = 0.2 b2 = 0.5 b3 = 0.3

a1 = 0.2

a2 = 0.5

a3 = 0.3

T1,1

T2,1 T2,2

T3,1 T3,2 T3,3

OT plan

λ1 λ2 λ3 λ4 λ5 λ6 λ7
∞

(log scale)

0.0

0.1

0.2

0.3

0.4

0.5

T
ij

T1,1

T2,1
T 2,2

T3,1

T3,2

T3,3

Evolution of the OT plan values with λ

0.5

1.0

Figure 1: (Left) cost matrix C (the higher the cost, the darker the color); (middle) OT plan whose
cells are color-coded with respect to the λ values at which they are activated. The blank cells never
enter the active set as the corresponding cost it too high; (right) evolution of Ti,j when λ increases.
Note that the x-axis is in log scale and is discontinued (but still monotonic) between λ7 and∞.

−2 0 2 4 6

−2

0

2

4

6
Distributions

Source
Target

−2

0

2

4

6

ℓ2 UOT λ=0

−2

0

2

4

6

ℓ2 UOT λ=100

−2

0

2

4

6

ℓ2 UOT λ=1000

−2

0

2

4

6

ℓ2 UOT λ=inf

−2 0 2 4 6

−2

0

2

4

6

Semi-relaxed ℓ2 UOT λ=0

OT plan
Target marginal
Source marginal

−2 0 2 4 6

−2

0

2

4

6

Semi-relaxed ℓ2 UOT λ=100

−2 0 2 4 6

−2

0

2

4

6

Semi-relaxed ℓ2 UOT λ=1000

−2 0 2 4 6

−2

0

2

4

6

Semi-relaxed ℓ2 UOT λ=inf

Figure 2: Regularization paths for 2D empirical distributions for `2-penalized UOT (top) and semi-
relaxed UOT (bottom). The OT plan is shown as green lines between the source and target samples
when Ti,j > 0 and the resulting marginals are shown as filled circles.

4 Numerical experiments

In this section, we first show the solutions obtained with our solvers2 on simple and interpretable
examples. We then evaluate the computational complexity of the different algorithms and finally we
show an application where the regularization path can be used on a domain adaptation problem.

Illustration of the algorithms. We first illustrate the regularization path for `2-penalized UOT on
a simple example between two distributions containing 3 points each, with different masses and a
cost matrix C given in Fig. 1 (left). We can see on Fig. 1 (right) that, starting from λ0 = 0 and
T = 0, we successively add or remove components in the active set A when increasing the λ values.
When λ =∞, we recover the balanced OT solution. Recall that the path is linear in 1/λ (and not λ).
We then illustrate the path for both `2-penalized UOT and semi-relaxed UOT on two 2D distributions
with n = m = 100 samples. We can see in Fig. 2 the difference between the two regularization paths
for specific values of λ. UOT starts with an empty plan for λ = 0 and then activates samples from
both source and target from the closest to the farthest ones until convergence to the balanced OT plan.
Semi-relaxed UOT starts with all target samples active due to marginal constraints and progressively
activates the source samples.

Comparison of the performances of the algorithms. We now provide an empirical evaluation of
the running times of the proposed algorithms, using 2 sets of 10-dimensional points with n = m and
drawn according to IID Gaussian distributions. The cost matrix C is computed using a squared `2

2Our implementation of the regularization path has been contributed to POT Flamary et al.
(2021) and the MM algorithms are provided in the repository https://github.com/lchapel/
UOT-though-penalized-linear-regression.

7

https://github.com/lchapel/UOT-though-penalized-linear-regression
https://github.com/lchapel/UOT-though-penalized-linear-regression

102 103

number of points (n=m)

100

101

102

Ti
m

e(
se

c)

Regularization path

101 102 103 104

λ

10−2

100

102

Ti
m

e
(s

ec
)

`2-penalized UOT

BFGS
Multiplicative update
Lasso (celer)
Lasso (CD)
Regularization path

10−2 10−1 100 101 102

λ

10−1

100

101

102

Ti
m

e
(s

ec
)

KL-penalized UOT

BFGS
Multiplicative update

Figure 3: (Left) Running times of Alg. 1 w.r.t. the number of points; (middle) comparison of
`2-penalized UOT with m = n = 500 (right) likewise for KL-penalized UOT. Dark curves (resp.
shaded regions) represent average (resp. variance) values over 5 runs.

norm. We first study the running times of the regularization path algorithm, for n = m ranging from
100 to 1000, averaging the results over 5 runs, see Fig. 3 (left). We empirically observe that log-log
plot is near-linear, with an empirical complexity O(n3.27) in this example.

Using n = m = 500, we compare the running times of the current state-of-the-art BFGS algorithm
(Blondel et al., 2018)3 using SciPy (Virtanen et al., 2020) and those of our algorithms: the `2-
penalized UOT formulated as a Lasso problem (with both the Celer algorithm (Massias et al., 2018)
and the coordinate descent solvers from Scikit-learn (Pedregosa et al., 2011)), the multiplicative
algorithm for both the `2 and the KL penalties and the regularization path algorithm (see Section
A.6 of the supplemental material for more details about the solvers and their parameters, together
with a comparison of the results of the MM algorithms computed on both CPU and GPU). Figure
3 (middle and right) shows the average running time for all algorithms. For `2-penalized UOT, we
observe that, for large λ values, the Lasso solvers are the fastest and that, whatever the value λ,
BFGS is the slowest. We also notice that, for large λ, the running times for computing the path
remain constant: when the last active set is found, computing the OT plan only involves a weighted
sum. As for KL-penalized UOT, the BFGS algorithm is more efficient when large values of λ are
considered. One can also notice that, similarly to Sinkhorn which is fast for large regularization
values, the multiplicative algorithms for both penalties are also fast for high 1/λ values.

Regularization path for unbalanced domain adaptation. We demonstrate the interest of having
the entire regularization path in a classification context where some of the data collection may be
polluted by outliers. We consider a setup similar to Mukherjee et al. (2020). Let the sourceX be a set
of 400 MNIST digits sampled from the digits 0, 1, 2, 3 (100 points per class) and let the target Y be a
set of digits 0, 1 of MNIST (LeCun et al., 2010) and of digits 8, 9 from Fashion MNIST (Xiao et al.,
2017). Our setting is simple classification: we classify a sample of the target dataset by propagating

0 100 200 300 400

Number of labeled points

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

Acc. on all
Acc. on labeled

Figure 4: Evolution of the classi-
fication accuracy for the domain
adaptation problem w.r.t. the num-
ber of classified points.

the label of the source sample it is the most transported to,
provided that the transported mass of the target point is greater
than 0.25bj . Note that similarly to Mukherjee et al. (2020) a
validation set can be used here to select the best λ. Figure 4
shows the overall accuracy, defined as the number of samples
that are correctly classified divided by the total number of
points, and the current accuracy, which is the proportion of
well-classified points among the points that are classified, i.e.,
that are receiving mass. One can notice that, as the number
of classified points increases (with λ), the overall accuracy
increases as more and more points are well classified while
the current accuracy remains stable until outliers are included
in the labeled set. This suggests that UOT can be used not
only for classification but also as an automated outlier detection
method.

3Note that we cannot compare our result with solvers for entropic formulation of UOT with λreg → 0 (that
should provide a sparse transport plan) as in that case, their algorithm becomes a fixed point method that cannot
converge to a solution of the problem.

8

5 Discussion and perspectives

We showed that UOT can be recast as a non-negative penalized linear regression problem, encouraging
us to dig into this well-established field of research in order to adapt existing algorithmic solutions
to the structure of the UOT problem. In this section, we discuss the relation between the proposed
algorithms and classical solvers used in OT, and also investigate some research directions that can
widen the scope of proposed methods.

Multiplicative algorithms for UOT. As discussed in Section 3.1, the multiplicative updates for
the KL divergence obtained from MM resemble the Sinkhorn algorithm from Chizat et al. (2018),
except for the joint scaling and the weighting matrix exp(−C/2). Interestingly, this scaling matrix
also appears in the Inexact Proximal Point OT (IPOT) algorithm of Xie et al. (2020) to solve balanced
OT. As a matter of fact, we show in Section A.5 of the supplementary that IPOT is a MM algorithm.
The idea is to re-write the OT objective as [〈C,T 〉 + λDϕ(T ,ab>)] − λDϕ(T ,ab>) and upper
bound the concave term by its tangent. This further supports the interest of MM for OT and UOT,
and highlight an important feature of one of our contributions: designing the first Sinkhorn-like
multiplicative algorithm for UOT that can be applied when the OT plan is not entropy-regularized.

More efficient solvers. Despite the positive experimental results of Section 4, multiplicative and
regularization path algorithms can be slow, especially for large values of λ. Various accelerations
can be envisaged. Regarding path algorithms, the approach of Mairal and Yu (2012) can compute
a regularization path with precision ε in o(1/ε) iterations. This would lead in our setting to a
full complexity of O(mn/ε) that is even interesting to approximate balanced OT. Another way to
speed up computations is to use screening. In sparse regression, this consists of eliminating during
optimization components that will not belong to the support of the solutions thanks to safe screening
tests. Methods such as (El Ghaoui et al., 2012; Wang et al., 2015; Dantas et al., 2021) can readily
be adapted to our `2 or KL-penalized UOT algorithms. Finally, an other line of improvement is
to consider stochastic optimization methods such as (Defazio et al., 2014). Given the particular
structure of H , the complexity of stochastic updates shall be small and can lead to very efficient
implementations (Nesterov, 2014).

General case and entropy-regularized UOT. Following (Frogner et al., 2015; Chizat et al., 2018;
Séjourné et al., 2019), general regularized UOT can be expressed as:

RUOTλ(a, b) = min
T≥0

〈C,T 〉+ λ1Dϕ(T1m,a) + λ2Dϕ(T>1n, b) + λregDϕ(T ,ab>). (13)

As it turns out, this general problem involving different regularization weights (λ1, λ2, λreg) can easily
be addressed in our framework as well using two simple tricks. The first one consists of absorbing
the regularization weights into the divergences. Indeed, many divergences are homogeneous, i.e.,
satisfy a relation of the form λDϕ(x|y) = Dϕ(λαx|λαy) where α is divergence-specific. This
holds in particular for the KL divergence (α = 1) and the squared `2 norm (α = 1/2). The second
one consists of complementingH and y with suitable terms to account for the regularization term.
In the end, we may re-write Eq. (13) into Eq. (3) with λ = 1, H = [λα1H

>
r , λ

α
2H

>
c , λ

α
regI]> and

y> = [λα1a
>, λα2 b

>, λαregvec(ab>)>]. In particular, we obtain the following multiplicative update in
the case of entropy-regularized KL-penalized UOT:

T (k+1) = diag
(

a

T (k)1m

) λ1
λall

((
T (k)

)λ1+λ2
λall �K

)
diag

(
b

T (k)>1n

) λ2
λall

(14)

where K =
(
ab>

)λreg
λall � exp

(
− 1
λall
C
)

and λall = λ1 + λ2 + λreg. This multiplicative update is
slightly more complex than the Sinkhorn algorithms of Frogner et al. (2015); Chizat et al. (2018) and
as such, it might have limited practical interest but is conceptually interesting and novel. Note that
balanced UOT as of Eq. (2) is simply obtained with λreg = 0.

Non-linear UOT. Finally, we discuss how our proposed reformulation of UOT can accommodate
non-linear variants in which the linear term 〈C,T 〉 is replaced by a sparsity/robustness-promoting

9

term, leading to problems of the form

NLUOTλ(a, b) = min
T≥0

∑
i,j

g(Ci,jTi,j) + λ1Dϕ(T1m,a) + λ2Dϕ(T>1n, b) (15)

where g(·) is a usually concave function, see, e.g., (Candes et al., 2008; Gasso et al., 2009). Our MM
setting can readily accommodate such a formulation by majorizing the concave terms by their tangent.
The non-linearity may improve robustness w.r.t outliers and better model realistic OT problems. For
instance, in real life, the costs of transporting some goods between two places can be nonlinear due
to economies of scale.

Broad and potential negative societal impact. The contributions in this paper are methodological
and focus on a reformulation of a fundamental OT problem and adapting existing algorithms to solve
it. In this sense, we bring more efficient solvers that run on GPU but this computational advantage can
be counterbalanced by the possibility that it brings to be applied on larger datasets. The application
of OT in domain adaptation has shown that it can be used to infer labels on samples/individuals when
no labels are available, suggesting a capacity for violating user privacy. A potential application of
UOT is the case where two datasets of users acquired by different methods contain some shared users.
UOT can be used here to find correspondences between the users in the two datasets and also identify
unique users in each dataset (those that do not receive mass).

6 Conclusion

In this paper, we reformulate the UOT problem as a non-negative penalized linear regression, allowing
us to propose two new classes of algorithms. We first derive multiplicative algorithms for both KL
and `2-penalized UOT, providing numerical solutions that are fast and easy to implement. For the
specific case of `2-penalized UOT, we provide the first regularization path algorithm that computes
the whole set of solutions for all the regularization parameter values. We finally build on the extensive
literature in inverse problem and NMF to draw some fruitful perspectives on even more efficient
algorithmic solutions or the definition of new OT problems.

Acknowledgments and Disclosure of Funding

The authors want to thank Hicham Janati for interesting discussions and providing us with the
experiments of convergence for the MM algorithm in the supplemental. This work is partially
funded by the French National Research Agency (ANR; grants OATMIL ANR-17-CE23-0012,
RAIMO ANR-20-CHIA-0021-01, MULTISCALE ANR-18-CE23-0022-01, E4C ANR-18-EUR-
0006-02, 3IA Côte d’Azur ANR-19-P3IA-0002, 3IA ANITI ANR-19-PI3A-0004) and the European
Research Council (ERC; grant FACTORY-CoG-6681839). Furthermore, this research was produced
within the framework of Energy4Climate Interdisciplinary Center (E4C) of IP Paris and Ecole des
Ponts ParisTech. This action benefited from the support of the Chair “Challenging Technology for
Responsible Energy” led by l’X - Ecole Polytechnique and the Fondation de l’Ecole Polytechnique,
sponsored by TOTAL.

References
Arjovsky, M., S. Chintala, and L. Bottou (2017). Wasserstein Generative Adversarial Networks. In

International Conference on Machine Learning, Volume 70, pp. 214–223.

Benamou, J.-D. (2003). Numerical resolution of an “unbalanced” mass transport problem. ESAIM:
Mathematical Modelling and Numerical Analysis 37(5), 851–868.

Blondel, M., V. Seguy, and A. Rolet (2018). Smooth and Sparse Optimal Transport. In International
Conference on Artificial Intelligence and Statistics, pp. 880–889.

Bonneel, N. and D. Coeurjolly (2019). SPOT: Sliced Partial Optimal Transport. ACM Transactions
on Graphics (SIGGRAPH) 38(4).

Byrd, R. H., P. Lu, J. Nocedal, and C. Zhu (1995). A Limited Memory Algorithm for Bound
Constrained Optimization. SIAM Journal on Scientific Computing 16(5), 1190–1208.

10

Caffarelli, L. A. and R. J. McCann (2010). Free boundaries in Optimal Transport and Monge-Ampère
obstacle problems. Annals of Mathematics 171(2), 673–730.

Candes, E. J., M. B. Wakin, and S. P. Boyd (2008). Enhancing Sparsity by Reweighted `1 Minimiza-
tion. Journal of Fourier analysis and applications 14(5-6), 877–905.

Chizat, L., G. Peyré, B. Schmitzer, and F.-X. Vialard (2018). Scaling algorithms for Unbalanced
Optimal Transport problems. Mathematics of Computation 87(314), 2563–2609.

Courty, N., R. Flamary, D. Tuia, and A. Rakotomamonjy (2017). Optimal Transport for Domain
Adaptation. IEEE Transactions on Pattern Analysis and Machine Intelligence 39(9), 1853–1865.

Cuturi, M. (2013). Sinkhorn distances: Lightspeed computation of Optimal Transport. Advances in
Neural Information Processing Sytems 26, 2292–2300.

Dantas, C. F., E. Soubies, and C. Févotte (2021). Safe Screening for Sparse Regression with the
Kullback-Leibler Divergence. In IEEE International Conference on Acoustics, Speech and Signal
Processing, pp. 5544–5548.

De Pierro, A. R. (1993). On the relation between the ISRA and the EM algorithm for positron
emission tomography. IEEE transactions on Medical Imaging 12(2), 328–333.

Defazio, A., F. Bach, and S. Lacoste-Julien (2014). SAGA: A fast incremental gradient method
with support for non-strongly convex composite objectives. In Advances in Neural Information
Processing Systems.

Dhillon, I. S. and S. Sra (2005). Generalized nonnegative matrix approximations with Bregman
divergences. In Advances in Neural Information Processing Systems, Volume 18.

Efron, B., T. Hastie, I. Johnstone, and R. Tibshirani (2004). Least Angle Regression. Annals of
statistics 32(2), 407–499.

El Ghaoui, L., V. Viallon, and T. Rabbani (2012). Safe Feature Elimination for the LASSO and
Sparse Supervised Learning Problems. Pacific Journal of Optimization 8(667–698).

Févotte, C. and J. Idier (2011). Algorithms for nonnegative matrix factorization with the β-divergence.
Neural computation 23(9), 2421–2456.

Figalli, A. (2010). The Optimal Partial Transport Problem. Archive for Rational Mechanics and
Analysis 195(2), 533–560.

Flamary, R., N. Courty, A. Gramfort, M. Z. Alaya, A. Boisbunon, S. Chambon, L. Chapel, A. Coren-
flos, K. Fatras, N. Fournier, et al. (2021). POT: Python optimal transport. Journal of Machine
Learning Research 22(78), 1–8.

Frogner, C., C. Zhang, H. Mobahi, M. Araya, and T. A. Poggio (2015). Learning with a Wasserstein
Loss. In Advances in Neural Information Processing System, pp. 2053–2061.

Gasso, G., A. Rakotomamonjy, and S. Canu (2009). Recovering sparse signals with a certain family
of nonconvex penalties and DC programming. IEEE Transactions on Signal Processing 57(12),
4686–4698.

Hastie, T., S. Rosset, R. Tibshirani, and J. Zhu (2004). The entire regularization path for the Support
Vector Machine. Journal of Machine Learning Research 5, 1391–1415.

Ho, N., X. L. Nguyen, M. Yurochkin, H. H. Bui, V. Huynh, and D. Phung (2017). Multilevel
Clustering via Wasserstein Means. In International Conference on Machine Learning, Volume 70,
pp. 1501–1509.

Hoyer, P. O. (2002). Non-negative sparse coding. In IEEE Workshop on Neural Networks for Signal
Processing, pp. 557–565.

Hunter, D. R. and K. Lange (2004). A tutorial on MM algorithms. The American Statistician 58(1),
30–37.

11

Janati, H. (2021). Advances in Optimal transport and applications to neuroscience. Ph. D. thesis,
Institut Polytechnique de Paris.

Janati, H., B. Muzellec, G. Peyré, and M. Cuturi (2020). Entropic optimal transport between
unbalanced gaussian measures has a closed form. Advances in Neural Information Processing
Systems 33.

Kantorovich, L. (1942). On the transfer of masses (in Russian). Doklady Akademii Nauk 2, 227–229.

Kusner, M., Y. Sun, N. Kolkin, and K. Weinberger (2015). From word embeddings to document
distances. In International Conference on Machine Learning, pp. 957–966.

LeCun, Y., C. Cortes, and C. Burges (2010). MNIST handwritten digit database. ATT Labs [Online].
Available: http://yann.lecun.com/exdb/mnist.

Lee, D. and H. Seung (1999). Learning the parts of objects by non-negative matrix factorization.
Nature 401(6755), 788–791.

Lee, D. and H. Seung (2001). Algorithms for Non-negative Matrix Factorization. In Advances in
Neural Information Processing Sytems, Volume 13.

Liero, M., A. Mielke, and G. Savaré (2018). Optimal entropy-transport problems and a new Hellinger-
Kantorovich distance between positive measures. Inventiones mathematicae 211(3), 969–1117.

Mairal, J. and B. Yu (2012). Complexity Analysis of the Lasso Regularization Path. In International
Conference on Machine Learning, pp. 1835–1842.

Maretic, H. P., M. E. Gheche, G. Chierchia, and P. Frossard (2019). GOT: An Optimal Transport
framework for Graph comparison. In Advances In Neural Information Processing Systems,
Volume 32.

Massias, M., A. Gramfort, and J. Salmon (2018). Celer: a Fast Solver for the Lasso with Dual
Extrapolation. In International Conference on Machine Learning, Volume 80, pp. 3321–3330.

Mukherjee, D., A. Guha, J. Solomon, Y. Sun, and M. Yurochkin (2020). Outlier-Robust Optimal
Transport. Technical report, arXiv preprint arXiv:2012.07363.

Nesterov, Y. (2014). Subgradient methods for huge-scale optimization problems. Mathematical
Programming 146(1), 275–297.

Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, et al. (2011). Scikit-learn: Machine learning in Python. Journal of
Machine Learning Research 12, 2825–2830.

Rabin, J., S. Ferradans, and N. Papadakis (2014). Adaptive color transfer with relaxed optimal
transport. In IEEE International Conference on Image Processing, pp. 4852–4856.

Richardson, W. H. (1972). Bayesian-based iterative method of image restoration. JoSA 62(1), 55–59.

Sato, R., M. Yamada, and H. Kashima (2020). Fast Unbalanced Optimal Transport on a Tree. In
Advances in Neural Information Processing Systems, Volume 33.

Séjourné, T., J. Feydy, F.-X. Vialard, A. Trouvé, and G. Peyré (2019). Sinkhorn divergences for
Unbalanced Optimal Transport. arXiv preprint arXiv:1910.12958.

Sinkhorn, R. and P. Knopp (1967). Concerning nonnegative matrices and doubly stochastic matrices.
Pacific Journal of Mathematics 21(2), 343–348.

Sun, Y., P. Babu, and D. P. Palomar (2017). Majorization-minimization algorithms in signal processing,
communications, and machine learning. IEEE Transactions on Signal Processing 65(3), 794–816.

Thibault, A., L. Chizat, C. Dossal, and N. Papadakis (2021). Overrelaxed Sinkhorn–Knopp Algorithm
for Regularized Optimal Transport. Algorithms 14(5), 143.

Vayer, T., L. Chapel, R. Flamary, R. Tavenard, and N. Courty (2019). Optimal transport for structured
data with application on graphs. In International Conference on Machine Learning, pp. 6275–6284.

12

Villani, C. (2009). Optimal Transport: Old and New, Volume 338. Springer Berlin Heidelberg.

Virtanen, P., R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski,
P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett, J. Wilson, K. J. Millman,
N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey, İ. Polat, Y. Feng,
E. W. Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen, E. A. Quintero,
C. R. Harris, A. M. Archibald, A. H. Ribeiro, F. Pedregosa, P. van Mulbregt, and SciPy 1.0
Contributors (2020). SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python.
Nature Methods 17, 261–272.

Wang, J., P. Wonka, and J. Ye (2015). Lasso screening rules via dual polytope projection. Journal of
Machine Learning Research 16(1), 1063–1101.

Xiao, H., K. Rasul, and R. Vollgraf (2017). Fashion-MNIST: a Novel Image Dataset for Benchmarking
Machine Learning Algorithms.

Xie, Y., X. Wang, R. Wang, and H. Zha (2020). A fast proximal point method for computing exact
Wasserstein distance. In Uncertainty in Artificial Intelligence, pp. 433–453.

Yang, Z. and E. Oja (2011). Unified Development of Multiplicative Algorithms for Linear and
Quadratic Nonnegative Matrix Factorization. IEEE Transactions on Neural Networks 22, 1878 –
1891.

13

A Supplementary material

A.1 Design ofH ,Hr andHc

In this section, we detail how we build the design matrixH in problem (3). By setting λ = λ1 = λ2,
Eq. (2) can be reformulated as

UOTλ(a, b) = min
T≥0

〈C,T 〉+ λDϕ

([
T1m
T>1n

]
,

[
a
b

])
(16)

because the divergence Dϕ is separable. Note that both T1m and T>1n are linear operations. It
means that we can vectorize the matrix t = vec(T) = [T1,1, T1,2, . . . Tn,m−1, Tn,m]> such that:[

T1m
T>1n

]
= Ht where H =

[
Hr

Hc

]
. (17)

The matrixHr ∈ Rn×nm that performs the sum over the rows of T is given by

Hr =

 1 . . . 1 0 . . . 0 . . . 0 . . . 0
0 . . . 0 1 . . . 1 . . . 0 . . . 0
. .
0 . . . 0 0 . . . 0 . . . 1 . . . 1

 (18)

and can be implemented in Python with Hr = np.repeat(np.eye(n),m). In a similar fashion,
the matrixHc that performs the sum across columns of T is a m× nm array defined as

Hc = [Im Im . . . Im] (19)

and can be implemented in Python usingHc = np.tile(np.eye(m),n).

Useful identities. From the previous definitions, we have that

H>y = H>r a+H>c b = vec(a1>m + 1nb
>) =

a1 + b1
a1 + b2
. . .

an + bm−1

an + bm

 . (20)

We have H>H = H>r Hr + H>c Hc, of size nm × nm. H>r Hr is a block-diagonal matrix
with n blocks of size m × m filled with ones. H>r Hr can be implemented in Python with
np.tile(np.eye(m),(n,m)). H>c Hc is a block matrix with blocks of Im, and can be imple-
mented in Python with np.tile(np.eye(m), (n,n)). Multiplying H>H by a vector, e.g. t,
results inH>Ht = vec(T1m1

>
m + 1n1

>
nT).

A.2 Details of MM algorithms

The objective function Fλ(t) defined by Eq. (3) can be re-written as:

Fλ(t) =
∑
i

ϕ(
∑
j

Hi,jtj) +
∑
j

[
cj
λ
−
∑
i

Hi,jϕ
′(yi)

]
tj . (21)

Applying Jensen inequality to the first term like explained in Section 3.1 directly leads to the
expression of Gλ(t, t̃) given by Eq. (4). The auxiliary function is separable and convex. Given
t̃ = t(k), the next iterate t(k+1) can be computed by cancelling the partial derivative ∇tqGλ(t, t(k)),
q = 1, . . . , nm, or setting tq to zero if the solution is negative in order to satisfy the non-negative
constraint (note that this is not a heuristic but what the KKT conditions dictate). Cancelling the partial
derivative w.r.t. tq is equivalent to solving∑

i

Hi,qϕ
′

(
tq

t
(k)
q

[Ht(k)]i

)
=
∑
i

Hi,qϕ
′(yi)−

cq
λ

(22)

w.r.t. tq . We address this univariate problem for the `2 and KL-penalties next.

14

Squared `2 penalty. In that case we have ϕ(x) = x2

2 , ϕ′(x) = x and we obtain

t(k+1)
q = t(k)

q

max
(

0, [H>y]q − 1
λcq

)
[H>Ht(k)]q

. (23)

Recall that t is a vector form of the OT plan T , and assume that tq corresponds to the entry Ti,j .
H>y is a nm-dimensional vector with elements ai + bj , see Eq. (20). Furthermore, we have

Ht =

[
T1m
T>1n

]
thanks to Eq. (17). Therefore, we can establish the following update in Ti,j

T
(k+1)
i,j = T

(k)
i,j

max
(
0, ai + bj − 1

λci,j
)

[T (k)1m]i + [T (k)>1n]j
(24)

with matrix form given by Eq. (7).

KL penalty. In this case we have ϕ(x) = x log x− x, ϕ′(x) = log x and we obtain

t(k+1)
q = t(k)

q exp

(
1∑
qHi,q

(∑
i

Hi,q log
yi

[Ht(k)]i
− cq
λ

))
(25)

= t(k)
q exp

[
H> log(y)−H> log

(
Ht(k)

)]
q
− 1

λcq[
H>1

]
q

 . (26)

Using the results of Section A.1 like in the `2 case, we obtain the following update

T
(k+1)
i,j =

(
ai

[T (k)1m]i

)1/2

T
(k)
i,j exp

(
−ci,j

2λ

) (bj

[T (k)>1n]j

)1/2

with matrix form given by Eq. (6).

Alternative multiplicative update for the `2-penalty. Another possible approach is to use a
quadratic majorization of the linear term c>t to bypass the thresholding operation like in (Hoyer,
2002; Yang and Oja, 2011), leading to:

T (k+1) = T (k) � a1>m + 1nb
>

T (k)Om + OnT
(k) + 1

2λC
with O` = 1`1

>
` . (27)

However we found update (7) more useful in our case, thanks to the thresholding operation that
locates true zeros from start.

Alternative derivation of MM algorithms. The reformulation of UOT as a non-negative penalized
linear regression problem comes very handy because it offers a novel interpretation of UOT and
the possibility of using some of the many existing algorithms for the latter problem, such as LARS-
based algorithm for path computation. However, we want to point out that we may also derive MM
algorithms directly from Eq. (2). Let us write

Fλ(T) = 〈C,T 〉+ λ1Dϕ(T1m,a) + λ2Dϕ(T>1n, b) (28)

=
∑
ij

Ci,jTi,j + λ1

∑
i

dϕ(
∑

j
Ti,j , ai) + λ2

∑
j

dϕ(
∑

i
Ti,j , bj) (29)

15

(Note that we have Fλ(T) = Fλ(t), slightly abusing notations). Let T̃ be a current estimate of T .
We wish to compute an auxiliary function Gλ(T , T̃) for Fλ(T). Let us denote

ãi =
∑
j

T̃i,j (the ith approximate row marginal) (30)

b̃j =
∑
i

T̃i,j (the jth approximate column marginal) (31)

α̃i,j =
T̃i,j
ãi

such that
∑
j

α̃i,j = 1 (32)

β̃i,j =
T̃i,j

b̃j
such that

∑
i

β̃i,j = 1 (33)

By convexity of dϕ(x, y) w.r.t x, we have

dϕ

∑
j

Ti,j , ai

 ≤∑
j

α̃i,j dϕ

(
Ti,j
α̃i,j

, ai

)
, (34)

dϕ

(∑
i

Ti,j , bj

)
≤
∑
i

β̃i,j dϕ

(
Ti,j

β̃i,j
, bj

)
. (35)

The inequalities are tight when T̃ = T . Plugging the latter inequalities into Eq. (29), we obtain the
following auxiliary function:

Gλ(T |T̃) =
∑
ij

[
Ci,jTi,j + λ1α̃i,j dϕ

(
Ti,j
α̃i,j

, ai

)
+ λ2β̃i,j dϕ

(
Ti,j

β̃i,j
, bj

)]
. (36)

Gλ(T |T̃) is essentially the matrix form of Gλ(t|̃t), with partial derivative given by:

∇Ti,jGλ(T |T̃) = Ci,j + λ1d
′
ϕ

(
ãi
Ti,j

T̃i,j
, ai

)
+ λ2d

′
ϕ

(
b̃j
Ti,j

T̃i,j
, bj

)
. (37)

Using d′ϕ(x, y) = ϕ′(x) − ϕ′(y) and either ϕ′(x) = x (`2-penalized UOT) or ϕ′(x) = log x (KL-
penalized UOT), we easily retrieve Eq. (24) and Eq. (27) when λ1 = λ2, or Eq. (14) in the general
case (with here λreg = 0).

A.3 Details of the UOT path computation

Matrices and vectors on the active set A. Recall that mA, cA and tA are sub-vectors of m, c
and T corresponding to indices in A. HA is a matrix of dimension (|i|+ |j|)× |A|, where |i| and
|j| are respectively the number of distinct rows i and columns j that belong to the transport plan for a
given active set A. HA is built by keeping only the rows of Hr such that the element i is present
in the active set (the latter matrix being denoted [Hr]A), the rows ofHc such that the element j is
present in the active set (denoted [Hc]A), and keeping the columns such that element (i, j) ∈ A (up
to vectorization).

Update (H>AHA)−1 from (H>AkHAk)−1 using the Schur complement. Algorithm 1 involves
the computation, at each iteration, of the inverse matrix (H>AHA)−1. The computational burden
can be alleviated by using the Schur complement of the matrix in order to compute (H>AHA)−1

from its value at the previous iteration (H>AkHAk)−1. Let us denote BA = (H>AHA) and
BAk = (H>AkHAk). Two cases may arise:

• One component q is added to the active set A = Ak+1 = Ak ∪ q. In that case, we have:

B−1
A =

[
B−1
Ak +B−1

AkbA,qS
−1bq,AB

−1
Ak −B−1

AkbA,qS
−1

−S−1bq,AB
−1
A S−1

]
(38)

where bq,A is the last column of matrixBA, bA,q its last row and S = 2− bq,A>B−1
AkbA,q

is a scalar.

16

• One component q is removed from the active set A = Ak\q. In that case, we get:

B−1
A = B−1

Ak\q −
b−1
A\q,qb

−1
q,A\q

b−1
q,q

(39)

withB−1
A\q being the matrixB−1

A deprived from its row and column corresponding to the
component q. The vector b−1

Ak\q,q represents the column of theB−1
A matrix corresponding

to element i while b−1
q,A\q stands for the corresponding row. Finally b−1

q,q is the component of
B−1
A corresponding to the component q.

A.4 Details of the regularization path formulation for semi-relaxed UOT

Semi-relaxed `2-penalized UOT. We start by recalling the formulation of the semi-relaxed `2-
penalized UOT problem:

SROTλ(a, b) = min
T≥0,Hct=b

〈C,T 〉+ λ‖T1m − a‖2.

From Eq. (12), the corresponding Lagrangian writes:

Lλ(t,γ) =
1

λ
c>t+

1

2
(Hrt− a)>(Hrt− a) + (Hct− b)>u− γ>t (40)

with u ∈ Rm the Lagrange parameters associated to the m equality constraints and γ ≥ 0 the La-
grange parameters related to the non-negativity constraints. We recall the KKT optimality conditions,
which state that i) ∇tLλ = 1

λc + H>r Hrt −H>r a + H>c u − γ = 0 (stationary condition), ii)
γ � t = 0 (complementary condition), and iii) γ ≥ 0 andHct− b = 0 (feasibility) from which we
may derive the path computation. We recall that � stands for point-wise multiplication.

Piecewise linearity of the path. Let us suppose that, at step k, we know the current active set
A = Ak and we look for tλA and uλ. Because of the complementary condition, we have γA = 0.
Hence the stationnarity condition on the active set can be rewritten as, with λ = λk + ε and ε small
enough {

[H>r]A[Hr]At
λ
A + [H>c]Au

λ = [H>r]AaA − 1
λcA

[Hc]At
λ
A = bA

(41)

or equivalently, at each iteration, the following linear system should be solved:(
[H>r]A[Hr]A [H>c]A

[Hc]A 0

)
︸ ︷︷ ︸

KA

(
tλA
uλ

)
= − 1

λ

(
cA
0

)
︸ ︷︷ ︸
γA

+

(
[H>r]AaA

b

)
︸ ︷︷ ︸

βA

. (42)

We then have (
tλA
uλ

)
= − 1

λ
K−1
A γA +K−1

A βA. (43)

We now denote c̃A = K−1
A γA and its sub-vectors c̃aA and c̃bA that respectively contains the |A| first

rows and m last rows of c̃A. We also denote m̃A = K−1
A βA and its sub-vectors m̃a

A and m̃b
A in

the same fashion. We then have {
tλA = − 1

λ c̃
a
A + m̃a

A
uλ = − 1

λ c̃
b
A + m̃b

A
(44)

We again notice the piecewise linearity (as a function of 1/λ) of the path when the active set A is
fixed.

17

Computation of λk+1 given λk. Given a current solution at iteration k (λk, t
λk), we increase the

ε value in λ = λk + ε until one of the following case arises.

• Inside the active set, the positivity constraint on tλA may be violated, corresponding to the case

m̃a
A =

1

λ
c̃aA ⇒ λr = min

>λk

(
c̃aA
m̃a
A

)
(45)

where min>λk denotes the smallest value in c̃aA
m̃a

A
greater that λk.

• Outside the active set, the positivity constraint of the KKT may be violated. The stationarity
condition outside the active set Ā can be rewritten, by injecting the solution of Eq. (44):

1

λ
cĀ +

[
H>r (Hr(−

1

λ
c̃a + m̃a)− a)

]
Ā +

[
H>c (− 1

λ
c̃b + m̃b)

]
Ā − γĀ = 0 (46)

1

λ
cĀ +

[
H>H

(
m̃+

1

λ
c̃
)]
Ā
−mĀ = γĀ ⇒ λa = min

>λk

(
cĀ −

[
H>Hc̃

]
Ā

mĀ −
[
H>Hm̃

]
Ā

)
(47)

The active set changes only if there exists a component i outside the current active set such that
γi ≥ 0. Hence we write:

1

λ
cĀ −

1

λ

[
H>r Hrc̃

a +H>c c̃
b
]
Ā +

[
H>r Hrm̃

a −H>r a+H>c m̃
b
]
Ā ≥ 0 (48)

λa = min
>λk

cĀ −
[
H>r Hrc̃

a +H>c c̃
b
]
Ā[

2H>r a−H>r Hrm̃
a −H>c m̃b

]
Ā

(49)

Note that this last equation is very similar to the one we obtain for `2-penalized UOT, except that
vectors m̃ and c̃ are split in 2 parts, depending on if we consider the rows (that can be unbalanced) or
the columns (that should strictly respect the marginal constraint). Also note that the Schur complement
applies to the update ofK−1

A in order to decrease the computational burden.

A.5 IPOT is a MM algorithm

Herein we discuss the relation between the Inexact Proximal Point OT (IPOT) algorithm of Xie et al.
(2020) and MM. First note that IPOT aims at the balanced OT problem (1). This is equivalent to
solving

min
T≥0,T1m=a,T>1n=b

〈C,T 〉 + λ
∑
i,j

Ti,j log(Ti,j)− λ
∑
i,j

Ti,j log(Ti,j) (50)

where one adds and removes the entropy regularization of T . A simple algorithm can be devised by
upper bounding the concave term by its tangent at T (k) leading to the new problem

min
T≥0,T1m=a,T>1n=b

〈T ,C〉+ λ
∑
i,j

Ti,j log(Ti,j)− λ〈T , log
(
T (k)

)
+ 1〉 (51)

where the log is taken component-wise. Note that the constant 1 in the scalar product can be removed
since

∑
i,j Ti,j is constant and does not influence the solution. Problem (51) can be solved using

classical Sinkhorn iterations with a cost matrix C̃ = C − λ log(T (k)). This corresponds to using the
kernel matrix

K̃ = exp

(
− 1

λ
(C − λ log

(
T (k)

))
= exp

(
− 1

λ
C

)
� T (k), (52)

as presented in (Xie et al., 2020, Algorithm 1). Hence IPOT can be interpreted as MM. Note that the
point-wise product between a kernel matrix and the estimate T (k) appears also in our multiplicative
updates (6) and (14) with however a different scaling parameter.

18

101 102 103 104

lambda

10−3

10−2

10−1

100

101

102

Ti
m

e
(s

ec
)

L2-penalized UOT

GPU
CPU

10−2 10−1 100 101 102

λ

10−2

10−1

100

101

102

Ti
m

e
(s

ec
)

KL-penalized UOT

GPU
CPU

Figure 5: (Left) Comparison of `2-penalized UOT with m = n = 500 run on CPU and GPU (Right)
likewise for KL-penalized UOT. Values represent average values over 5 runs.

A.6 Details about the experiments in the paper

We run the experiments on a Mac mini 2020 personal computer, with M1 chip and 16GB of RAM.
All the experiments can be re-run thanks to the paper companion code. We compare the following
algorithms provided by the following solvers:

• the “L-BFGS-B” method of SciPy, in which we provide the function to minimize and its
associated Jacobian (either for KL or `2-penalized UOT),

• the Lasso algorithms Celer and of Scikit-learn,
• the regularization path algorithm introduced in the paper,
• the multiplicative updates introduced in the paper.

We use the same stopping criteria for all the algorithms (not to mention the regularization path
algorithm that provides an exact solution), except for `2-penalized UOT that necessitates a smaller
tolerance to converge to the correct values, especially for large values of λ.

Regarding Figure 3, we draw 5 realizations of two random 2 Gaussian samples of 10-dimensional
n = m points with different means and variances.

A.7 Additional experiments

GPU implementation of the MM algorithms. Figure 5 compares the results obtained by running
the MM algorithms on CPU and GPU (GeForce GTX TITAN X), showing that it is about 5 to 40
times faster to run the MM UOT algorithm on GPU.

Convergence of the MM algorithm to a closed form solution. As discussed in the introduction,
there exist closed form solutions for KL-UOT betwen Gaussians for the regularized Janati et al.
(2020) and unregularized (Janati, 2021, Eq. 2.72) UOT. The second one for unregularized UOT
allows us to use the closed form solution to check that we converge to the true UOT value when the
number of samples n goes to infinity. To this end, we simulate 50 realizations of samples drawn from
Gaussian distributions in dimension d = 1, 2, 4 and study the evolution of the error of the OT loss
as a function of the number of samples n for different values of the regularization parameter λ. For
the Gaussian distribution, we take a mean µ equal to a null vector and we draw the covariance Σ
from a Wishart distribution. Note that the error for all configurations decreases, suggesting that our
algorithm can recover the true UOT value.

19

101 103

of samples

10−3

10−2

10−1

100

|
̂

O
T n

−
O
T

⋆
|

Dimension = 1

λ
0.5
1.0
10.0

101 103

of samples

Dimension = 2

101 103

of samples

Dimension = 4

Figure 6: Illustration of the empirical convergence of the KL UOT to its continuous closed form
solution between Gaussians using our KL-UOT MM solver. Absolute errors (and related variance)
are provided for different realizations with data dimensionality equal to 1 (left), 2 (center) and 4
(right) as a function of the number of samples n.

20

	Introduction
	Reformulation of UOT as non-negative penalized linear regression
	Background on Optimal Transport
	Reformulation of UOT

	Novel numerical solvers for UOT
	Majorization-Minimization (MM) for UOT
	Regularization path for 2-penalized UOT

	Numerical experiments
	Discussion and perspectives
	Conclusion
	Supplementary material
	Design of bold0mu mumu HHprogram@epstopdfHHHH, bold0mu mumu HHprogram@epstopdfHHHHr and bold0mu mumu HHprogram@epstopdfHHHHc
	Details of MM algorithms
	Details of the UOT path computation
	Details of the regularization path formulation for semi-relaxed UOT
	IPOT is a MM algorithm
	Details about the experiments in the paper
	Additional experiments

