
Appendix: Continuous Doubly Constrained Batch
Reinforcement Learning

A Experiment Details

Evaluation Procedure. We measure performance in each task using the rewards collected by the
learned policy when actually deployed in the environment. To report more stable results, we follow
[29] and average returns achieved by each of the policies arising during the last 10k gradient steps of
batch RL (done for all batch RL methods). To further improve stability, we also re-run all batch RL
methods with 3 different random seeds and take another average across the resulting performance.
As suggested by [14], we report returns for each task that have been normalized as follows:

score = 100 ∗ score− random score
expert score− random score

(12)

where random score and expert score are provided for each task by [14] in the D4RL paper GitHub
repository3. The same procedure is also used in previous works [14, 29] to report results and compare
various batch RL methods.

Baselines. We compare CDC against standard baselines and state-of-the-art batch RL methods:
BEAR [28], BRAC-V and BRAC-P [63], BC [63], CQL [29], BCQ [17], and SAC [21]. We obtained
the numbers for BEAR, BC, BRAC-V, and BRAC-P from published numbers by [29]. However,
numbers for BCQ and SAC are from our runs for all tasks. Also, we run published CQL codes4

with their hyperparameters to produce results for all but Adroit and FrankaKitchen where the codes
are not available. For these latter domains, we simply use the CQL results reported in the paper of
[29]. In head-to-head comparisons against each of these other batch RL methods, CDC generates
greater overall returns (see Table 1). To verify these results are statistically significant, we report the
p-value of a (one-sided) Wilcoxon signed rank test [61] comparing the returns of another method vs
the returns of CDC across all 32 datsets (see p-value vs. CDC row in Table 1).

To provide a better picture of our method, we also include the learning curves in Figure S1 for our
algorithm vs BCQ for each environment considered in our benchmark. These plots show that, in
the vast majority of environments, CDC exhibits consistently better performance across different
seeds/iterations.

Ablation studies. We conduct a series of ablation studies to comprehensively analyze the different
components of CDC. We use all 32 D4RL datasets for this purpose. Table S1 and Table S2 show
that both penalties introduced in our paper are critical for the strong performance of CDC, with
the extra-overestimation penalty ∆ being of greater importance than the exploration-penalty log π.
Moreover, Figure S2 shows how estimated Q values evolve over training for each of the above
ablation variants. Here it is again evident that both penalties may be required to successfully prevent
extra-overestimation and subsequent explosion of Q-estimates, with ∆ being the more effective of
the two for mitigating extra-overestimation.

A.1 Comparing CDC with RBVE (Gulcehre et al. [20])

Concurrent to our work, Gulcehre et al. [20] propose a value regularization term for batch RL that is
similar to the Q-value regularizer used by CDC. Unlike our work, [20] only considers discrete actions
under a DQN [41] framework rather than the actor-critic RL framework employed in CDC. [20]
also does not consider explicit policy regularization, which forms a critical component of CDC to
supplement its value regularization. That said, [20] do also acknowledge the importance of ensuring
the learned policy does not stray too far from the behavior policy, but their proposal to ensure this
involves restricting the learner to apply only a single step of policy-iteration to the estimated value
function. However in continuous action spaces with a policy-network, even a single policy-iteration
step can lead to large deviations from the behavior policy without explicit policy regularization
as imposed by CDC. Finally, we note that the RBVE methodology of [20] requires a dataset that

3https://github.com/rail-berkeley/d4rl/blob/master/d4rl/infos.py
4https://github.com/aviralkumar2907/CQL.
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Figure S1: Learning curves of CDC (red) and BCQ (blue) on all 32 D4RL environments. Curves are averaged
over 3 seeds, with the shaded area showing the standard deviation across seeds.
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Index Task Name λ = 0 & η = 0 η = 0 λ = 0 CDC
0 halfcheetah-random 32.8 28.78 30.66 27.36
1 halfcheetah-medium 49.51 48.25 47.61 46.05
2 halfcheetah-medium-replay 22.72 30.47 44.62 44.74
3 halfcheetah-medium-expert 7.12 4.98 26.99 59.64
4 halfcheetah-expert −0.95 −0.96 8.21 82.05
5 hopper-random 1.58 0.84 5.97 14.76
6 hopper-medium 0.58 1.05 2.71 60.39
7 hopper-medium-replay 16.4 8.8 54.01 55.89
8 hopper-medium-expert 18.07 3.64 18.22 86.9
9 hopper-expert 1.27 0.8 10.89 102.75

10 walker2d-random 2.96 1.55 14.37 7.22
11 walker2d-medium 0.33 0.85 81.93 82.13
12 walker2d-medium-replay 3.81 −0.14 24.48 22.96
13 walker2d-medium-expert 2.65 5.22 10.94 70.91
14 walker2d-expert −0.1 −0.42 13.03 87.54
15 antmaze-umaze 22.22 89.26 17.78 91.85
16 antmaze-umaze-diverse 0.0 19.26 0.0 62.59
17 antmaze-medium-play 0.0 17.78 1.11 55.19
18 antmaze-medium-diverse 0.0 36.67 0.0 40.74
19 antmaze-large-play 0.0 5.56 0.0 5.19
20 antmaze-large-diverse 0.0 2.96 0.0 11.85
21 pen-human −3.43 −3.07 58.33 73.19
22 pen-cloned −3.4 −2.29 49.31 49.18
23 hammer-human 0.26 0.26 0.66 4.34
24 hammer-cloned 0.26 0.28 1.79 2.37
25 door-human −0.16 −0.34 0.01 4.62
26 door-cloned −0.36 −0.13 0.14 0.01
27 relocate-human −0.31 −0.31 0.0 0.73
28 relocate-cloned −0.15 −0.34 −0.25 −0.24
29 kitchen-complete 0.0 0.0 11.76 58.7
30 kitchen-partial 0.0 0.0 13.52 42.5
31 kitchen-mixed 0.0 0.0 7.04 42.87

Total Score 173.67 299.25 555.84 1396.99

Table S1: Ablation study of components used in CDC. Listed is the return in each environment (normalized
using (12) as in [14]) achieved by ablated variants of our algorithm. Fixing η or λ to zero (i.e. omitting our
penalties) produces far worse returns than CDC, demonstrating the utility of both of our proposed penalties.
Note that the only difference between CDC and these variants (i.e. λ = 0 & η = 0, η = 0, λ = 0) in these
experiments is either η or λ or both are set to zero in Algorithm 1 and all other details are exactly the same.

contains observations (s, a, r, s′, a′), i.e. more complete subtrajectories of episodes, whereas CDC
merely requires a dataset that contains observations of the form (s, a, r, s′). The former setting is
less widely applicable, but is somewhat easier due to the availability of the subsequent action a′ for
temporal-difference learning.

In this section, we apply the RBVE method of [20] on the D4RL benchmark [14], after first minorly
adapting it to our setting. Key differences in our setting are: we have continuous actions, and a′ is
not contained in the dataset. In our adaptation of RBVE, we approximate the maxa required by [20]
(but which is difficult for continuous actions) by sampling many actions and taking the empirical
maximum. Our adaptation accounts for the fact that a′ is not present in the dataset by first estimating
the behavior policy πb via behavior-cloning (i.e. via maximum likelihood training of our same policy
network) and then drawing a′ ∼ πb(.|s′) for use in RBVE. Furthermore, we considered two different
variants of RBVE in our experiments. In the first variant (called RBVE-A), the soft filtering weights
of [20], ω(s, a), are implemented according to Eq 6 in their paper. Although closely following the
recommendations of [20], RBVE-A did not perform well in our D4RL environments, and thus we
considered a second variant (called RBVE-C), where we treat ω as a hyperparameter and we use a
fixed value per environment. Table S3 illustrates that CDC outperforms both variants of RBVE.
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Task Name λ = 0 & η = 0 η = 0 λ = 0 CDC
halfcheetah-random 3791.65 3293.31 3526.06 3117.23
halfcheetah-medium 5865.97 5710.67 5631.1 5437.01
halfcheetah-medium-replay 2540.07 3503.24 5259.18 5274.51
halfcheetah-medium-expert 604.05 337.88 3070.63 7124.4
halfcheetah-expert −398.72 −399.66 739.54 9906.71
hopper-random 31.08 7.19 174.13 459.99
hopper-medium −1.48 13.77 68.07 1945.29
hopper-medium-replay 513.53 266.05 1737.61 1798.66
hopper-medium-expert 567.85 98.11 572.74 2808.05
hopper-expert 20.98 5.92 334.25 3323.93
walker2d-random 137.71 72.86 661.34 333.2
walker2d-medium 16.82 40.53 3762.54 3771.93
walker2d-medium-replay 176.51 −4.86 1125.45 1055.62
walker2d-medium-expert 123.48 241.43 504.05 3257.06
walker2d-expert −3.01 −17.79 599.6 4020.49
antmaze-umaze 0.22 0.89 0.18 0.92
antmaze-umaze-diverse 0.0 0.19 0.0 0.63
antmaze-medium-play 0.0 0.18 0.01 0.55
antmaze-medium-diverse 0.0 0.37 0.0 0.41
antmaze-large-play 0.0 0.06 0.0 0.05
antmaze-large-diverse 0.0 0.03 0.0 0.12
pen-human −5.87 4.84 1834.73 2277.75
pen-cloned −5.04 28.09 1565.86 1562.21
hammer-human −241.31 −241.06 −188.27 292.21
hammer-cloned −241.4 −238.34 −41.52 34.45
door-human −61.11 −66.61 −56.14 79.05
door-cloned −67.09 −60.23 −52.37 −56.15
relocate-human −19.51 −19.72 −6.37 24.36
relocate-cloned −12.77 −20.95 −17.05 −16.63
kitchen-complete 0.0 0.0 0.47 2.35
kitchen-partial 0.0 0.0 0.54 1.7
kitchen-mixed 0.0 0.0 0.28 1.71

Total Score 13332.61 12556.37 30806.65 57839.77

Table S2: Ablation study of components used in CDC. Same as Table S1 but the returns here are not
normalized, and we instead report raw returns achieved in each task.

Figure S2: Effect of our penalties on Q-values. These figures show evaluation of averaged Q values across 4 Q
during training time for 6 different tasks. This result shows that CDC’s Q-estimate is well controlled especially
compared with η = 0.
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Index Task Name RBVE-C RBVE-A CDC
0 halfcheetah-random 18.89 -0.01 27.36
1 halfcheetah-medium 43.98 24.27 46.05
2 halfcheetah-medium-replay 37.24 7.55 44.74
3 halfcheetah-medium-expert 32.11 8.12 59.64
4 halfcheetah-expert 36.57 3.14 82.05
5 hopper-random 11.46 4.69 14.76
6 hopper-medium 17.16 1.23 60.39
7 hopper-medium-replay 28.15 3.31 55.89
8 hopper-medium-expert 88.72 3.62 86.9
9 hopper-expert 94.32 1.2 102.75

10 walker2d-random 0.36 2.4 7.22
11 walker2d-medium 80.19 2.81 82.13
12 walker2d-medium-replay 6.7 2.41 22.96
13 walker2d-medium-expert 77.79 1.83 70.91
14 walker2d-expert 60.3 0.69 87.54
15 antmaze-umaze 0.0 0.0 91.85
16 antmaze-umaze-diverse 2.96 0.0 62.59
17 antmaze-medium-play 0.0 0.0 55.19
18 antmaze-medium-diverse 0.0 0.0 40.74
19 antmaze-large-play 0.0 0.0 5.19
20 antmaze-large-diverse 0.0 0.0 11.85
21 pen-human 24.04 34.93 73.19
22 pen-cloned 42.86 -0.39 49.18
23 hammer-human 0.59 0.0 4.34
24 hammer-cloned 0.34 0.17 2.37
25 door-human 9.15 -0.0 4.62
26 door-cloned 0.04 0.03 0.01
27 relocate-human 0.29 0.01 0.73
28 relocate-cloned -0.23 0.01 -0.24
29 kitchen-complete 18.61 0.83 58.7
30 kitchen-partial 8.7 0.83 42.5
31 kitchen-mixed 5.93 1.11 42.87

Total Score 747.21 104.79 1396.99

p-value vs. CDC 6.6e-06 5.3e-07 -

Table S3: Return achieved in deployment of policies learned via CDC and RBVE [20]. RBVE-C and
RBVE-A are two variants of [20] detailed in Section A.1, and we use the exact same setup for CDC as before.
The return in each environment here is normalized using (12) as originally advocated by [14]. For each method:
we perform a head-to-head comparison against CDC across the D4RL tasks, reporting the p-value of a (one-sided)
Wilcoxon signed rank test [61] that compares this method’s return against that of CDC (over the 32 tasks).

B Details of our Methods

Implementation Details. Table S5 and Table S4 show hyper-parameters, computing infrastructure,
and libraries used for the experiments in this paper for all 32 continuous-control tasks. Like most
other batch-RL baselines in our comparisons and following Sec 8 in [1], we did a minimal random
search to tune our hyperparams η, λ. Note that CDC was simply run on every task using the same
network architecture and the original rewards/actions provided in the task, without any task-specific
reward-normalization/action-smoothing required by some of the other batch RL methods.

Using CDC Policy During Deployment. Algorithm 1 in the main text only describes the training
process used in CDC, Algorithm 3 here details how a batch RL is deployed the resulting learned
policy/values to select actions in the actual environment. After the batch RL training is complete,
Algorithm 3 is used to select actions at evaluation (test) time, as also done by [17, 18, 28, 29, 63].
All CDC returns mentioned throughout the paper (and other baseline methods returns i.e. BCQ, CQL,
BEAR, BRAC-V/P, etc.) were produced by selecting actions in this manner, which facilitates fair
comparison against the existing literature.

19



Algorithm 2 FQE + ∆

1: Input: policy π to evaluate
2: Initialize Q networks: {Qθj}Mj=1

3: Initialize Target Q-networks: {Qθ′j : θ′j ←
θj}Mj=1

4: for t in {1, . . . , T} do
5: Sample mini-batch B = {(s, a, r, s′)} ∼ D
6: For each s, s′ ∈ B: sample N actions

{âk}Nk=1 ∼ π(·|s) and {a′k}Nk=1 ∼ π(·|s′)
7: Qθ- value update:

y(s′, r) := r +
γ

N

N∑
a′k

[
Qθ′(s

′, a′k)
]

where Q given by Eq 5

∆j(s, a) :=
([

max
âk

Qθj (s, âk)−Qθj (s, a)
]
+

)2
θj ← argmin

θj

∑
(s,a,s′)∈B

[(
Qθj (s, a)− y(s′, r)

)2
+ η ·∆j(s, a)

]
for j = 1, ...,M

8: Update Target Networks:
θ′j ← τθj + (1− τ)θ′j ∀j ∈M

9: end for

Algorithm 3 Bacth RL Action Selection at Evalu-
ation Time (used for CDC as well as other baseline
methods)

1: Input: state s ∈ S, trained policy network πφ
and Q networks: {Qθj}Mj=1.

2: Sample N actions {ak}Nk=1 ∼ πφ(·|s)
3: Identify optimal action:

a← arg max
ak

[
Qθ(s, ak)

]
Here Q given by Eq 5 (Note this similar to
BCQ, BRAC-V/P, BEAR, EMaQ).

4: Return a

B.1 Fitted Q Evaluation Details

For off-policy evaluation, Algorithm 2 describes the steps of fitted Q-evaluation (FQE) [35], when
additionally leveraging our extra-overestimation penalty ∆. The goal of FQE is to estimate the values
for a given policy, i.e. Q̂π , with offline data collected by an unknown behavior policy. After learning
an estimate Q̂π , the resulting Q-values will be used to score a policy π via the expectation of Q̂π over
the initial state distribution and actions proposed by this policy, i.e. the estimated expected return,
which is given by v̂(π) = Es∼DEa∼π(·|s)[Q̂π(s, a)] [35]. Applying Q-learning to limited data, FQE
is also prone to suffer from wild extrapolation, which we attempt to mitigate by introducing our ∆
penalty (highlighted blue terms in Algorithm 2 are our modifications to FQE).

In Figure 3 of Section 5.1 in the main text, we compare the performance of ∆-penalization of
FQE (with η = 1 throughout in Algorithm 2) against the standard unregularized FQE (η = 0 in
Algorithm 2). Here we use both methods to score 20 different policies, learned under CDC with
different random hyperparameter settings. When scoring each CDC-policy, a ∼ π in the definition of
v̂ is obtained using Algorithm 3 for each s, as the operations of Algorithm 3 entail the actual policy
considered for deployment.

Here we assess the quality of FQE policy evaluation via the Pearson correlation between estimated
returns, i.e., v̂(π), and the actual return (over our 20 policies under consideration). The higher
correlations observed for FQE + ∆ (0.37 on average across our 32 tasks) over FQE (0.01 on average)
in the majority of tasks demonstrates how the inclusion of our ∆ penalty can lead to more reliable off
policy evaluation estimates. Our strategies for mitigating overestimation/extrapolation are thus not
only useful for batch RL but also related tasks like off-policy evaluation.

C D4RL Benchmark

D4RL is a large-scale benchmark for evaluating batch RL algorithms [14]. It contains many diverse
tasks with different levels of complexity in which miscellaneous behavior policies (ranging from
random actions to expert demonstrations) have been used to collect data. For each task, batch RL
agents are trained on a large offline dataset D (without environment interaction), and these agents are
scored based on how much return they produce when subsequently deployed into the live environment.
Since the benchmark contains multiple tasks from a single environment (with different πb), we can
observe how well batch RL methods are able to learn from behavior policies of different quality.
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Computing Infrastructure
Machine Type AWS EC2 - p2.16xlarge
CUDA Version 10.2
NVIDIA-Driver 440.33.01
GPU Family Tesla K80
CPU Family Intel Xeon 2.30GHz

Library Version
Pytorch 1.6.0
Gym 0.17.2
Python 3.7.7
Numpy 1.19.1

Table S4: Computing infrastructure and software libraries used in this paper.

Hyper-parameters value
Random Seeds {0, 1, 2}
Overestimation bias coef (ν) 0.75
Batch Size 256
Number of Updates 1e+6
Number of Q Functions 4
Number of hidden layers (Q) 4 layers
Number of hidden layers (π) 4 layers
Number of hidden units per layer 256
Number of sampled actions (N ) 15
Nonlinearity ReLU
Discount factor (γ) 0.99
Target network (θ′) update rate (τ ) 0.005
Actor learning rate 3e-4
Critic learning rate 7e-4
Optimizer Adam
Policy constraint coef (λ) {0.1, 0.5, 1, 2}
Extra-overestimation coef (η) {.1, .2, .5, .6, .8, 1, 5, 20, 25, 50, 100, 200}
Number of episodes to evaluate 10

Table S5: Hyper-parameters used for CDC for all 32 continuous-control tasks in the D4RL benchmark. All
results reported in our paper are averages over repeated runs initialized with each of the random seeds listed
above and run for the listed number of episodes.

We consider four different domains from the D4RL benchmark [14] from which 32 different datasets
(i.e. tasks) are available. Each dataset here corresponds to a single batch RL task, where we treat
the provided data as D, learn a policy π using only D, and finally evaluate this policy when it is
deployed in the actual environment. In many cases, we have two different datasets taken from the
same environment, but collected by behavior policies of varying quality. For example, from the
MuJoCo HalfCheetah environment, we have one dataset (HalfCheetah-random) generated under a
behavior policy that randomly selects actions and another dataset (HalfCheetah-expert) generated
under an expert behavior policy that generates strong returns. Note that our batch RL agents do not
have information about the quality of πb since this is often unknown in practice.

The Gym-MuJoCo domain consists of four environments (Hopper, HalfCheetah, Walker2d) from
which we have 15 datasets built by mixing different behavior policies. Here [14] wanted to examine
the effectiveness of a given batch RL method for learning under heterogeneous πb. The FrankaKitchen
domain is based on a 9-degree-of-freedom (DoF) Franka robot in a kitchen environment containing
various household items. There are 3 datasets from this environment designed to evaluate the
generalization of a given algorithm to unseen states [14]. The Adroit domain is based on a 24-DoF
simulated robot hand with goals such as: hammering a nail, opening a door, twirling a pen, or
picking up and moving a ball. [14] provide 8 datasets from this domain, hoping to study batch RL in
settings with small amounts of expert data (human demonstrations) in a high-dimensional robotic
manipulation task. Finally, AntMaze is a navigation domain based on an 8-DoF Ant quadruped
robot, from which the benchmark contains 6 datasets. Here [14] aim to test how well batch RL
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agents are able to stitch together pieces of existing observed trajectories to solve a given task (rather
than requiring generalization beyond D). Table S6 shows more details about the datasets in our
benchmark.

Domain Task Name #Samples Obs Dims Action Dims

AntMaze

antmaze-umaze-v0 998573 29 8
antmaze-umaze-diverse-v0 998882 29 8
antmaze-medium-play-v0 999092 29 8
antmaze-medium-diverse-v0 999035 29 8
antmaze-large-play-v0 999059 29 8
antmaze-large-diverse-v0 999048 29 8

Adroit

pen-human-v0 4950 45 24
hammer-human-v0 11264 46 26
door-human-v0 6703 39 28
relocate-human-v0 9906 39 30
pen-cloned-v0 495071 45 24
hammer-cloned-v0 995511 46 26
door-cloned-v0 995643 39 28
relocate-cloned-v0 995739 39 30

FrankaKitchen
kitchen-complete-v0 3679 60 9
kitchen-partial-v0 136937 60 9
kitchen-mixed-v0 136937 60 9

Gym-MuJoCo

halfcheetah-random-v0 998999 17 6
hopper-random-v0 999999 11 3
walker2d-random-v0 999999 17 6
halfcheetah-medium-v0 998999 17 6
walker2d-medium-v0 999874 17 6
hopper-medium-v0 999981 11 3
halfcheetah-medium-expert-v0 1997998 17 6
walker2d-medium-expert-v0 1999179 17 6
hopper-medium-expert-v0 1199953 11 3
halfcheetah-medium-replay-v0 100899 17 6
walker2d-medium-replay-v0 100929 17 6
hopper-medium-replay-v0 200918 11 3
halfcheetah-expert-v0 998999 17 6
hopper-expert-v0 999034 11 3
walker2d-expert-v0 999304 17 6

Table S6: Overview of D4RL tasks. Summary of 32 datasets (i.e. tasks, environments) considered in this work,
listing the: domain each dataset stems from, name of each task, number of samples (i.e. transitions) in each
dataset, and the dimensionality of the state (Obs Dims) and action space (Action Dims). To get the numbers
listed here, a few samples were omitted from the original datasets using the timeout flag suggested by [14] (Click
here for details).
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D Proofs and Additional Theory

This section contains proofs and details of the constants/assumptions of theories mentioned in the
main text.

D.1 Proof of Theorem 1.

Theorem 1. For Qθ in (5), let TCDC : Qθt → Qθt+1
denote the operator corresponding to the

Qθ-updates resulting from the tth iteration of Steps 6-7 of Algorithm 1. TCDC is a L∞ contraction
under standard conditions that suffice for the ordinary Bellman operator to be contractive [3, 6, 8, 56].
That is, for any Q1, Q2:

sup
s,a

∣∣TCDC(Q1(s, a))− TCDC(Q2(s, a))
∣∣ ≤ γ · sup

s,a

∣∣Q1(s, a)−Q2(s, a)
∣∣

In this theorem, we also assume that: πφ is sufficiently flexible to produce arg maxâQ(s, â) for all
s ∈ D and the optimization subproblems in Steps 6-7 of Algorithm 1 are solved exactly (ignoring all
issues related to function approximation). More formally, we adopt assumptions A1-A9 of Antos
et al. [3], although the result from this theorem can also be shown to hold under alternative conditions
that suffice for the ordinary Bellman operator to be contractive (see Section 2 of Antos et al. [3]).
These assumptions involve regularity conditions on the underlying MDP and the behavior policy, as
well as expressiveness restrictions on the hypothesis class of our neural networks.

Proof We first consider a simple unpenalized case where η = 0, λ = 0, and M = 1, i.e. the
Q-ensemble consists of a single network. By the definition in (5) with M = 1: Qθ = Qθ1 , so Step
6 implements the standard Bellman-optimality operator update, when we assume πφ produces a =

arg maxâQθ(s, â). This operator is a contraction under standard conditions [3, 8, 31]. Without this
assumption on πφ, Step 6 instead relies on the EMaQ operator, which Theorem 3.1 of Ghasemipour
et al. [18] shows is also a contraction for the special case of tabular MDPs.

Next consider M > 0 (still with η, λ = 0). Now the target-value y(s′) for each single Q-network
Qθj is determined by Qθ rather than Qθj alone, i.e. y(s′) is given by a convex combination of target
networks {Qθj}Mj=1. By Jensen’s inequality and basic properties of convexity, the updates to each
Qθj remain a contraction. Therefore the overall update to the convex combination of these networks
Qθ is likewise a contraction.

Next we additionally consider η > 0. Note that reducing ∆j is a non-expansive operation on each
Qθj , since ∆j(s, a) is reduced by shrinking large maxâQθj (s, â) toward Q(s, a) for the a observed
in D (without modifying Qθj (s, a

′) for other a′). Following the previous arguments, the addition of
our ∆ penalty preserves the contractive nature of the Qθ update.

Finally also consider λ > 0. In this case, πφ does not simply concentrate on actions that maximize
Qθ, so Step 6 no longer implements the Bellman-optimality operator even with M = 1, η = 0.
However with the likelihood penalty, Step 7 is simply a regularized policy-improvement update: With
η = 0,M = 1, Step 6 becomes a policy-evaluation calculation where the policy being evaluated is
π̃(a|s) = arg max{a′k}Nk=1∼πφ(·|s′)

[Qθ]. Since the Bellman-evaluation operator is also a contraction
under standard conditions [3, 8, 31], our overall argument remains otherwise intact.

D.2 Proof of Theorem 2.

Theorem 2 (restated below) assures us of the reliability of the policy πφ produced by CDC, guaran-
teeing that with high probability πφ will not have much worse outcomes than the behavior policy
πb (where the probability here depends on the size of the dataset D). In batch settings, expecting to
learn the optimal policy is futile from limited data. Even ensuring any improvement at all over an
arbitrary πb is ambitious when we cannot ever test any policies in the environment, and reliability of
the learned πφ is thus a major concern.

Theorem 2. Let πφ ∈ Π be the policy learned by CDC, γ denote discount factor, and n denote
the sample size of dataset D generated from πb. Also let J(π) represent the true expected return
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produced by deploying policy π in the environment. Under assumptions (A1)-(A4), there exist
constants r∗, Cλ, V such that with high probability ≥ 1− δ:

J(πφ) ≥ J(πb)−
r∗

(1− γ)2

√
Cλ +

√
(V − log δ)/n

The assumptions adopted for this result are listed below. Similar results can be derived under more
general forms of these assumptions, but ours greatly simplify the form of our theorem and its proof.

(A1) The complexity of the function class Π of possible policy networks πφ (in terms of the
log-likelihood loss log π) is bounded by V . Here V is defined as the extension of the VC
dimension to real-valued functions with unbounded loss, formally detailed in Section III.D
of Vapnik [87]. Similar results hold under alternative complexity measures V from the
literature on empirical process theory for density and f-divergence estimation [72, 82, 86].

(A2) Rewards in our environment are bounded such that r(s, a) ≤ r∗ for all s ∈ S, a ∈ A.
(A3) Our learned Q networks are bounded such that |Qθ(s, a)| < B for all s, a.
(A4) The likelihoods of our learned πφ are bounded such that | log πφ(a|s)| < L for all s, a.
(A5) Each policy update step is carried out using the full dataset rather than mini-batch.

Proof Define r∗ = max
a,s
|r(s, a)|, and let dπb denote the marginal distribution of states encountered

by acting according to πb starting from the initial state distribution µ0. Thus dπb describes the
probability distribution underlying the states present in our dataset D. Recall the total variation

distance between probability distributions p and q is defined as: TV(p, q) =

∫
|p(x)− q(x)|dx.

From equation (18) in the Proof of Proposition 2 (Appendix A.2) from [88], we have:

J(πφ) ≥ J(πb)−
r∗

(1− γ)2
Es∼dπb

[
TV
(
πφ(· | s), πb(· | s)

)]
≥ J(πb)−

r∗√
2(1− γ)2

Es∼dπb
[√

KL
(
πb(· | s), πφ(· | s)

)]
≥ J(πb)−

r∗√
2(1− γ)2

√
Es∼dπb

[
KL
(
πb(· | s), πφ(· | s)

)]
where we used Pinsker’s inequality in the second line (c.f. [69]), and the last line is an application of
Jensen’s inequality for the concave function f(x) =

√
x.

By assumption (A1), each update of our policy network πφ in CDC is produced via:

φ← argmax
φ

∑
(s,a)∈D,â∼πφ(·|s)

[
Qθt(s, â) + λ · log πφ(a|s)

]
where θt denotes the current parameters of our Q networks in iteration t of CDC. Each of these
penalized optimizations can be equivalently formulated using a hard constraint, i.e., there exists
constant Cλ,θt > 0 (for which λ is the corresponding Lagrange multiplier), such that the following
optimization leads to the same φ:

φ← argmax
φ

∑
(s,a)∈D,â∼πφ(·|s)

[
Qθt(s, â)

]
subject to E(s,a)∼D [log πφ(a|s)] ≥ Cλ,θt

Note: Throughout, E(s,a)∼D is an empirical expectation over dataset D, whereas Eπb denotes true
expectations over the underlying distribution of the behavior policy. Since all Qθt are bounded by
(A3), so must be

C∗λ := max
t
{Cλ,θt} (13)

Thus, in every iteration of CDC, the resulting πφ must satisfy:

Es,a∼D [log πφ(a|s)] ≥ Cλ∗ . (14)
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Finally, we conclude the proof by using Lemma 2 to replace the bound on the empirical likelihood
values with a bound on the underlying KL divergence from the data-generating behavior policy
distribution.

Lemma 2 Suppose E(s,a)∼D[log πφ(a|s)] ≥ C∗λ. Then with probability ≥ 1− δ:

Es∼dπb
[
KL
(
πb(· | s), πφ(· | s)

)]
≤ Cλ +

√
(V − log δ)/n

where n = |D|, and dπb denotes the marginal state-visitation distribution under the behavior policy,
and:

Cλ := Cb − C∗λ (15)
for C∗λ defined in (13) and constant Cb := Es∼dπb ,a∼πb(·|s)

[
log πb(a | s)

]
.

Proof A classical result in statistical learning theory (Theorem (23) in Section III.D of Vapnik [87])
states that the following bound simultaneously holds for all πφ ∈ Π with probability 1− δ:

Es∼dπb ,a∼πb(·|s)[log πφ(a|s)] ≥ E(s,a)∼D[log πφ(a|s)]−
√

(V − log δ)/n (16)

Recall V measures the complexity of function class Π (with respect to the log-likelihood loss) and
here is defined as the extension of the VC dimension to real-valued functions with unbounded loss
from Section III.D of Vapnik [87]. We now write:

Es∼dπb
[
KL
(
πb(· | s), πφ(· | s)

)]
= Es∼dπb ,a∼πb(·|s)

[
log πb(a | s)

]
− Es∼dπb ,a∼πb(·|s)

[
log πφ(a | s)

]
= Cb − Es∼dπb ,a∼πb(·|s)

[
log πφ(a | s)

]
by definition of constant Cb

≤ Cb −
(
E(s,a)∼D

[
log πφ(a | s)

]
−
√

(V − log δ)/n
)

by the empirical process bound in (16)

≤ Cb − C∗λ +
√

(V − log δ)/n

from (14)

= Cλ +
√

(V − log δ)/n

from (15)

allowing us to conclude the proof.

D.3 Proof of Theorem 3.

Theorem 3: Define OEag as the resultant overestimation bias when performing the maximization step
by an agent ag: E[maxaQθ(s, a)]−maxaQ

∗(s, a). Here Qθ denotes the estimate of true Q-value
(Q∗) learned by ag, which may use CDC (with η > 0) or a baseline that uses Algorithm 1 with
η = 0 (with the same value of λ), and the expectation is taken over the randomness of the underlying
dataset, as well as the learning process. Under the assumptions stated below, there co-exist constants
L1 and L2 such that

OECDC ≤ L1 − ηL2 ≤ OEbaseline .

This result relies on the following assumptions:

(A1) For a specific state-action pair 〈s, aID〉 in our datasetD, we assume a function approximator
parameterized by θ = 〈q, V,QID〉 as follows:

Qθ(s, a) =

{∑m
i=1 1

(
a ∈ Ai(s)

)(
V (s) + qi

)
a ∈ A \ aID

QID otherwise
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where setsAi ∀i ∈ [1,m] form a disjoint non-empty partition of the action space A. Here qi
could be thought of as a subset-dependent value, while V is a common (subset-independent)
value that quantifies the overall quality of a particular state s, also considered by Wang et al.
[59]. Note that such discretization schemes are commonly assumed in the RL literature [83],
and that such function approximators can closely approximate all continuous functions up to
any desired accuracy as m increases. At the cost of a more complex analysis, we may have
alternatively assumed Lipschitz continuous function approximators, since they are closely
related to discretization through the notion of covering number.

(A2) Following Thrun and Schwartz [58]5, we study overestimation in a particular state s with
∀a Q∗(s, a) = C. Previous work studied this case because it is the setting where maximal
overestimation occurs (due to maximal Q-value overlap). Stated differently, not assuming
A2 means our theorem still provides the following bound: max(OECDC) ≤ max(OEbaseline)
where the maximum is taken over all possible true Q functions.

(A3) We assume ∀s, i : the qi are independent and are distributed uniformly in [−L1, L1]. This
assumption is also adopted from the literature [32, 58] and greatly simplifies our analysis.
We further assume Qθ(s, aID) = QID, where QID is distributed uniformly at random in
[−αL1, αL1] for α� 1, reflecting the conviction that our Q estimates should generally be
more accurate for the previously observed state-action pairs.

(A4) We assume that Step 6 of Algorithm 1 proceeds by first updating θ based on taking a
gradient-step towards minimizing η∆(s, a) term (see (6)): θ ← θ−µη∇θ∆(s, a), followed
by performing the maximization step in minimizing the TD error. Separating the update into
two steps simplifies our analysis while remaining to be a reasonable way to perform Step 6
of Algorithm 1. Here, µ is the step-size.

(A5) We assume the policy πφ assigns non-zero probability to at least one action from each Ai.

Proof We begin by quantifying the overestimation bias for the baseline case. By denoting ai to be a
member of Ai(s), and in light of our function approximator (assumption A1), we can write:

E
[

max
a∈A

Qθ(s, a)
]

= E
[

max
{
Qθ(s, aID), Qθ(s, a1), · · · , Qθ(s, am)

}]
(assumptions A2, and A3)

= E
[

max{QID, C + q1, · · · , C + qm}
]

(assumption A3)

≥ E
[

max
{
C − αL1, C + q1, · · · , C + qm

}]
= C + E

[
max

{
− αL1, q1 − αL1 + αL1, · · · , qm − αL1 + αL1

}]
= C − αL1 + E

[
max

{
0, q1 + αL1, · · · , qm + αL1

}]
= C − αL1 +m

∫ L1

x:−αL1

(x+ αL1)

2L1

(∫ x

y:−L1

1

2L1
dy
)m−1

dx

= C − αL1 +m

∫ L1

x:−αL1

(x+ αL1)

2L1

(x+ L1

2L1

)m−1
dx .

In the penultimate step, the equality holds because we only need to consider cases where at least one
of the random variables is bigger than −αL1, because otherwise the maximum is 0, thus not affecting
the expectation. We broke down the expectation to m cases, where in each case the maximizing
noise is at least −αL1 (the integral over x), and the remaining n− 1 variables are smaller than the
maximizing one (the integral over y).

Using a change-of-variable technique (z = x+L1

2L1
), we can then write:

5Another paper with this assumption is the work of Lan et al. [32] who did not state this assumption, but to
get their second equality on their page 12, the assumption A2 needs to hold.
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E
[

max
a∈A

Qθ(s, a)
]
≥ C − αL1 +m

∫ L1

x:−αL1

(x+ αL1)

2L1

(x+ L1

2L1

)m−1
dx

= C − αL1 +mL1

∫ 1

y: 1−α2

(
2y − (1− α)

)
ym−1dy

= C − αL1 +mL1

( 2

m+ 1
− 1− α

m

)
+ L1

( ( 1−α
2 )m+1

m+ 1
)︸ ︷︷ ︸

:=f(L1,m,α)

, (17)

allowing us to write that: OEbaseline ≥ −αL1 + f(L1,m, α). Notice that limm→∞ f(L1,m, α) =
L1 + αL1. For example, with α = 0 (for which the bound is tight), the overestimation bias of the
baseline for m = 2 is C + f(2, L1, 0)−maxaQ(s, a) = C + f(2, L1, 0)−C = f(2, L1, 0) = 5L1

12
and monotonically increases and converges to L1 as m→∞.

We now move to the case where we perform the CDC update prior to the maximization step
(assumption A4). The update proceeds by first choosing the maximum OOD action, which given
assumption A5 corresponds to: maxi∈[1,m]Qθ(s, ai).

Now define ε+ := max
{

0,maxiQθ(s, ai)−Qθ(s, aID)
}

, we have:

E
[
ε+

]
= E

[
max

{
0,max

i
Qθ(s, ai)−Qθ(s, aID)

}]
= E

[
max

{
0,max

i
Qθ(s, ai)− (QID)

}]
(from Assumption A3, namely: QID ≤ C + αL1)

≥ E
[

max
{

0,max
i
Qθ(s, ai)− C − αL1

}]
= E

[
max

{
0,max

i
C + qi − C − αL1

}]
= E

[
max

{
0,max

i
qi − αL1

}]
= E

[
max

{
2αL1,max

i
qi + αL1

}]
− 2αL1

≥ E
[

max
{

0,max
i
qi + αL1

}]
− 2αL1

= E
[

max
{

0, q1 + αL1, · · · , qm + αL1

}]
− 2αL1

(from our analysis of the baseline case and (17))
= f(L1,m, α)− 2αL1 .

Without loss of generality, assume that the maximizing action is a1 = argmaxaQθ(s, a). Thus we
can quantify the expected CDC update as follows (see also (8)):(
∇θQθ(s, a1)−∇θQθ(s, aID)

)
E
[
ε+

]
≥
(
∇Qθ(s, a1)−∇Qθ(s, aID)

)(
f(L1,m, α)− 2αL1

)
(18)

Given the form of our function approximator, by performing the updates (assumption A4)[ q
V (s)
QID

]
←

[ q
V (s)
QID

]
− µη

[(
∇θQθ(s, a1)−∇θQθ(s, aID)

)
ε+

]
,

CDC will:

• inflate the value ofQθ(s, aID) by at least µη
(
f(L1,m, α)−2αL1

)
. This is due to updating

QID.

• deflate Qθ(s, a1) by at least 2µη
(
f(L1,m, α) − 2αL1

)
. This is due to updating q1 and

V (s).
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• deflate Qθ(s, ai) ∀i 6= 1 by at least µη
(
f(L1,m, α)− 2αL1

)
, due to updating V (s).

Now notice that, based on (18), we will at least subtract ηµ
(
f(L1,m, α)− 2αL1

)
from all Qθ(s, a),

whose value could at most have been C + L1 prior to the update (assumption A3). Therefore we can
claim:

E
[

max
a

Qθ(s, a)
]
≤ C + L1 − η µ

(
f(L1,m, α)− 2αL1

)
︸ ︷︷ ︸

L2

,

and that:

E
[
OECDC

]
= E

[
max
a

Qθ(s, a)
]
−max

a
Q∗(s, a) ≤ C + L1 − ηL2 − C = L1 − ηL2

Further, for OECDC ≤ OEbaseline to hold, we need that:

f(L1,m, α) ≥ (1 + 2αηµ+ α)L1

1 + µη
,

For sufficiently small µ, i.e. µ < 1−α
2αη , and sufficiently large m, i.e, m ≥ 1

1/2− 1
1+ηµ

, we get the

desired result: OECDC ≤ OEbaseline, allowing us to conclude the proof.
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