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Supplementary Contents
This supplementary is organized as follows:
• Sec. A presents the gradient derivation for our softmax-scaling depth formulation.
• Sec. B details the view sampling methods used in our UVR module.
• Sec. C provides algorithm details for our Advance Floater Pruning method.

A. Derivation of the Softmax Depth Gradient
In this section, we derive the gradients used for the softmax depth implemented in the rasterizer. We assume we are rendering
a single pixel and that the Gaussians Gi along the camera ray are ordered from closest to the camera plane to the farthest.
(i.e. α1 corresponds to the Gaussian closest to the camera, while αN corresponds to the farthest)
If we let wk = Tkαk and Tk =
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The derivative w.r.t the Gaussian’s camera depth value is:
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The derivative w.r.t the Gaussian’s alpha value is:
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The sums in the denominators are retained during the forward pass and subsequently transferred to the backward pass. To
avoid an O(n2) blowup, an accumulator strategy is used as in [2].
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B. View Sampling for UVR
As described in the main paper, although the UVR as a whole is designed to regularize 3DGS training from sampled views,
each component has a different strategy of camera sampling.
Elliptic Cylinder Sampled Views. To compute the SDS loss, we generate random camera views directed at the scene center
using an elliptical cylinder that best fits the positions of the training views. The process begins by transforming the camera
positions to align with the world coordinate system (where the positive Z-axis is perpendicular to the ground) using PCA. We
then determine the scaling factors for the elliptical axes by taking the 90th percentile of the absolute displacements from the
scene center, ensuring the ellipse encompasses most of the input views.

The vertical bounds for the z-coordinate are set at the 10th and 90th percentiles of the input views’ z-coordinates. We
uniformly randomly select a camera translation vector with x-y coordinates on the ellipse and a z-coordinate within the
aforementioned z-bounds. Finally, the camera’s rotation matrix is computed by directing its look-at vector towards the scene
center and aligning the up vector with the average up vector of the input views.

Figure A. Bird’s Eye View of Elliptic Cylinder sampling. The dashed line is the ellipse best fit to the input views (in red). The blue
views are the sampled views on the ellipse which also have a random variation in the z-coordinate.

Warped Views. We cannot use the same sampled viewpoints as in SDS because they are too far to provide large view
overlapping. Instead, for each training camera, we apply a warp by a predefined angle, θ, around the average up-vector of all
the training cameras. Specifically, the up-vector of each camera is extracted as:
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with R denoting the rotation matrix in the camera pose. Next, we compute the normalized average up-vector across all
cameras to serve as an estimate of the scene center and orientation. Novel viewpoints are then created by rotating the training
cameras around this estimated center axis by various angles using the Rodrigues’ rotation formula [3].
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P ′ = P cos θ + (P × Ȳ ) sin θ + Ȳ (Ȳ · P )(1− cos θ) (6)

where P represents the original camera pose, and Ȳ is the estimated up-axis at the scene center. We select the angles θ to be
-3°,-1.5°, 1.5°, and 3°, resulting in four warped viewpoints for each training camera.



Apply at Pearson Depth Loss SDS Loss Depth Warping Loss Floater Pruning

Input Views (12/24) ✓ ✓

Elliptic Cylinder Sampled Views ✓

Warped Views ✓

Table A. The Pearson Depth loss and floater pruning are applied to sparse input views, whereas the SDS and Depth Warping losses are
applied to differently sampled views.

C. Advance Floater Pruning Algorithm
In 3DGS, “floaters” refer to relatively low-opacity Gaussians positioned close to the camera center. These floaters do not
appear prominently when rendering the alpha-blending depth of a scene because they are “averaged out”, but they stand out
in the mode-selection depth. Since the Pearson depth loss is a relatively a soft constraint, misalignments between the mode
and alpha depth can still occur. This misalignment is largely due to 3DGS halting rasterization once a transmittance threshold
is reached. The floater Gaussians near the camera deplete this transmittance budget early, preventing other Gaussians from
converging at the correct depth.

To address this, we threshold the areas of misalignment to generate a floater mask F for each input sparse view to identify
and delete Gaussians that are incorrectly placed too close to the camera. Specifically, we first compute the relative difference
between the mode-selection depth and alpha-blending depth for each training view i as ∆i =

(dmode−dalpha)
dalpha . As discussed

in the main paper, when visualizing the distributions of ∆i, images with many floaters have bimodal histograms, as floaters
tend to deviate significantly from the true depth. Based on this observation, we apply dip test [1], a measure of uni-modality,
on the distribution. We then average the uni-modality score across all training views for a scene, since the presence of floaters
is a scene-wide metric, and use the mean score to select a percentile threshold for the relative differences.

The conversion from the dip statistic to a threshold is done using an exponential curve with parameters a and b. We estimate
these parameters by manually examining ∆i and Fi for various scenes from different datasets and real world capture, and
our values are a = 0.97, b = −7.5. This process was carefully designed to allow our floater pruning method to be adaptive.
The full pruning algorithm is as follow:

ALGORITHM 1: Algorithm to prune floaters

Function prune floaters(G, I, a, b)
Input : 3DGS Representation G
Input : Training Cameras I
Input : Curve Parameters a, b

D̄ ← 0.0
foreach i ∈ I do

dalpha ← alpha blending depth(G, i)
dmode ← mode selection(G, i)

∆i ← dmode−dalpha

dalpha

D̄ ← D̄+ dip test(∆i)
end
D̄ ← D̄/|I|
foreach i ∈ I do

τi ← percentile(∆i, ae
bD̄)

Fi ← 1[∆i > τ ]
g0, g1, ..., gn ← mask to Gaussian(Fi)
remove Gaussians(g0, g1, ..., gn)

end
end



D. More Qualitative Comparisons with Few-shot Methods [4, 5]

Figure B. Qualitative comparisons with FSGS and SparseNeRF on the MipNeRF360 dataset. All experiments above are trained with
12 input views. SparseNeRF often over-smooths regions that lack coverage from the training views. In contrast, our method preserves
sharp details and more accurately fills in these missing regions. FSGS excels in maintaining foreground structure and details but can lack
background coherence and produce floaters.
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