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In supplementary materials, we mainly provide the appendix to
explain some details that are not explicitly covered in the paper.

A Notations
In the paper, matrices and vectors are written as boldface upper-
case letters and italic boldface lowercase letters, respectively. For
a matrix A = [𝑎𝑖 𝑗 ], its 𝑖-th row and 𝑗-th column are denoted by
A(𝑖, :) and A(:, 𝑗), respectively. Notations used in the paper are
summarized in Table S1.

Table S1: Notations.

Notations Description

𝑑1 Dimension of the representation of a bag
𝑑2 Dimension of the instance
𝑇1 Number of iterations for the Gaussian mixture model
𝑇2 Number of iterations for training the base classifier
𝑀 Number of bags for training
𝑛𝑖 Number of instances in the 𝑖-th bag
𝐶 Dimension of the label space
𝑁𝐼 Number of all instances in training bags
B𝑖 ⊆ X Feature matrix of the 𝑖-th bag
𝒙 𝑗
𝑖
∈ X The 𝑗-th instance of the 𝑖-th bag

Y𝑖 ∈ Y One-hot code of the 𝑖-th bag
𝑦𝑙
𝑖
∈ Y The 𝑙-th binary label of the 𝑖-th bag

𝒛𝑙 Code of the 𝑙-th label
Z Encoding matrix
𝒕𝑖 Bag-label mismatching degrees vector of the 𝑖-th bag
𝑈 The constant upper bound of the parameter

B Method
B.1 Details of Efficient Bag Embedding Method
In MIML tasks, the 𝑖-th bag B𝑖 is formed by a collection of in-
stances {𝒙1

𝑖
, 𝒙2

𝑖
, · · · , 𝒙𝑛𝑖

𝑖
}. As one can approximate with arbitrary

precision any continuous distribution with the Gaussian mixture
model (GMM) [8], we assume instances in B𝑖 are independently
∗Corresponding author

and identically distributed and generated from GMM 𝑝 consisting
of 𝐺 component with parameter 𝜃 , i.e.,

𝑝 (𝒙 𝑗
𝑖
|𝜃 ) =

𝐺∑︁
𝑔=1

𝛼𝑔𝑝𝑔 (𝒙 𝑗
𝑖
|𝜃 ), (S1)

where 𝛼𝑔 ≥ 0 is the non-negative weight and satisfy the constraints
𝐺∑
𝑔=1

𝛼𝑔 = 1, and 𝑝𝑔 (𝒙 𝑗
𝑖
|𝜃 ) is the 𝑔-th Gaussian model. We denote

the parameters of the 𝑔-component GMM by 𝜃 = {𝛼𝑔, 𝝁𝑔,Σ𝑔, 𝑔 =

1, 2, · · · ,𝐺}, where 𝝁𝑔 and Σ𝑔 are respectively the mean vector and
covariance matrix of Gaussian 𝑔. To ensure that 𝑝 (𝒙 𝑗

𝑖
|𝜃 ) is a valid

distribution, Σ𝑔 is assumed to be diagonal, and diagonal entries
form the vector 𝝈2

𝑔 [10]. The above parameters can be estimated
on training bags by maximum likelihood estimation (MLE).

Parameter 𝜃 contains important statistics that provide the dis-
tribution characteristics of the instances. To contain as many of
these statistics as possible in the bag representation and display
as fully of these characteristics as possible, B𝑖 consisting of 𝑛𝑖
instances {𝒙1

𝑖
, 𝒙2

𝑖
, · · · , 𝒙𝑛𝑖

𝑖
} is represented by the gradient of the

log-likelihood of the GMM 𝑝 ,

𝑮B𝑖

𝜃
= ∇𝜃 log𝑝 (B𝑖 |𝜃 ) = ∇𝜃 log𝑝 (𝒙1𝑖 , 𝒙

2
𝑖 , · · · , 𝒙

𝑛𝑖
𝑖
|𝜃 )

= ∇𝜃 log
𝑛𝑖∏
𝑗=1

𝑝 (𝒙 𝑗
𝑖
|𝜃 ) =

𝑛𝑖∑︁
𝑗=1
∇𝜃 log𝑝 (𝒙

𝑗
𝑖
|𝜃 ),

(S2)

where gradients of 𝑮B𝑖

𝜃
w.r.t. GMM model parameters 𝜃 =

{𝛼𝑔, 𝝁𝑔,Σ𝑔, 𝑔 = 1, 2, · · · ,𝐺} are

∇𝛼𝑔 log𝑝 (𝒙
𝑗
𝑖
|𝜃 ) = 𝑝 (𝑔 |𝒙 𝑗

𝑖
, 𝜃 ) − 𝛼𝑔, (S3)

∇𝝁𝑔 log𝑝 (𝒙
𝑗
𝑖
|𝜃 ) = 𝑝 (𝑔|𝒙 𝑗

𝑖
, 𝜃 )

(
𝒙 𝑗
𝑖
− 𝝁𝑔
𝝈2
𝑔

)
, (S4)

∇𝝈𝑔
log𝑝 (𝒙 𝑗

𝑖
|𝜃 ) = 𝑝 (𝑔|𝒙 𝑗

𝑖
, 𝜃 )

[
(𝒙 𝑗

𝑖
− 𝝁𝑔)2

𝝈3
𝑔

− 1
𝝈𝑔

]
, (S5)

where 𝑝 (𝑔|𝒙 𝑗
𝑖
, 𝜃 ) is the probability of 𝒙 𝑗

𝑖
being generated by the

𝑔-th Gaussian,

𝑝 (𝑔|𝒙 𝑗
𝑖
, 𝜃 ) =

𝛼𝑔𝑝𝑔 (𝒙 𝑗
𝑖
|𝜃 )

𝐺∑
𝑔=1

𝛼𝑔𝑝𝑔 (𝒙 𝑗
𝑖
|𝜃 )

. (S6)



Conference’17, July 2017, Washington, DC, USA Xinyue Zhang, Tingjin Luo, Yueying Liu, and Chenping Hou

Algorithm 1: Optimization of IMIMLC
Input :Training set { (B1,Y1 ), . . . , (B𝑀 ,Y𝑀 ) }.
Para :Number of Gaussian models 𝐺 ;

Parameters in GMM 𝜃 = {𝛼𝑔, 𝝁𝑔,Σ𝑔};
Number of labels in subset 𝑘 ;
Size of the subtask 𝑑 .

Output :Classifiers ℎ 𝑗 (·) and 𝝎𝑙 .

1 Estimate parameters 𝜃 = {𝛼𝑔, 𝝁𝑔,Σ𝑔} by MLE.
2 for 𝑖 = 1 to𝑀 do
3 for 𝑗 = 1 to 𝑛𝑖 do
4 Calculate 𝑝 (𝑔|𝑥 𝑗

𝑖
, 𝜃 ) by Eq. (S6).

5 end
6 for 𝑔 = 1 to 𝐺 do
7 Calculate each part of 𝒙̃𝑖 by Eq. (S7).
8 end
9 Normalize 𝒙̃𝑖 according to Eq. (S8).

10 end
11 for 𝑖 = 1 to 𝑑 do
12 Randomly and non-repetitively choose
13 subtask𝑤𝑖 from 𝑄𝑘 .
14 Encode Z(𝑖 ) using the OVA strategy for𝑤𝑖 .
15 end
16 Concatenate Z(𝑖 ) to obtain Z.
17 for 𝑗 = 1 to 𝑘𝑑 do
18 Train the base classifier ℎ 𝑗 (·) based on Z( 𝑗, :).
19 end
20 for 𝑖 = 1 to M do
21 𝒛𝑖 ← [ℎ1 (𝒙̃𝑖 ), ℎ2 (𝒙̃𝑖 ), . . . , ℎ𝑘𝑑 (𝒙̃𝑖 )]
22 Calculate the soft label set of B𝑖 by Eq. (3).
23 end
24 Train 𝝎𝑙 (𝑙 = 1, 2, · · · ,𝐶) by Eq. (6) and Eq. (7).

Then, to ensure the stability and convergence of the algo-
rithm and remove redundant information, we conduct whiten-
ing on 𝑮B𝑖

𝜃
using the fisher information matrix (FIM) F𝜃 =

𝐸𝒙∼𝑝 [∇𝜃 log𝑝 (B𝑖 |𝜃 )∇𝜃 log𝑝 (B𝑖 |𝜃 )𝑇 ]. By performing the Cholesky
decomposition on FIM for L𝜃 , the bag representation 𝑮B𝑖

𝜃
in Eq. (S2)

can be redefined as the fisher vector
𝒙̃𝑖 = L𝜃𝑮

B𝑖

𝜃

= [𝑥B𝑖
𝛼1 , · · · , 𝑥

B𝑖
𝛼𝐺 , 𝒙̃

B𝑖
𝝁1 , · · · , 𝒙̃

B𝑖
𝝁𝐺 , 𝒙̃

B𝑖
𝝈1 , · · · , 𝒙̃

B𝑖
𝝈𝐺
],

(S7)

where for each 𝑔 ∈ {1, 2, · · · ,𝐺}, each part of the fisher vec-

tor can be calculated as 𝑥
B𝑖
𝛼𝑔 =

1
√
𝛼𝑔

𝑛𝑖∑
𝑗=1
∇𝛼𝑔 log𝑝 (𝑥

𝑗
𝑖
|𝜃 ), 𝒙̃B𝑖

𝝁𝑔 =

1
√
𝛼𝑔

𝑛𝑖∑
𝑗=1
∇𝝁𝑔 log𝑝 (𝒙

𝑗
𝑖
|𝜃 ) and 𝒙̃B𝑖

𝝈𝑔
=

1√︁
2𝛼𝑔𝝈𝑔

𝑛𝑖∑
𝑗=1
∇𝝈𝑔

log𝑝 (𝒙 𝑗
𝑖
|𝜃 ), re-

spectively.
Finally, similar with [5, 11, 12], we normalize 𝒙̃𝑖 to reduce the

dependence of the variance on the mean and remove that on the
proportion of object-specific information by the following approach

[𝒙̃𝑖 ] 𝑗 ← sign( [𝒙̃𝑖 ] 𝑗 )
√︃
| [𝒙̃𝑖 ] 𝑗 |,

𝒙̃𝑖 ←
𝒙̃𝑖√︃
𝒙̃𝑇
𝑖
𝒙̃𝑖

.
(S8)

B.2 Algorithm
The main procedure of our IMIMLC is summarized in Algorithm 1.

B.3 Computational Complexity
The computational complexity of IMIMLC can be analyzed in two
parts: (1) bag vector representation based on instances, and (2)
imbalanced learning based on the coding ensemble and adaptive
thresholds. For the first one, the cost to fit 𝑁𝐼 instances in train-
ing bags is O(𝑁𝐼𝐺𝑑2𝑇1). Subsequently, each bag will be mapped
into a new vector, whose cost is O(𝑁𝐼𝐺𝑑2). In short, the com-
putational cost of the first part is O(𝑁𝐼𝐺𝑑2 (𝑇1 + 1)). In the sec-
ond part, the algorithm needs to perform processes of “randomly
selecting subtasks”, “training base classifiers”, “decoding”, and
“adapting thresholds” in turn. We estimate their complexity as
O(𝑘𝑑 (𝑇2𝑁 3

𝑠 + 𝑁𝑠𝑑1 + 3𝑀𝐶) + 𝐶𝑁 3
𝑠 ), where 𝑁𝑠 is the number of

training bags that really matter to the process of adapting. How-
ever, because it is difficult to make a formal complexity analysis
of other comparison algorithms, we empirically validated the effi-
ciency and scalability of our proposed method in experiments.

C Experiment Details
C.1 Datasets
The details of related datasets in Table 1 are reported as follows:

MIML-image (IMG) andMIML-text (TEX) were collected by
Zhou et al. [13, 14] and are the most commonly used datasets in
existing MIML tasks. IMG contains 2000 bags. Each one is extracted
from a scene image by SBN [7] and may be associated with five
labels: desert, mountains, sea, sunset, and trees. TEX is derived
from the REUTERS-21578 dataset, and only the 7 most frequent
categories are considered. Each document is extracted as a bag
with instances using the method proposed in [1]. HJA Bird Song
(HBS) 1 consists of audio recordings of bird songs at H. J. Andrews
Experimental Forest using unattended microphones. The dataset
contains 548 10-second audio recordings, each of which may be
associatedwith 13 labels.MSRCv2 (MSRC) 2 is the latest version of
the image dataset proposed by Microsoft Research Cambridge. Each
image comes with its ground-truth segmentation, so histograms of
gradients and colors can be extracted to form an instance for each
region in segmentation. Letter Carroll (LC) was gathered by Fern
et al. [2] and generated using the poem, whose name is “Jabber-
wocky", from the UCI Letter Recognition dataset [4]. The black-and-
white image of each word in this poem corresponds to a bag and
displays some of the 26 letters in the English alphabet. Isoform
Gene Data (IGD) collected by Luo et al. [6, 9] was generated from
a total of 573 human RNA-seq runs of the ENCODE project [3].
It consists of 11,946 genes, each of which has a different number
of isoforms, from one to fifteen. There are a total of 94 labels or
functions in this dataset, as each gene may contain one or several
labels or functions.
1https://paperswithcode.com/dataset/birdsong
2https://www.microsoft.com/en-us/research/project/image-understanding/

https://paperswithcode.com/dataset/birdsong
https://www.microsoft.com/en-us/research/project/image-understanding/
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Table S2: Comparisons of classification performance with different thresholds on the HBS, MSRC, and LC datasets.

Datasets Metrics 𝜂𝑝 = 0.5 𝜂𝑝 = 0.6 𝜂𝑝 = 0.7 𝜂𝑝 = 0.8 𝜂𝑝 = 0.9 𝜂𝐴

HL (↓) .633±.003 .231±.002 .112±.001 .056±.001 .090±.001 .025±.001
ACC (↑) .367±.003 .769±.002 .888±.001 .944±.001 .910±.001 .975±.001HBS
F1 (↑) .330±.001 .570±.003 .726±.005 .812±.008 .531±.005 .842±.012
HL (↓) .817±.002 .394±.002 .176±.002 .088±.001 .070±.001 .042±.001
ACC (↑) .183±.002 .606±.002 .824±.002 .912±.001 .930±.001 .958±.001MSRC
F1 (↑) .194±.000 .316±.002 .498±.005 .602±.007 .504±.011 .704±.007
HL (↓) .369±.002 .236±.003 .146±.003 .088±.002 .089±.002 .044±.003
ACC (↑) .631±.002 .764±.003 .854±.003 .912±.002 .911±.002 .956±.003LC
F1 (↑) .463±.008 .559±.010 .626±.010 .625±.013 .445±.005 .777±.022
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Figure S1: Sensitivity analysis with different 𝑘 and 𝑑 . Missing
location is caused by the constraint 𝑑 ≤ C𝑘

𝐶
.

C.2 Experiment Settings
All of the experiments were conducted on a machine with an i7-
8650U CPU and 16.0 GB of RAM. In experiments, hyper-parameters
of IMIMLC include label subset size 𝑘 and selected subtask number
𝑑 etc. Tuning ranges of hyper-parameters 𝜆 and 𝛾 in the kernel
function were both from 0.0001 to 5. For other hyper-parameters
of each MIML algorithm, tuning ranges are set the same as in
the original references. The final optimal values were selected by
incorporating grid search and cross-validation strategies.

C.3 Ablation Study
In Table 4, we report classification performance with different
thresholds on the TEX datasets. In this section, more results on the
HBS, MSRC, and LC datasets are displayed.

C.4 Hyper-parameter Sensitivity Analysis
In Fig. 4, we report AUCs based on different parameter combinations
of the LC and IGD datasets. In this section, more results on other
datasets are shown.
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