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In supplementary materials, we mainly provide the appendix to
explain some details that are not explicitly covered in the paper.

A Notations

In the paper, matrices and vectors are written as boldface upper-
case letters and italic boldface lowercase letters, respectively. For
a matrix A = [a;;], its i-th row and j-th column are denoted by
A(i,:) and A(;, j), respectively. Notations used in the paper are
summarized in Table S1.

Table S1: Notations.

Notations Description

di Dimension of the representation of a bag
do Dimension of the instance
Ti Number of iterations for the Gaussian mixture model
T Number of iterations for training the base classifier
M Number of bags for training
n; Number of instances in the i-th bag
C Dimension of the label space
Nr Number of all instances in training bags
B; C X  Feature matrix of the i-th bag
x{ eX The j-th instance of the i-th bag
Y; €Y  One-hot code of the i-th bag
yf ey The I-th binary label of the i-th bag
Z Code of the I-th label
4 Encoding matrix
t! Bag-label mismatching degrees vector of the i-th bag
U The constant upper bound of the parameter
B Method

B.1 Details of Efficient Bag Embedding Method

In MIML tasks, the i-th bag B; is formed by a collection of in-
stances {xl.l, xl.z, S ,x?i }. As one can approximate with arbitrary
precision any continuous distribution with the Gaussian mixture
model (GMM) [8], we assume instances in B; are independently
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and identically distributed and generated from GMM p consisting
of G component with parameter 6, i.e.,

G
p(]10) = ) agpy(x]10), (s1)
g=1
where ay > 0 is the non-negative weight and satisfy the constraints

G .

2 ag =1,and pg(x{|9) is the g-th Gaussian model. We denote
g=1

the parameters of the g-component GMM by 0 = {ay, pg,Zg.g9 =
1,2,--+,G}, where g and ¥ are respectively the mean vector and

covariance matrix of Gaussian g. To ensure that p(x{ |0) is a valid
distribution, X is assumed to be diagonal, and diagonal entries

2

form the vector o;; [10]. The above parameters can be estimated

on training bags bgl maximum likelihood estimation (MLE).

Parameter 6 contains important statistics that provide the dis-
tribution characteristics of the instances. To contain as many of
these statistics as possible in the bag representation and display
as fully of these characteristics as possible, B; consisting of n;
instances {xil,xiz, S ,x?i} is represented by the gradient of the
log-likelihood of the GMM p,

Ggi = Vylogp(Bi|0) = V,glogp(x},xiz, ‘e ,x?i |6)
n; ] ni ] (SZ)
= Volog[ [ p(x]16) = ) Vologp(]0),
j=1 j=1
where gradients of Ggi w.rt. GMM model parameters § =
{cxg, Mg Xg,g=1,2,-- ,G} are
Va,logp(x]10) = plglc], 6) - ag, (3)
9
Vi, logp(x!16) = p(glx], 6) (7 : (s4)
9

J_ 2
(xi Sﬂg) _i}, (S5)

Vo,logp(x/16) = p(glx], 6) [ =
9

9
where p(g|x{ ,0) is the probability of le being generated by the
g-th Gaussian,

agpy(x]16)

S — (S6)
2 agpg (x,J |6)
g=1

plglx],0) =
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Algorithm 1: Optimization of IMIMLC
Input :Training set {(B1,Yi1),..., (Ba, Yar)}.
Para :Number of Gaussian models G;
Parameters in GMM 6 = {ag, Uy, Zg};
Number of labels in subset k;
Size of the subtask d.
Output: Classifiers h;(-) and w;.

1 Estimate parameters 6 = {ay, pg, X} by MLE.
2 fori=1toMdo

3 for j = 1ton; do

4 ‘ Calculate p(glxlj, 0) by Eq. (S6).

5 end

6 forg=1toGdo

7 ‘ Calculate each part of ¥; by Eq. (S7).
8 end

9 Normalize x; according to Eq. (S8).
10 end
11 fori=1toddo

12 Randomly and non-repetitively choose
13 subtask w; from Q.

14 Encode Z () using the OVA strategy for w;.

15 end

16 Concatenate Z(?) to obtain Z.

17 for j =1to kd do

18 ‘ Train the base classifier A;(-) based on Z(}, :).
19 end

20 fori=1to M do

21 |z [h1(%i), ha (i), . . . hg (X))

22 Calculate the soft label set of B; by Eq. (3).

23 end

24 Train wy(l = 1,2,---,C) by Eq. (6) and Eq. (7).

Then, to ensure the stability and convergence of the algo-
rithm and remove redundant information, we conduct whiten-
ing on G];'" using the fisher information matrix (FIM) Fg =

Ex~p[Vologp(B;]0)Vylogp(B; |0)T]. By performing the Cholesky
decomposition on FIM for Ly, the bag representation Glgi in Eq. (S2)
can be redefined as the fisher vector

i =LoGp'
(87)
— 3B :B; -B; ~B; -B; ~Bi

Sy E-RRNE /A RRRIE 1IN - JRRRNE N
where for each g € {1,2,---,G}, each part of the fisher vec-
B, _ 1 U jlgy #Bi
tor can be calculated as Xeg = — 2 Va,logp(x; |0), Xy =

V4 j=1
1

1 n; . B n; .
‘/? '21 Vpglogp(x; |6) and xf;; = > Vgglogp(x; |0), re-
9 J=

\2a404 j=1
spectively.

Finally, similar with [5, 11, 12], we normalize X; to reduce the
dependence of the variance on the mean and remove that on the
proportion of object-specific information by the following approach

[xi]; < sign([xi];)+/I[%:]}],
- X (S8)
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Xinyue Zhang, Tingjin Luo, Yueying Liu, and Chenping Hou

B.2 Algorithm

The main procedure of our IMIMLC is summarized in Algorithm 1.

B.3 Computational Complexity

The computational complexity of IMIMLC can be analyzed in two
parts: (1) bag vector representation based on instances, and (2)
imbalanced learning based on the coding ensemble and adaptive
thresholds. For the first one, the cost to fit N} instances in train-
ing bags is O(N;Gd,T;). Subsequently, each bag will be mapped
into a new vector, whose cost is O(N;Gda). In short, the com-
putational cost of the first part is O(N;Gda(Ty + 1)). In the sec-
ond part, the algorithm needs to perform processes of “randomly
selecting subtasks”, “training base classifiers”, “decoding”, and
“adapting thresholds” in turn. We estimate their complexity as
O(kd(T3N3 + Ngd; + 3MC) + CN3), where Nj is the number of
training bags that really matter to the process of adapting. How-
ever, because it is difficult to make a formal complexity analysis
of other comparison algorithms, we empirically validated the effi-
ciency and scalability of our proposed method in experiments.

C Experiment Details
C.1 Datasets

The details of related datasets in Table 1 are reported as follows:
MIML-image (IMG) and MIML-text (TEX) were collected by
Zhou et al. [13, 14] and are the most commonly used datasets in
existing MIML tasks. IMG contains 2000 bags. Each one is extracted
from a scene image by SBN [7] and may be associated with five
labels: desert, mountains, sea, sunset, and trees. TEX is derived
from the REUTERS-21578 dataset, and only the 7 most frequent
categories are considered. Each document is extracted as a bag

with instances using the method proposed in [1]. HJA Bird Song
(HBS) ! consists of audio recordings of bird songs at H. J. Andrews

Experimental Forest using unattended microphones. The dataset
contains 548 10-second audio recordings, each of which may be
associated with 13 labels. MSRC v2 (MSRC) ? is the latest version of
the image dataset proposed by Microsoft Research Cambridge. Each
image comes with its ground-truth segmentation, so histograms of
gradients and colors can be extracted to form an instance for each
region in segmentation. Letter Carroll (LC) was gathered by Fern
et al. [2] and generated using the poem, whose name is “Jabber-
wocky", from the UCI Letter Recognition dataset [4]. The black-and-
white image of each word in this poem corresponds to a bag and
displays some of the 26 letters in the English alphabet. Isoform
Gene Data (IGD) collected by Luo et al. [6, 9] was generated from
a total of 573 human RNA-seq runs of the ENCODE project [3].
It consists of 11,946 genes, each of which has a different number
of isoforms, from one to fifteen. There are a total of 94 labels or
functions in this dataset, as each gene may contain one or several
labels or functions.

Uhttps://paperswithcode.com/dataset/birdsong
Zhttps://www.microsoft.com/en-us/research/project/image-understanding/


https://paperswithcode.com/dataset/birdsong
https://www.microsoft.com/en-us/research/project/image-understanding/
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Table S2: Comparisons of classification performance with different thresholds on the HBS, MSRC, and LC datasets.

Datasets Metrics np =0.5 np = 0.6 np =0.7 np =038 np =0.9 na

HL ({) .633+.003 .231+.002 .112+.001 .056+.001 .090+.001 .025+.001

HBS ACC (1) .367+.003 .769+.002 .888+.001 .944+.001 .910+.001 .975+.001
F1(T) .330+.001 .570+.003 .726+.005 .812+.008 .531+.005 .842+.012

HL (]) .817+.002 .394+.002 .176+.002 .088+.001 .070+.001 .042+.001

MSRC ACC (1) .183+.002 .606+.002 .824+.002 .912+.001 .930+.001 .958+.001
F1(T) .194+.000 .316+.002 .498+.005 .602+.007 .504+.011 .704+.007

HL () .369+.002 .236+.003 .146+.003 .088+.002 .089+.002 .044+.003

LC ACC (1) .631+.002 .764+.003 .854+.003 .912+.002 .911+.002 .956+.003
F1(T) .463%.008 .559+.010 .626+.010 .625+.013 .445+.005 777+.022
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Figure S1: Sensitivity analysis with different k and d. Missing
location is caused by the constraint d < C’é.

C.2 Experiment Settings

All of the experiments were conducted on a machine with an i7-
8650U CPU and 16.0 GB of RAM. In experiments, hyper-parameters
of IMIMLC include label subset size k and selected subtask number
d etc. Tuning ranges of hyper-parameters A and y in the kernel
function were both from 0.0001 to 5. For other hyper-parameters
of each MIML algorithm, tuning ranges are set the same as in
the original references. The final optimal values were selected by
incorporating grid search and cross-validation strategies.

C.3 Ablation Study

In Table 4, we report classification performance with different
thresholds on the TEX datasets. In this section, more results on the
HBS, MSRC, and LC datasets are displayed.

C.4 Hyper-parameter Sensitivity Analysis

InFig. 4, we report AUCs based on different parameter combinations
of the LC and IGD datasets. In this section, more results on other
datasets are shown.
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