
A Implementation566

We implement the dynamic programming algorithm on the GPU using PyTorch [44]. While mostly567

used as a Deep Learning framework, it can be used to speed up generic (vectorized) computations.568

A.1 Beam variables569

For each solution in the beam, we keep track of the following variables (storing them for all solutions570

in the beam as a vector): the cost, current node, visited nodes and (for VRP) the remaining capacity571

or (for TSPTW) the current time. As explained, these variables can be computed incrementally when572

generating expansions. Additionally, we keep a variable vector parent, which, for each solution in573

the current beam, tracks the index of the solution in the previous beam that generated the expanded574

solution. To compute the score of the policy for expansions efficiently, we also keep track of the575

score for each solution and the potential for each node for each solution incrementally.576

We do not keep past beams in memory, but at the end of each iteration, we store the vectors containing577

the parents as well as last actions for each solution on the trace. As the solution is completely defined578

by the sequence of actions, this allows to backtrack the solution after the algorithm has finished. To579

save GPU memory (especially for larger beam sizes), we store the O(Bn) sized trace on the CPU580

memory.581

For efficiency, we keep the set of visited nodes as a bitmask, packed into 64-bit long integers (2582

for 100 nodes). Using bitwise operations with the packed adjacency matrix, this allows to quickly583

check feasible expansions (but we need to unpack the mask into boolean vectors to find all feasible584

expansions explicitly). Figure 4a shows an example of the beam (with variables related to the policy585

and backtracking omitted) for the VRP.586

A.2 Generating non-dominated expansions587

A solution a can only dominate a solution a0 if visited(a) = visited(a0) and current(a) =588

current(a0), i.e. if they correspond to the same DP state. If this is the case, then, if we denote by589

parent(a) the parent solution from which a was expanded, it holds that590

visited(parent(a)) = visited(a) \ {current(a)}
= visited(a0) \ {current(a0)}
= visited(parent(a0)).

This means that only expansions from solutions with the same set of visited nodes can dominate each591

other, so we only need to check for dominated solutions among groups of expansions originating592

from parent solutions with the same set of visited nodes. Therefore, before generating the expansions,593

we group the current beam (the parents of the expansions) by the set of visited nodes (see Figure 4a).594

This can be done efficiently, e.g. using a lexicographic sort of the packed bitmask representing the595

sets of visited nodes10.596

A.2.1 Travelling Salesman Problem597

For TSP, we can generate (using boolean operations) the B⇥n matrix with boolean entries indicating598

feasible expansions (with n action columns corresponding to n nodes, similar to the B ⇥ 2n matrix599

for VRP in Figure 4a), i.e. nodes that are unvisited and adjacent to the current node. If we find positive600

entries sequentially for each column (e.g. by calling TORCH.NONZERO on the transposed matrix), we601

get all expansions grouped by the combination of action (new current node) and parent set of visited602

nodes, i.e. grouped by the DP state. We can then trivially find the segments of consecutive expansions603

corresponding to the same DP state, and we can efficiently find the minimum cost solution for each604

segment, e.g. using TORCH_SCATTER 11.605

10For efficiency, we use a custom function similar to TORCH.UNIQUE, and argsort the returned inverse after
which the resulting permutation is applied to all variables in the beam.

11
https://github.com/rusty1s/pytorch_scatter

16

https://github.com/rusty1s/pytorch_scatter

1 0 0 1 0

1 0 0 1 0

1 0 0 1 0

0 0 0 0 0

Cost Capacity Visited Current

01101

01101

01101

1

4

2

5

7

3

10

13

01101 1812

8

0 1 2 3 4

1 0 0 0 0

1 0 0 1 0

Direct Via-depot

0 1 2 3 4

0 0 0 0 0

1 0 0 1 0

0 0 0 1 0

0 0 0 1 0

0 0 0 1 0

10101

10101

0

2

7

7

11

13

10101 2612

0 1 0 1 0

0 0 0 1 0

0 0 0 1 0

(a) Example beam for VRP with variables, grouped by set of visited
nodes (left) and feasible, non-dominated expansions (right), with
2n columns corresponding to n direct expansions and n via-depot
expansions. Some expansions to unvisited nodes are infeasible,
e.g. due to the capacity constraint or a sparse adjacency graph.
The shaded areas indicate groups of candidate expansions among
which dominances should be checked: for each set of visited nodes
there is only one non-dominated via-depot expansion (indicated by
solid green square), which must necessarily be an expansion of the
solution that has the lowest cost to return to the depot (indicated by
the dashed green rectangle ; note that the cost displayed excludes
the cost to return to the depot). Direct expansions can be dominated
(indicated by red dotted circles) by the single non-dominated via-
depot expansion or other direct expansions with the same DP
state (set of visited nodes and expanded node, as indicated by the
shaded areas). See also Figure 4b for (non-)dominated expansions
corresponding to the same DP state.

Cost

Re
m

ai
ni

ng
 c

ap
ac

it
y

Vehicle !"#"!$%&
'(

Via-depot expansion

Direct expansion

dominated

dominated

(b) Example of a set of dominated and
non-dominated expansions (direct and via-
depot) corresponding to the same DP state
(set of visited nodes and expanded node
i) for VRP. Non-dominated expansions
have lower cost or higher remaining ca-
pacity compared to all other expansions.
The right striped area indicates expansions
dominated by the (single) non-dominated
via-depot expansion. The left (darker) ar-
eas are dominated by individual direct ex-
pansions. Dominated expansions in this
area have remaining capacity lower than
the cumulative maximum remaining ca-
pacity when going from left to right (i.e.
in sorted order of increasing cost), indi-
cated by the black horizontal lines.

Figure 4: Implementation of DPDP for VRP

A.2.2 Vehicle Routing Problem606

For VRP, the dominance check has two dimensions (cost and remaining capacity) and additionally607

we need to consider 2n actions: n direct and n via the depot (see Figure 4a). Therefore, as we608

will explain, we check dominances in two stages: first we find (for each DP state) the single non-609

dominated ‘via-depot’ expansion, after which we find all non-dominated ‘direct’ expansions (see610

Figure 4b).611

The DP state of each expansion is defined by the expanded node (the new current node) and the set612

of visited nodes. For each DP state, there can be only one
12 non-dominated expansion where the613

last action was via the depot, since all expansions resulting from ‘via-depot actions’ have the same614

remaining capacity as visiting the depot resets the capacity (see Figure 4b). To find this expansion,615

we first find, for each unique set of visited nodes in the current beam, the solution that can return to616

the depot with lowest total cost (thus including the cost to return to the depot, indicated by a dashed617

green rectangle in Figure 4a). The single non-dominated ‘via-depot expansion’ for each DP state618

must necessarily be an expansion of this solution. Also observe that this via-depot solution cannot be619

dominated by a solution expanded using a direct action, which will always have a lower remaining620

vehicle capacity (assuming positive demands) as can bee seen in Figure 4b. We can thus generate the621

non-dominated via-depot expansion for each DP state efficiently and independently from the direct622

expansions.623

For each DP state, all direct expansions with cost higher (or equal) than the via-depot expansion can624

directly be removed since they are dominated by the via-depot expansion (having higher cost and625

lower remaining capacity, see Figure 4b). After that, we sort the remaining (if any) direct expansions626

12Unless we have multiple expansions with the same costs, in which case can pick one arbitrarily.

17

for each DP state based on the cost (using a segmented sort as the expansions are already grouped627

if we generate them similarly to TSP, i.e. per column in Figure 4a). For each DP state, the lowest628

cost solution is never dominated. The other solutions should be kept only if their remaining capacity629

is strictly larger than the largest remaining capacity of all lower-cost solutions corresponding to the630

same DP state, which can be computed using a (segmented) cumulative maximum computation (see631

Figure 4b).632

A.2.3 TSP with Time Windows633

For the TSPTW, the dominance check has two dimensions: cost and time. Therefore, it is similar to634

the check for non-dominated direct expansions for the VRP (see Figure 4b), but replacing remaining635

capacity (which should be maximized) by current time (to be minimized). In fact, we could reuse636

the implementation, if we replace remaining capacity by time multiplied by �1 (as this should be637

minimized). This means that we sort all expansions for each DP state based on the cost, keep the first638

solution and keep other solutions only if the time is strictly lower than the lowest current time for all639

lower-cost solutions, which can be computed using a cumulative minimum computation.640

A.3 Finding the top B solutions641

We may generate all ‘candidate’ non-dominated expansions and then select the top B using the score642

function. Alternatively, we can generate expansions in batches, and keep a streaming top B using a643

priority queue. We use the latter implementation, where we can also derive a bound for the score as644

soon as we have B candidate expansions. Using this bound, we can already remove solutions before645

checking dominances, to achieve some speedup in the algorithm.13646

A.4 Performance improvements647

There are many possibilities for improving the speed of the algorithm. For example, PyTorch lacks a648

segmented sort so we use a much slower lexicographic sort instead. Also an efficient GPU priority649

queue would allow much speedup, as we currently use sorting as PyTorch’ top-k function is rather650

slow for large k. In some cases, a binary search for the k-th largest value can be faster, but this651

introduces undesired CUDA synchronisation points. We currently use multiprocessing to solve652

multiple instances on a single GPU in parallel, introducing a lot of Python overhead. A batched653

implementation would give a significant speedup.654

B TSP with Time Windows655

This section contains additional information for the TSPTW.656

B.1 Adaption of model for TSPTW657

The model updates the edge embedding e
l
ij for edge (i, j) in layer l + 1 using node embeddings xl

i658

and x
l
j with the following equation (Equation (5) in [26]):659

e
l+1
ij + ReLU(BatchNorm(W l

3e
l
ij +W

l
4x

l
i +W

l
5x

l
j)) (2)

where W
l
3,W

l
4 and W

l
5 are trainable parameters. We found out that the implementation14 actually660

shares the parameters W
l
4 and W

l
5, i.e. W l

4 = W
l
5, resulting in e

l
ij = e

l
ji for all layers l, as for661

l = 0 both directions are initialized the same. To allow the model to make different predictions for662

different directions, we implement W l
5 as a separate parameter, such that the model can have different663

representations for edges (i, j) and (j, i). We define the training labels accordingly for directed edges,664

so if edge (i, j) is in the directed solution, it will have a label 1 whereas the edge (j, i) will not (for665

the undirected TSP and VRP, both labels are 1).666

13This may give slightly different results if the scoring function is inconsistent with the domination rules,
i.e. if a better scoring solution would be dominated by a worse scoring solution but is not since that solution is
removed using the score bound before checking the dominances.

14
https://github.com/chaitjo/graph-convnet-tsp/blob/master/models/gcn_layers.py

18

https://github.com/chaitjo/graph-convnet-tsp/blob/master/models/gcn_layers.py

B.2 Dataset generation667

We found that using our DP formulation for TSPTW, the instances by [6] were all solved optimally,668

even with a very small beam size (around 10). This is because there is very little overlap in the time669

windows as a result of the way they are generated, and therefore very few actions are feasible as most670

of the actions would ‘skip over other time windows’ (advance the time so much that other nodes can671

no longer be served)15. We conducted some quick experiments with a weaker DP formulation, that672

only checks if actions directly violate time windows, but does not check if an action causes other673

nodes to be no longer reachable in their time windows. Using this formulation, the DP algorithm can674

run into many dead ends if just a single node gets skipped, and using the GNN policy (compared to a675

cost based policy as in Section 4.4) made the difference between good solutions and no solution at all676

being found.677

We made two changes to the data generation procedure by [6] to increase the difficulty and make it678

similar to [10], defining the ‘large time window’ dataset. First, we sample the time windows around679

arrival times when visiting nodes in a random order without any waiting time, which is different from680

[6] who ‘propagate’ the waiting time (as a result of time windows sampled). Our modification causes681

a tighter schedule with more overlap in time windows, and is similar to [10]. Secondly, we increase682

the maximum time window size from 100 to 1000, which makes that the time windows are in the683

order of 10% of the horizon16. This doubles the maximum time window size of 500 used by [10] for684

instances with 200 nodes, to compensate for half the number of nodes that can possibly overlap the685

time window.686

To generate the training data, for practical reasons we used DP with the heuristic ‘cost heat + potential’687

strategy and a large beam size (1M), which in many cases results in optimal solutions being found.688

15If all time windows are disjoint, there is only one feasible solution. Therefore, the amount of overlap in time
windows determines to some extent the ‘branching factor’ of the problem and the difficulty.

16Serving 100 customers in a 100x100 grid, empirically we find the total schedule duration including waiting
(the makespan) is around 5000.

19

	Introduction
	Related work
	Deep Policy Dynamic Programming
	Travelling Salesman Problem
	Vehicle Routing Problem
	Travelling Salesman Problem with Time Windows
	Graph sparsity
	Implementation & hyperparameters

	Experiments
	Travelling Salesman Problem
	Vehicle Routing Problem
	TSP with Time Windows
	Ablations

	Discussion
	Implementation
	Beam variables
	Generating non-dominated expansions
	Travelling Salesman Problem
	Vehicle Routing Problem
	TSP with Time Windows

	Finding the top B solutions
	Performance improvements

	TSP with Time Windows
	Adaption of model for TSPTW
	Dataset generation

