
Checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [N/A]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes] ; see Section 5,
Appendix B, C, D, and D.1.

(b) Did you include complete proofs of all theoretical results? [Yes] ; see Section 5,
Appendix B, C, D, and D.1.

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [Yes]
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [Yes]
(d) Did you include the total amount of compute and the type of resources used (e.g., type

of GPUs, internal cluster, or cloud provider)? [Yes]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes]
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

15

A Background

This section complements Section 2 in the main paper by incorporating extra details (Sections A.1
and A.2) and technicalities (Section A.3 and A.4). These are instrumental for the rest of the paper.

Compressed distributed training via SGD. One can consider the traditional data-center DNN
training as a special form of FL training, but without privacy. That is, the dataset is partitioned into
all participating compute nodes. Moreover, in contrast to a fraction of participating clients in FL, all
nodes update the model parameter, x. Additionally, the synchronization happens at each iteration,
instead of a few local epochs at the nodes. Formally, during back-propagation with n workers (i.e.,
compute nodes), to update the model parameter x, each worker i, at each iteration, calculates a
stochastic gradient gi

t by processing an independent batch of data, Di with
!

i Di = D, the global
dataset. Often, for efficient communication, the gradient is compressed to ÷gi

t and is communicated
to all workers, either through a parameter server [58], or through a peer-to-peer collective, like
Allreduce [64]. The aggregated gradient, ÷gt = 1

n

" n
i =1 ÷gi

t is then transmitted to all workers, who
update the parameters of their local model via: xt +1 = xt ! ηt ÷gt , where ηt > 0 is the learning rate;
the process repeats until convergence. Figure 9 shows an example of distributed training for DNNs
with compressed communication.

Layer 1 Layer 2 !Layer 3 Layer L-1 Output Layer

In
pu

t a
t n

od
e i

Loss ! "
!!

Communication Backend

#$
%

&
'

(")*

#$
%

&
'

(")*+
,

#$
%

&
'

(")-

&
'

(")*&
'

(")*+
,

&
'

(")-

&
'

(").

#$
%

&
'

("). !

Layer L

Gradient computation
&' (

")*

Input from Layer L-1

Sends layer-wise
compressed

/01
")* 2

#
$

%34&' (
")* 5

Receives layer-wise
uncompressed

666666666
,
7

%6/ 1
")*

Communication
Backend

(b)(a)

Back-propagation updates the model parameters

Figure 9: Distributed training from the perspective of ith computing node.

Random-r, Top-r sparsifiers, and δ-compressors. Based on the selection criteria of the elements
in S, some of the most commonly used sparsifiers such as, Random-r [69] and Top-r [6, 8] are
defined. For Random-r, the elements of S are randomly selected out of [d], whereas, for Top-r,
the elements of S correspond to the indices of the r highest magnitude elements in g.Moreover,
sparsifiers that follow (6) with ! = 1 ! δ, and δ " (0, 1], are known as δ-compressorsand denoted
by C! . That is,

E#g ! C ! (g)#2 $ (1 ! δ)#g#2
. (1)

Remark1. Both Top-r and Random-r are δ-compressorswith δ = r
d , and E#g ! Topr(g)#2 $

E#g ! Randomr(g)#2 = (1 ! r/d)#g#2
, for all g " Rd

.

A.1 Lossless encoding strategies

In this section, we explain two losslessstrategies that can be used in the DeepReduce framework.
Discussion pertaining to their implementation is given in Section F.2.

Run Length Encoding (RLE) [83] is a losslesscompressor in which consecutive occurrences of
symbols are encoded as %frequency, symbol&tuples. For example, string ÒaaaabaaÓis encoded as:
(4,ÒaÓ), (1,ÒbÓ), (2,ÒaÓ). RLE is used to compress large sequences of repetitive data. In this work,
we employ bit-level RLE, where symbols are 0 or 1, for index compression.

16

Huffman encoding [38] is a losslessscheme that assigns the optimal average decode-length pre-
fix codes, using a greedy algorithm to construct a Huffman code tree. Higher frequency sym-
bols are encoding with fewer bits. For instance, string ÒaaaabaacaabaaÓgenerates mapping
(ÒaÓ,ÒbÓ,ÒcÓ)' (0, 10, 11) resulting to the following encoding: 0000100011001000. Huffman
encoding has been used to compress DNN weights [28, 32], as well as sparse gradient indices (e.g.,
SKCompress [40]).

A.2 Further details on classic Bloom filter

The following Lemma characterizes the probability of the false-positive rates in a Bloom filter and
Figure 10 is an example of a Bloom filter.
Lemma 3. [12] Let k denote the number of independent hash functions,m the dimension of the
bit-string, andr the cardinality of the index set,S. Then the probability of the false-positive rate (FPR)
is ε ((1 ! e

! kr/m)k
.

INSERT

1 0 0 1 0 1 1 0 1 1 0 1

y4

True Negative

y5

False PositiveTrue Positive

y1

y1 y2 y3

QUERY

Bloom filter size m = 12, #hash funtions k = 3

Figure 10: The figure illustrates an example Bloom filter B with m = 12 bits and k = 3 hash functions,
representing a set, S = { y1, y2, y3} . During querying, y1 and y4 are correctly identified as belonging (i.e., true
positive) and not belonging (i.e., true negative) to B, respectively. In contrast, y5 is wrongly identified (i.e., false
positive) as belonging to B.

Remark2. Given ε and r, the optimal m = ! r log "
(log 2) 2 and k = ! log "

log 2 . Given m and r, the number of
hash functions that minimizes the probability of false positives is k = m

r log 2. This k results in the
probability of false positive, ε as log ε = ! m

r (log 2)2
. In practice, we need to calculate the bits in the

filter by using the relation m = ! r log "
(log 2) 2 and the number of hash functions by k = ! log "

log 2 .

A.3 Inequalities used in this paper

1. If a, b " Rd then the Peter-Paul inequality is: There exists a ξ > 0 such that

#a + b#2 $ (1 + ξ)#a#2 + (1 +
1
ξ

)#b#2
. (2)

We generally use a relaxed version of the above inequality as follows:
#a + b#2 $ 2#a#2 + 2#b#2

. (3)

2. If a, b " Rd then we have

2%a, b& $ 2#a#2 +
1
2

#b#2
. (4)

3. For xi " Rd we have:

#
n#

i =1

xi #2 $ n

n#

i =1

#xi #2
. (5)

4. If the operator C : Rd ' Rd is a compressorthen there exists ! > 0 such that
E#g ! C (g)#2 $! #g#2

. (6)
5. If X is a random variable then:

E#X#2 = #E[X]#2 + E[#X ! E[X]#2]
$ %& '

Var(X)

. (7)

17

A.4 Preliminary results

The next two Lemmas are instrumental in proving other compression related results.
Lemma 4. Let x " Rd and xS be a vector that has the components ofx arranged in ascend-
ing/descending order of magnitude. If0 $ θ < π/2 be the angle betweenx and xS, then
#x ! xS#2 = 2(1 ! cosθ)#x#2

.

Proof. We have

#x ! xS#2 = #x#2 + #xS#2 ! 2%x, xS&
" x " = " x S "

= 2#x#2 ! 2#x#2 cosθ = 2(1 ! cosθ)#x#2
.

Hence the result.

Lemma 5. LetC(á) : Rd ' Rd be aδ-compressor.

(i) If C! (g) is unbiased thenE#C! (g)#2 $ (2 ! δ)#g#2
.

(ii) If C! (g) is biased thenE#C! (g)#2 $ 2(2 ! δ)#g#2
.

Proof. (i) Recall from (1), for δ-compressors, we have E#g ! C ! (g)#2 $ (1 ! δ)#g#2
. Since

E(C! (g)) = g, from (7) we have,

E#C! (g)#2 By (7)
= E#g ! C ! (g)#2 + #g#2

By (1)
$ (1 ! δ)#g#2 + #g#2 = (2 ! δ)#g#2

.

(ii) On the other hand, for biased compressors, by (3) we have,

E#C! (g)#2 = E#g! g+ C! (g)#2
By (3)

$ 2E#g!C ! (g)#2+2#g#2
By (1)

$ 2(1! δ)#g#2+2#g#2 = 2(2 ! δ)#g#2
.

B Bloom filter based index compression

In this section, we discuss in details different Bloom filter policies.

Overview. This Section serves as an addendum to Section 4 in the main paper and incorporates
detailed discussions, examples, pseudocode, theoretical results, and their proofs. We start with
an example in B.1 to illustrate the Naïve compression. Section B.2 provides proofs the Lemmas
discussed in the main paper related to policy P0. In Section B.3, we discussed a new policy, called
deterministic policy that sets the stage for more complex policies, random approach, Policy P1
(Section B.4) and conflict sets policy, Policy P2 (Section B.5).

B.1 Naïve compression

In this scope we explain Naïve compression by a simple illustration, see Figure 11. We have a dense
gradient represented as a sparse tensor in a key-value format. Notice that, the values in the sparse
representation are sorted by their indices in an increasing order. The set, S of keys is represented as a
bloom filter. To communicate the sparse tensor we send both the values and the bloom filter. During
the phase of decompression, we try to reconstruct S by following the process we described. However,
in this case, we manage to retrieve only 4 out of the 5 elements of S. Index 4 does not belong to S

and corresponds to a FP response. The mapping, M scans the communicated values in the order they
arrive and assigns each one of them to the next larger index from the set of decoded indices. Notice
how the selection of one wrong index affects the decompression by causing re-arrangements or shifts
of the reconstructed gradient components with respect to their true positions.

B.2 Policy P0

We provide the theoretical results involving policy P0 stated in the main paper.

Lemma 6. The cardinality of the setP is at most)r + (1
2)! log(!)

log(2) (d ! r)* and approaches tor as
ε ' 0.

18

Vector ization
&

Spasification

Naive Bloom Filter
Index compression

Value: 0.015 0.03 0.12 0.058 0.29

Index:

Naive Bloom Filter
Index decompression

Sparse Tensor

Value: 0.015 0.03 0.12 0.058 0.29

Index: 0 5 8 9 14

Sparse Tensor

Value: 0.015 0.03 0.12 0.058 0.29

Index: 0 4 5 8 9

Despasification
&

Reshape

0.015 0 0 0

0 0.03 0 0

0.12 0.058 0 0

0 0 0.29 0

Dense Gradient

0.015 0 0 0

0.03 0.12 0 0

0.058 0.29 0 0

0 0 0 0

Reconstructed Gradient

False positive

Mis-match

Bloom Filter Bit-array

Figure 11: Naïve Bloom filter example that demonstrates how the FP elements in the Bloom filter,
can cause re-arrangements or shifts of the reconstructed gradient components with respect to their
true positions.

Proof. For given ε, r, d the cardinality of the set of positives P follows

r $ | P | $) r + ε(d ! r)*
By Lemma 3

() r + (1 ! e
! kr/m)k (d ! r)*.

Given ε and r, the optimal m = ! r log "
(log 2) 2 and k = ! log "

log 2 . Therefore, plugging them in the above
expression, we get

r $ | P | $) r +
(

1
2

) ! log(!)
log(2)

(d ! r)*,

which after taking limit ε ' 0, gives the desired result.

The next Lemma measures compression error due to compressed gradient, CP 0 ,! (g).
Lemma 7. (i) For a generalδ-compressor,C! , there exists aβ " [0, 1), β + δ such that the com-
pression error due to a compressed gradient,CP 0 ,! (g) resulted fromP0 is E#g ! C P 0 ,! (g)#2 $
(1 ! β)#g#2

. (ii) For inherently sparse gradient,g, with C! = Id, we haveβ = δ = 1 .

Proof. (i) Consider a δ sparsifier, C! such that #C! (g)#0 = r. If P0 is used then, by Lemma 6,
|P | = r + (1

2)! log !
log 2 (d ! r) + r for ε + 0, (|P | = r for ε = 0). Therefore, for CP 0 ,! , we have

β = |P |/d > δ resulting E#g ! C P 0 ,! (g)#2 $ (1 ! β)#g#2
.

(ii) For inherently sparse gradient, g, with C! = Id , we have δ = 1 , and #CI d (g)#0 = r. Therefore,
for policy P0, we have #CP 0 ,I d (g)#0 = r resulting β = δ = 1 .

Remark3. We consider two extreme cases of δ sparsifier. For Random-r, δ = r/d $ 1. If P0 is used
then |P | = r + (1

2)! log !
log 2 (d ! r) > r for ε > 0. In this case, for CP 0 ,! we have β = |P |/d > δ.

In another extreme case, for C! to be Top-r, by Remark 1, δ $ r/d $ 1. For g " Rd , similar
argument as above gives us:

E#g ! C P 0 ,! #2
< E#g ! Topr(g)#2 $ E#g ! randomr(g)#2 $ (1 ! r/d)#g#2

.

Lemma 6 show that for small ε, no policy sends negligible amount of extra data compared to the
other policies. The GRACE [84] sparsification library allows to use the original dense gradient g,
instead of ÷g, to populate V . Consequently, all elements corresponding to false positives (i.e., set

19

Receiving worker

ML Framework
TensorFlow

PyTorch
MXNET

Sparsification
- Top-K
- Random-K
- Threshold-r
- DGC

Sparse Tensor

Value Compression
- No compression
- gzip, QSDG, ...
- Curve fitting

- double exp
- polynomial

Index Compression
- No compression
- RLE, Huffman, ...
- Bloom Filter

Co
m

m
un

ic
at

e

N
et

w
or

k

Values

Indices

ML Framework
TensorFlow

PyTorch
MXNET

Co
m

m
un

ic
at

e

Value
Decompression

Index
Decompression

Sparse Dense

Index reorder

Sparse Tensor

Desparsify

Index reorder

Transmitting worker

Figure 12: DeepReduce system architecture (highlighted in blue). DeepReduce resides between the machine
learning framework (e.g., TensorFlow, PyTorch) and the communication library, and is optimized for federated
DNN training. It offers a simple API whose functions can be overridden to implement, with minimal effort,
a wide variety of index and value compression methods for sparse tensors. At the transmitting worker side,
the input to DeepReduce is a sparse tensor, which is fed directly from the ML framework, for the case of
inherently sparse models; or, is generated by an explicit sparsification process. Sparse tensors are typically
represented as ! key, value" tuples. DeepReduce decouples the keys from the values and constructs two separate
data structures. Let ÷g # Rd be the sparse gradient, where d is the number of model parameters and $÷g$0 = r ,
is the number of nonzero gradient elements. Let S be the set of r indices corresponding to those elements.
DeepReduce implements two equivalent representations of S: (i) an array of r integers; and (ii) a bit string
B with d bits, where %i # [1, d], B [i] = 1 if and only if ÷g[i] &= 0 . These two representations are useful for
supporting a variety of index compressors. The Index Compression module encapsulates the two representations
and implements several algorithms for index compression. It supports both lossycompressors (e.g., our Bloom
filter-based proposal), as well as losslessones, such as the existing Run Length (RLE) [83] and Huffman [38, 27]
encoders; there is also an option to bypass index compression. The Value Compression module receives the
sparse gradient values and compresses them independently. Several compressors, such as Deflate [20] and
QSGD [7], are implemented, in addition to our own curve fitting-based method. Again, there is an option to
bypass value compression. Some value compressors (e.g., our own proposals), require reordering of the gradient
elements, which is handled by the Index reorder module. DeepReduce then combines in one container the
compressed index and value structures, the reordering information and any required metadata; the container
is passed to the communication library. The receiving worker, at the right of the figure, mirrors the structure
of the transmitter, but implements the reverse functions, that is, index and value decompression, and index
reordering. The reconstructed sparse gradient is routed for de-sparsification, or passed directly to the ML
framework. DeepReduce is general enough to represent popular existing methods that employ proprietary
combined value and index compression. E.g., SKCompress [40] can be implemented in DeepReduce as follows:
SketchML [39] plus Huffman for values, no index reordering, and delta encoding plus Huffman for indices.

P ! S) receive the original, instead of zero values. Lemma 7 (i) shows that for sparsified vectors, no
policy achieves a better compression factor than the original sparsifier, C! . However, for inherently
sparse tensors, Lemma 7 (ii) shows that no policy is losslessand is the best choice.

B.3 Deterministic policy

This policy deterministically selects a subset of r elements from P and is denoted by PD . One can
select the first r, the middle r, or the last r elements from P , and based on this denote them as,
leftmost-r, middle-r, and rightmost-r policy, respectively. For implementation, the set ÷S can be
created while iterating and posing queries on the universe U and once it has r elements, the querying
is stopped. Let C! be a general δ-compressor that selects r gradient components. However, with
a policy, PD , not all the r selected indices are due to C! . Let I1 denote the set of indices that are
selected via policy PD originally resulted from C! sparsifier and let I2 denote the set of the rest of
the (r ! | I1|) indices. Therefore, ÷S = I1

!
I2 and let CP D ,! (g) be the compressed gradient whose

indices are drawn via policy PD and has support ÷S. The following lemma quantifies the compression
error.

Deterministic policy error. Lemma 8 gives the compression error bound for Deterministic policies.

20

! " # ! " $%&' " " (&' # ") &' " * ' # " + " ,

-" -#

Figure 13: Random policy, policy P0 example with size of |P | = m0 = 10 , ! and " denote TP and FP,
respectively. Policy P1 selects set I 1 (in !), with k1 = 4 elements and I 2 (in "), with k2 = 2 elements, and
r = 6 .

Lemma 8. (i) For all deterministic policies,PD and for an inherently sparse gradient,g, the
compression error due to a compressed gradient,CP D ,I d (g) is given byE ÷S#g ! C P D ,I d (g)#2 =
(1 ! |I 1 |

r)#g#2
.

(ii) For all deterministic policies,PD and a generalC! , the compression error due to a compressed
gradient,CP D ,! (g) is given byE ÷S#g ! C P D ,! (g)#2 = (1 ! r

d)#g#2
.

The proof of Lemma 8 follows from the standard procedure of taking expectation with respect to all
possible |I1| cardinality subsets formed from the set P by using policy, PD and follows the same
structure as the proof of Lemma 9 (i) and (ii). We omit the proof.

Lemma 8 (i) shows that by adopting a deterministic policy, PD on the support of a general δ-
compressor, the compression error in expectation is as good as using a Random-r sparsifier on the
original gradient. Moreover, Lemma 8 (ii) shows that by adopting a deterministic policy, PD on
the support of a inherently sparse vector, the compression error in expectation is as good as using
a Random-|I1| sparsifier on the original gradient. Therefore, it creates a lossycompression whose
compression factor is as good as a Random-|I1| compressor on r elements.

B.4 Random Policy: Policy P1

First, we define the random policy, Policy P1 in detail, and then inspect the error incurred due to P1.

Random approach: Policy P1. A deterministic policy, PD may be prone to bias, based on how the
gradient components are distributed and the sparsifier used. E.g. If the support set of the sparsifier,
C! is concentrated at the beginning of P , then except leftmost-r, other deterministic policies such as,
middle-r and rightmost-r incur more bias as they select more elements in I2 than I1. Similarly, if the
support set of the sparsifier, C! , concentrated at the center, then only middle-r policy is expected to
incur the least bias compare to the others as it selects more elements in I1 than in I2. Without knowing
the distribution of the gradient components, it is hard to invoke a deterministic policy. A random
policy, PR forms ÷S by picking r indices randomly from P . Without loss of generality, consider the
only source of randomness here is due to the random selection of r indices and is unaffected by other
source of randomness—randomness in the i.i.d. data, independence of the hash functions, etc.

Let |P | = m0. Let policy PR chooses a set I1 of k1 elements from the support set of a δ-compressor
C! without replacement. Let the rest k2 elements belong to the set I2 such that, k1 + k2 = r. We
illustrate this in Figure 13. By this, we incur two types of errors with respect to the vector gP . The
first error, E1, is due to the compressed gradient gI 1 . The second error, E2, is due to the compressed
gradient gI 2 . We have, CP R ,! (g) := gI 1

*
gI 2 . In the following Lemma, we measure the compression

error due to compressed gradient CP R ,! (g) with respect to gP .
Lemma 9. With the notations mentioned above, we have the following measures of the compression
error:
(i) E1 = EP R #gP ! gI 1 #2 = (1 ! k1

r)#gP #2.
(ii) E2 = EP R #gP ! gI 2 #2 = (1 ! k2

m 0 ! r)#gP #2.
(iii) DenoteE := EP R #gP ! C P R ,! (g)#2 be the total compression error due to the compressed
gradientCP R ,! (g) with respect togP . Then,E $ E1 + E2.

Proof. Let ! k1 and ! k2 denote the set of all k1 and k2 elements subsets of the sets having cardinality
r and m0 ! r, respectively. The first error, E1, is due to the compressed gradient gI 1 whose support
belongs to ! k1 . The second error, E2, is due to the compressed gradient gI 2 whose support belongs
to ! k2 . With the notations mentioned above, we have

21

(i)

E1 = EP R #gP ! gI 1 #2 =
1

|! k1 |

#

I 1 # ! k 1

m 0#

i =1

g
2
i I { i /" I1} = #gP #2

+
1

, r
k1

-
r ! k1

r

(
r

k1

) .

= (1 !
k1

r
)#gP #2

.

(ii) Similarly, we have E2 = EP R #gP ! gI 2 #2 = 1
|! k 2 |

"
I 2 # ! k 2

" m 0
i =1 g

2
i I { i /" I2} =

#gP #2

(
1

(m 0 ! r
k 2

)
m 0 ! r ! k2

m 0 ! r

, m 0 ! r
k2

-
)

= (1 ! k2
m ! r)#gP #2.

(iii) Denote E := EP R #gP ! C P R ,! (g)#2 be the total compression error due to the compressed
gradient CP R ,! (g) with respect to gP . Then, by using the linearity of expectation, we have

E = EP R #gP ! C P R ,! (g)#2

= EP R #gP ! gI 1

/
gI 2 #2

$gP ,gI 1

!
gI 2 %=

"
i " I 1

#
I 2

g2
i

= EP R #gP #2 + EP R #gI 1

/
gI 2 #2 ! 2EP R

0

1
#

i # I 1
#

I 2

g
2
i

2

3

$gI 1 ,gI 2 %=0
= EP R #gP #2 + EP R #gI 1 #2 + EP R #gI 2 #2 ! 2EP R

0

1
#

i # I 1
#

I 2

g
2
i

2

3 .

On the other hand,

E1 + E2 = 2EP R #gP #2 + EP R #gI 1 #2 + EP R #gI 2 #2 ! 2EP R

+
#

i # I 1

g
2
i

.

! 2EP R

+
#

i # I 2

g
2
i

.

= 2EP R #gP #2 + EP R #gI 1 #2 + EP R #gI 2 #2 ! 2EP R

0

1
#

i # I 1
#

I 2

g
2
i

2

3 ,

together with EP R #gP #2 + 0 implies E $ E1 + E2.

To measure the compression error due to the compressed gradient CP R ,! (g) with respect to the full
gradient vector g, by Lemma 9, there exists an α " R+ such that the total expected compression
error:

E#g ! C P R ,! (g)#2 = E +
#

i # P c

g
2
i $ α#g#2

. (8)

But there is no guarantee that α " [0, 1). On the other hand, by Remark 1 we have:

E#g ! C P R ,! (g)#2 = E#g ! Randomr(g)#2 $ (1 ! r
d)#g#2

, (9)

which guarantees CP R ,! to be a δ-compressor. Additionally, the sparsifier, CP R ,! (g) is an hybrid
sprasifier—It has some attributes of the original sparsifier, C! , but we are unsure which k1 and k2
random elements are selected via policy PR . If k1 = 0 , then CP R ,! (g) is Random-r [69] sparsifier. If
k2 = 0 , then CP R ,! (g) is C! sparsifier. Furthermore, if C! is Top-r, then CP R ,! (g) is similar to hybrid
random-Top-r sparsifier by Elibol et al. [24]. If C! is Top-r, k1 $ r, k2 = 0 , then it is random-Top-k1
sparsifier of Barnes et al. [9].

For inherently sparse vectors g, with C! = Id , we have CP R ,I d (g) = gI 1 and Lemma 9 holds.
Moreover, by (8) we have:

E#g ! C P R ,I d (g)#2 = (1 !
k1

r
)#g#2

. (10)

That is, the policy creates a lossycompression with compression factor as good as a Random-k1
compressor.

22

Algorithm 1 Construct bloom filter for policy BF-P2
Input: Bloom filter B of size m, k-hash functions hi , gradient dimensionality d, empty set P , empty

conflict sets Cj , empty set ÷S, target number of decompressed indices r
Output: A set of decompressed indices ÷S
for i = 1 to d do /* all d elements of gradient ÷g " Rd */

if i " B then insert i in P

for eachx " P do
for i = 1 to k do insert x in Ch i (x)

Sort conflict-sets in C by their sizes in ascending order
while size(÷S) < r do

for eachCj " C do
if |Cj | = 1 then Insert Cj in ÷S; Remove Cj from C

else
Remove from Cj items that exist in ÷S Insert into ÷S a random item from Cj

return ÷S

B.5 Algorithmic details of conflict set policy: Policy P2

In the following, we explain the conflict set policy, P2. Pseudocode in Algorithm 1 presents the
details. Lines 1-2 construct set P , i.e., the union of the true and false positive responses of B. Lines
3-4 re-hash the items of P into B to construct conflict sets C1...j , where j is equal to the number of
“1”s in B. For lack of better information, we assume that the true positives are uniformly distributed
across the conflict sets; therefore, the probability of drawing a true positive out of a smaller conflict
set is higher. To prioritize such sets, Line 5 sorts C1...j in ascending size order. Then, lines 6-11
repeatedly draw items out of the conflict sets until the size of ÷S reaches our target size r. If a set Cj

is initially a singleton, its item is a true positive; thus it is added to ÷S. Else, we remove from Cj any
items that already exist in ÷S (observe there may be duplicates among conflict sets), and add randomly
a remaining item to ÷S.

C Approximation error due to polynomial fit

We discuss the missing details of value fitting (Section 5) in the following and then provide the
compression error from value fitting in Section C.1. The first result is concerning the knot selections.

! " #$! " %%

!&#$!&%%

! ' ! $! ' ! %%

!&#(% !" #(%

Minimize the area

Figure 14: Knot selection for y = f (x) on the interval [a, b].

Lemma 10. (Knot selection) Iff is a differentiable convex function on[a, b], then the pointx& " (a, b)
that gives the best approximation tof using line segments from(a, f (a)) to (x&

, f (x&)) , and then

23

from(x&
, f (x&)) to (b, f (b)) is the same pointx+ that maximizes the difference betweenf and the

line segment connecting(a, f (a)) to (b, f (b)) .

Proof. The goal is to find x
& such that it minimizes

4x #

a

5
f (x #) ! f (a)

x # ! a (x ! a) + f (a) ! f (x)
6
dx +

4b
x #

5
f (b) ! f (x #)

b! x # (x ! b) + f (b) ! f (x)
6
dx among all choices of x& " (a, b); see Figure 14.

Let

F (t) =
7 t

a

8
f (t) ! f (a)

t ! a
(x ! a) + f (a) ! f (x)

9
dx+

7 b

t

8
f (b) ! f (t)

b ! t
(x ! b) + f (b) ! f (x)

9
dx.

Then

F
' (t) =

7 t

a

d

dt

8
f (t) ! f (a)

t ! a
(x ! a)

9

t
dx +

7 b

t

d

dt

8
f (b) ! f (t)

b ! t
(x ! b)

9

t
dx

= =
1
2

[f ' (t)(b ! a) ! (f (b) ! f (a))] .

So, the critical point satisfies
f

' (t)(b ! a) ! (f (b) ! f (a)) = 0 ,

that is , f
' (t) = f (b) ! f (a)

b! a . (11)

Now consider,

A(x) = max
x # [a,b]

8
f (b) ! f (a)

b ! a
(x ! a) + f (a) ! f (x)

9
.

It is easy to see that the critical point of the function A(x) alone satisfies f ' (x) = f (b) ! f (a)
b! a , which

is the same solution as in (11).

Polynomial regression. As mentioned in Section 5, over each sorted segment, we apply a polynomial
regression. In our experiments, we usually take the degree of the polynomial as 5. The following
result concerns piece-wise constant approximation.
Lemma 11. [21] (Error of piece-wise constant Þt) ForCS(g) " C([1, d]) andM > 0 the following
are equivalent:
(i) Var[1,d](CS(g)) $ M and (ii) #s ! C S(g)#($ M

2p+2 , for somes " S 0
p Ñ the set of piece-wise

constant splines withp knots.

Proof of the above Lemma follows from [21].
Remark4. We can also give a heuristic to calculate p from Lemma 11. First, calculate M =
|(CS(g)[1] ! C S(g)[2]) ! (CS(g)[d ! 1] ! C S(g)[d])|. By considering the error bound M

2p+2 as a
function of p, we can find closed-form solution for p as p =) M)

2
! 1*.

However, for piece-wise linear fit, we propose the following result with an explicit constant.
Lemma 12. (Error of piece-wise linear Þt with explicit constants) ForCS(g) " C

1([1, d]) with
Var[1,d](C'

S (g)) $ M , we have#s ! C S(g)#($ 2M
p2 , for somes " S 1

p Ñ the set of piece-wise linear
splines withp knots.

Proof. Let p' =)p/2*, the integer part of p/2, and let s0 " S
0
p satisfy |C'

S (g)(t) ! s
0(t)| $ M

2p$+2 ,
as guaranteed by Lemma 11. Denote V

1 :=
4r

1 |C'
S (g)(t) ! s

0(t)|dt. Choose p
' knots { tj } in (1, d)

such that
4t j +1

t j
|C'

S (g) ! s
0(t)|dt = V 1

p$+1 . Define s(x) =
4x

t j
s

0(t)dt + f (tj) for x " [tj , tj +1),
j = 0 , 1, ..., p' . Then s is a piece-wise linear spline function with possible knots at 2p' $ p points such
that, for x " [tj , tj +1), |CS(g)(x) ! s(x)| $

4x
t j

|C'
S (g)(t) ! s

0(t)|dt $
4t j +1

t j
|CS(g)(t) ! s

0(t)|dt =
2M

(2p$+2) 2 $ 2M
p2 , which implies the result.

Remark5. Let s " S 1
p . Denote öσ := #s ! C S(g)#. Then

öσ := #s ! C S(g)# $
,
d#s ! C S(g)#(

By Lemma 12
$

2
,
dM

p2 .

24

C.1 Compression error from value fitting

Now we are set to discuss about the compression error from value fitting. Let öC(g) be the approxima-
tion of the sparse vector, C! (g) resulted from a δ-compressor. In the intermediate step, we consider the
sparse vector, CS(g) that has the components of C! (g) arranged in descending order of magnitude. Let
s " S 1

p be the approximation of CS(g). Assume no orthogonality and let the angle between C! (g) and
CS(g) be 0 $ θ < π/2, and the angle between s and öC(g) be 0 $ θ'

< π/2. We aim to calculate the
bound on E#öC(g)#, (where öC(g) is considered to be iteration and worker agnostic) and the Lemma
follows.
Lemma 13. (i) If C! (g) is unbiased, that is,E(C! (g)) = g then

E#öC(g)#2 $ 2(2 ! δ)(21 ! 4 cosθ ! 16 cosθ')#g#2 + (5 ! 4 cosθ')
32dM2

p4 . (12)

(ii) If C! (g) is biased, that is,E(C! (g)) -= g, then

E#öC(g)#2 $ 2(3 ! 2δ)#g#2 + 16(2 ! δ)(5 ! cosθ ! 4 cosθ')#g#2 + (5 ! 4 cosθ')
32dM2

p4 . (13)

Proof. We have

E#öC(g)#2 = E#öC(g) ! g + g#2
By (3)

$ 2E#öC(g) ! g#2 + 2#g#2
.

Case 1: Consider C! (g) be unbiased, that is, E(C! (g)) = g . Therefore,

E#g ! öC(g)#2 = E#g ! C ! (g) + C! (g) ! öC(g)#2

E(C" (g))= g
= E#g ! C ! (g)#2 + E#C! (g) ! öC(g)#2

By (1)
$ (1 ! δ)#g#2 + E#C! (g) ! öC(g)#2

.

Further we need to bound E#C! (g) ! öC(g)#2
. We have

E#C! (g) ! öC(g)#2 = E#C! (g) ! C S(g) + CS(g) ! öC(g)#2

By (3)
$ 2E#C! (g) ! C S(g)#2 + 2E#CS(g) ! öC(g)#2

.

If the angle between C! (g) and CS(g) be 0 $ θ < π/2, then

E#C! (g) ! C S(g)#2 Lemma 4= 2(1 ! cosθ)E#C! (g)#2
Lemma 5(i)

$ 2(1 ! cosθ)(2 ! δ)#g#2
. (14)

We pause here and quantify: #CS(g) ! öC(g)#2. Let s " S 1
p be the approximation of CS(g). Then

E#CS(g) ! öC(g)#2 = E#CS(g) ! s + s ! öC(g)#2

By (3)
$ 2E#CS(g) ! s#2 + 2E#s ! öC(g)#2

By Remark 5
$

8dM2

p4 + 2E#s ! öC(g)#2
. (15)

Similarly, if the angle between s and öC(g) be 0 $ θ'
< π/2, then

E#s ! öC(g)#2 By Lemma 4
= 2(1 ! cosθ')E#s#2

$ 2(1 ! cosθ')E#s ! C S(g) + CS(g)#2

By (3)
$ 4(1 ! cosθ')#s ! C S(g)#2 + 4(1 ! cosθ')E#CS(g)#2

E"C " (g) " 2 = E"C S (g)" 2

= (1 ! cosθ')
16dM2

p4 + 4(1 ! cosθ')E#C! (g)#2

By Lemma 5(i)
$ (1 ! cosθ')

16dM2

p4 + 4(1 ! cosθ')(2 ! δ)#g#2
. (16)

25

Therefore,

E#C! (g) ! öC(g)#2 $ 2E#C! (g) ! C S(g)#2 + 2E#CS(g) ! öC(g)#2

$ 4(1 ! cosθ)(2 ! δ)#g#2 +
16dM2

p4 +
64dM2

p4 (1 ! cosθ')

+16(1 ! cosθ')(2 ! δ)#g#2
.

Combining all together we have

E#öC(g)#2

$ 2(2 ! δ)#g#2 + 8(1 ! cosθ)(2 ! δ)#g#2 +
32dM2

p4 +
128dM2

p4 (1 ! cosθ')

+32(1 ! cosθ')(2 ! δ)#g#2
.

Arranging the terms, we get the result.

Case 2: If C! (g) be biased, that is, E(C! (g)) -= g then

E#g ! öC(g)#2 $ 2E#g ! C ! (g)#2 + 2E#C! (g) ! öC(g)#2

By (1)
$ 2(1 ! δ)#g#2 + 2E#C! (g) ! öC(g)#2

.

For biased compressor C! (g), by using Lemma 5 (ii) we have

E#C! (g) ! C S(g)#2 By Lemma 4
= 2(1 ! cosθ)E#C! (g)#2

By Lemma 5(ii)
$ 4(1 ! cosθ)(2 ! δ)#g#2

. (17)

and

E#s ! öC(g)#2 By Lemma 4
= 4(1 ! cosθ')#s ! CS(g)#2 + 4(1 ! cosθ')E#C! (g)#2

By Lemma 5(ii)
$ (1 ! cosθ')

16dM2

p4 + 8(1 ! cosθ')(2 ! δ)#g#2
. (18)

Finally,

E#C! (g) ! öC(g)#2 $ 2E#C! (g) ! C S(g)#2 + 2E#CS(g) ! öC(g)#2

$ 8(1 ! cosθ)(2 ! δ)#g#2 +
16dM2

p4 + (1 ! cosθ')
64dM2

p4

+32(1 ! cosθ')(2 ! δ)#g#2
.

Combining all together we have

E#öC(g)#2

$ 2E#öC(g) ! g#2 + 2#g#2

$ 2(3 ! 2δ)#g#2 + 16(1 ! cosθ)(2 ! δ)#g#2 +
32dM2

p4 + (1 ! cosθ')
128dM2

p4

+64(1 ! cosθ')(2 ! δ)#g#2
.

Arranging the terms, we get the result.

D Compression error from combined index and value fitting

In this section, we discuss about the compression error from joint index and value fitting. Let øC(g) be
the sparse approximation of the vector, g after sparse vector, C! (g) resulted from a δ-compressor, goes
through consequent index compression via PR ,2 and value compression via piecewise polynomial fit.

2We give the result by using random policy, PR . Also, similar bounds hold for deterministic policy. For P0 ,
the quantity, r

d in the proofs will be replaced by ! with 0 < ! ' 1.

26

Let CP R ,! (g) be the sparse vector whose indices are resulted from policy PR applied to C! (g). In the
intermediate step, we consider the sparse vector, CS(g) that has the components of CP R ,! (g) arranged
in descending order of magnitude. Let s " S 1

p be the approximation of CS(g). Let the angle between
CP R ,! (g) and CS(g) be 0 $ θ < π/2, and the angle between s and øC(g) be 0 $ θ'

< π/2. We aim to
calculate the bound on E#øC(g)#, (where øC(g) is considered to be iteration and worker agnostic) and
the Lemma follows.
Lemma 14. (i) If C! (g) is unbiased, that is,E(C! (g)) = g then

E#øC(g)#2 $ 2(2 ! δ)#g#2 + 4(2 !
r

d
! δ)#g#2 + 32(1 ! cosθ)(2 !

r

d
)#g#2 +

64dM2

p4

+(1 ! cosθ')
256dM2

p4 + 64(1 ! cosθ')(2 ! δ)#g#2
. (19)

(ii) If C! (g) is biased, that is,E(C! (g)) -= g, then

E#øC(g)#2 $ 2(3 ! δ)#g#2 + 16(2 !
r

d
! δ)#g#2 + 32(1 ! cosθ)(2 !

r

d
)#g#2 +

64dM2

p4

+(1 ! cosθ')
256dM2

p4 + 128(1 ! cosθ')(2 ! δ)#g#2
. (20)

Proof. We have

E#øC(g)#2 = E#øC(g) ! g + g#2
By (3)

$ 2E#øC(g) ! g#2 + 2#g#2
.

Case 1: Consider C! (g) be unbiased, that is, E(C! (g)) = g . Therefore,

E#g ! øC(g)#2 = E#g ! C ! (g) + C! (g) ! øC(g)#2

E(C" (g))= g
= E#g ! C ! (g)#2 + E#C! (g) ! øC(g)#2

By (1)
$ (1 ! δ)#g#2 + E#C! (g) ! øC(g)#2

.

Further, we need to bound E#C! (g) ! øC(g)#2
. We have

E#C! (g) ! øC(g)#2 = E#C! (g) ! C P R ,! (g) + CP R ,! (g) ! øC(g)#2

By (3)
$ 2E#C! (g) ! C P R ,! (g)#2 + 2E#CP R ,! (g) ! øC(g)#2

= 2E#g ! C P R ,! (g) ! (g ! C ! (g))#2 + 2E#CP R ,! (g) ! øC(g)#2

By (9) (3),and (1)
$ 2(1 ! r

d)#g#2 + 2(1 ! δ)#g#2 + 2E#CP R ,! (g) ! øC(g)#2

= 2(2 ! r
d ! δ)#g#2 + 2E#CP R ,! (g) ! øC(g)#2

.

Now,

E#CP R ,! (g) ! øC(g)#2 = E#CP R ,! (g) ! C S(g) + CS(g) ! øC(g)#2

By (3)
$ 2E#CP R ,! (g) ! C S(g)#2 + 2E#CS(g) ! øC(g)#2

.

If the angle between CP R ,! (g) and CS(g) be 0 $ θ < π/2, then

E#CP R ,! (g) ! C S(g)#2 Lemma 4= 2(1 ! cosθ)E#CP R ,! (g)#2
By (9) and (3)

$ 2(1 ! cosθ)(2 !
r

d
)#g#2

. (21)

We pause here and quantify: #CS(g) ! øC(g)#2. Let s " S 1
p be the approximation of CS(g). Then

E#CS(g) ! øC(g)#2 = E#CS(g) ! s + s ! øC(g)#2

By (3)
$ 2E#CS(g) ! s#2 + 2E#s ! øC(g)#2

By Remark 5
$

8dM2

p4 + 2E#s ! øC(g)#2
. (22)

27

Similarly, if the angle between s and øC(g) be 0 $ θ'
< π/2, then

E#s ! øC(g)#2 By Lemma 4
= 2(1 ! cosθ')E#s#2

$ 2(1 ! cosθ')E#s ! C S(g) + CS(g)#2

By (3)
$ 4(1 ! cosθ')#s ! C S(g)#2 + 4(1 ! cosθ')E#CS(g)#2

E"C P R ," (g) " 2 = E"C S (g)" 2

= (1 ! cosθ')
16dM2

p4 + 4(1 ! cosθ')E#CP R ,! (g)#2

By Lemma 5(i)
$ (1 ! cosθ')

16dM2

p4 + 4(1 ! cosθ')(2 !
r

d
)#g#2

. (23)

Therefore,
E#CP R ,! (g) ! øC(g)#2

$ 2E#CP R ,! (g) ! C S(g)#2 + 2E#CS(g) ! øC(g)#2

$ 4(1 ! cosθ)(2 !
r

d
)#g#2 +

16dM2

p4 +
64dM2

p4 (1 ! cosθ') + 16(1 ! cosθ')(2 !
r

d
)#g#2

.

Combining all together we have
E#øC(g)#2

$ 2(2 ! δ)#g#2 + 4(2 !
r

d
! δ)#g#2 + 16(1 ! cosθ')(2 !

r

d
)#g#2 +

64dM2

p4

+
256dM2

p4 (1 ! cosθ') + 64(1 ! cosθ')(2 ! δ)#g#2
.

Arranging the terms, we get the result.

Case 2: If C! (g) be biased, that is, E(C! (g)) -= g then

E#g ! øC(g)#2 $ 2E#g ! C ! (g)#2 + 2E#C! (g) ! øC(g)#2

By (1)
$ 2(1 ! δ)#g#2 + 2E#C! (g) ! øC(g)#2

.

Further, we have
E#C! (g) ! øC(g)#2 = E#C! (g) ! C P R ,! (g) + CP R ,! (g) ! øC(g)#2

By (3)
$ 2E#C! (g) ! C P R ,! (g)#2 + 2E#CP R ,! (g) ! øC(g)#2

= 2E#g ! C P R ,! (g) ! (g ! C ! (g))#2 + 2E#CP R ,! (g) ! øC(g)#2

By (9) (3),and (1)
$ 4(1 ! r

d)#g#2 + 4(1 ! δ)#g#2 + 2E#CP R ,! (g) ! øC(g)#2

= 4(2 ! r
d ! δ)#g#2 + 2E#CP R ,! (g) ! øC(g)#2

.

For biased compressor C! (g), by using Lemma 5 (ii) we have

E#CP R ,! (g) ! C S(g)#2 By Lemma 4
= 2(1 ! cosθ)E#CP R ,! (g)#2

By Lemma 5(ii)
$ 4(1 ! cosθ)(2 !

r

d
)#g#2; (24)

and

E#s ! øC(g)#2 By Lemma 4
= 4(1 ! cosθ')#s ! CS(g)#2 + 4(1 ! cosθ')E#CP R ,! (g)#2

By Lemma 5(ii)
$ (1 ! cosθ')

16dM2

p4 + 8(1 ! cosθ')(2 !
r

d
)#g#2

. (25)

Finally,
E#CP R ,! (g) ! øC(g)#2

$ 2E#CP R ,! (g) ! C S(g)#2 + 2E#CS(g) ! øC(g)#2

$ 8(1 ! cosθ)(2 !
r

d
)#g#2 +

16dM2

p4 + (1 ! cosθ')
64dM2

p4 + 32(1 ! cosθ')(2 !
r

d
)#g#2

.

28

Combining all together we have

E#øC(g)#2

$ 2E#øC(g) ! g#2 + 2#g#2

$ 2(3 ! δ)#g#2 + 16(2 !
r

d
! δ)#g#2 + 32(1 ! cosθ)(2 !

r

d
)#g#2 +

64dM2

p4

+(1 ! cosθ')
256dM2

p4 + 128(1 ! cosθ')(2 ! δ)#g#2
.

Arranging the terms, we get the result.

D.1 Convergence of distributed compressed SGD without error feedback

We comment on the convergence of compressed distributed SGD without error feedback [23]. We
consider the following scenarios:

1. Approximation by using only value compression. One can find the bound on compressed
aggregated gradient ÷gk resulting at kth iteration. Denote öC(gi

k) be the approximation of the
sparse vector C! (gi

k) resulted from a δ-compressor at ith worker, at the kth iteration. Denote
the compressed aggregated gradient at kth iteration to be ÷gk := 1

n

" n
i =1

öC(gi
k). By using

Lemma 13, we can find bound on E#÷gk #2 is for both biased and unbiased C! (g). 3

2. Approximation by using both value and index compression. Similarly, denote øC(gi
k) be

the approximation of the sparse vector C! (gi
k) resulted from a δ-compressor at ith worker,

at the k
th iteration by consequent index compression via PR , and value compression via

piecewise polynomial fit. Denote the compressed aggregated gradient at kth iteration to be
g

*
k := 1

n

" n
i =1

øC(gi
k). By using Lemma 14, we can find bound E#g*

k #2 for both biased and
unbiased C! (g).

With the above, based on the strong growth condition of stochastic gradients [23, 77], for a lower
bounded, Lipschitz smooth, and non-convex loss function f , following [23], the distributed SGD
with an δ sparsifier converges, that is, min

k# [T]
E(#. fk #2) ' 0 as T ' / . The convergence with error-

feedback [45] is a more mathematically involved problem that requires independent investigation,
and left for future research.

For the convergence of compressed FedAvg algorithm, we refer to the recent unified analysis in [30]
(also see [60, 31]). However, convergence of bidirectional compressed FedAvg with error feedback is
an open problem and not the scope of this paper.

E Implementation details

This section highlights the implementation of different Bloom policies for index compression,
polynomial regression for value compression, and joint index and value compression on GPUs and
CPUs by using popular deep learning toolkits, TensorFlow and PyTorch (see Table 3).

Hash-Functions used in Bloom Filter implementation. We use MurmurHash (MurmurHash3)
to construct the hash table in the GPU implementation of the Bloom filter; see Python library
https://pypi.org/project/mmh3/. We determine the number of hash functions, k, and the length of
Bloom filter bit-string, m, by using Lemma 3 and Remark 2 in the Appendix.

Implementation of Bloom Filter on GPUs and CPUs. We provide an efficient GPU implementa-
tion of Bloom filters on PyTorch. During construction, many items can be inserted in parallel without
locking, since collisions do not cause inconsistency. Since the domain [d] of the hash functions is
finite, we precompute a 2D lookup table Hd,k , for each possible input of all hash functions. We store
H in the GPU memory, allowing us to insert items in the Bloom filter using only lookup operations.
H occupies around 1.5MB for ResNet-20 and 1GB for NCF; note that this optimization may not
be feasible for very large models. Querying is also implemented in the GPU. If an item i belongs

3Approximation error from index compression in distributed case, is a simple consequence of (9).

29

to the Bloom filter, then B[h1(i)] + B[h2(i)] + B[h3(i)] + á á á+ B[hk (1)] == k. The summation
can be executed in parallel with each hash function reduced to a lookup in H. Moreover, many such
queries can run concurrently. Although the basic Bloom filter is implemented on GPUs, complex
policies, like P2, require programming flexibility. For this reason, we provide CPU implementations
on PyTorch, using library pybloomfilter [4]; and on TensorFlow using the C++ extension to create
custom operators.

Implementation of polynomial regression on GPUs and CPUs. The piece-wise polynomial regres-
sion can be solved as a linear problem, once the segments are determined. Our GPU implementation
uses Least-Square fitting, which can be trivially expressed with tensor operations. We also provide
a CPU implementation using polyfit from the NumPy [3] library. We implement the nonlinear
double exponential regression on TensorFlow, using tensor operations.

Combined index and value compression. To combine Bloom filter-based with curve fitting-based
compression, first, observe that neither method is order preserving. Therefore, we need a mapping
from the original to the final position of each value. This corresponds to a 1D vector with 1~d, where
d is the size of sparse gradient. Since now the maximum element in this mapping vector is d, we
encode their each element using) log2 d* bits. For our experiments, this corresponds to 16 bits for
ResNet50 and 19 bits for NCF, which is a significant gain compared to the usual int32 format.

Complexity of the methods. For each policy of the Bloom filter, if we have r elements and we use
k hash functions, then the time and space complexity of each policy is O(rk) = O(r log2(1/ε)) ,
because the optimal k = ! log "

log 2 , see Remark 2.

We use radix sort which takes O(d log2(d)) , to sort d gradient components. In general, to perform a
Top-r selection on CPU on a d dimensional vector, the computational complexity is O(d log2 r); for
GPUs, other optimized implementations exist [65]. Therefore, to sort these r-components further, we
require O(r log2(r)) time, and as r 0 d, the total time complexity remains O(d log2 r).

For a polynomial fitting with degree n
' on each sorted segment with dp data points, the overall

complexity of finding the least-squares solution is O(dpn
' 2 + n

' 3). For our application, n' 0 dp,
hence, overall complexity is O(dpn

' 2).

We do not use segmentation for nonlinear regression. For nonlinear regression through a double
exponential model, y = ae

bx + ce
dx , involves solving a 4 1 4 linear system followed by solving a

2 1 2 linear system. By using modern solvers (that use Cholesky factorization), the complexity of
solving these linear systems are negligible. However, the linear regression in the first system is a
proxy to solving integral equations. Therefore, the entries of the coefficient matrix of the first system
are approximated via numerical integration (as they cannot be computed by analytical integration)
and each of them requires d exact operations, where d is the total number points to be fitted. Similarly,
for calculating each entry of the second linear system requires d exact operations.

F Additional experimental results

Due to limited space, we were unable to discuss many experimental details as well as many results in
Section 6 of the main paper. In this scope, we discuss them in details.

F.1 Details of the Testbed

Simulation on local cluster. For conventional data center experiments, we use 8 dedicated machines
with Ubuntu 18.04.2 LTS and Linux v.4.15.0-74, 16-Core Intel Xeon Silver 4112 @ 2.6GHz, 512
GB RAM, one NVIDIA Tesla V100 GPU card with 16 GB on-board memory and 100Gbps network.
We deploy CUDA 10.1, TensorFlow 1.14, PyTorch 1.7.1, Horovod 0.21.0, OpenMPI 4.0 and NCCL
2.4.8.

Realistic federated learning deployment. For Federated Learning experiments, we use 57 EC2
instances (g4dn.xlarge) from Amazon Web Service(AWS). The central server is located in Ohio
(USA) and 56 clients are spread across 7 different regions globally, each with 8 clients, including
Tokyo, Central Canada, Northern California, Seoul, São Paulo, Paris and Oregon. Each client is
independently connected to the server with high speed international network. Each instance is

30

equipped with Ubuntu 16.04.12 LTS, 4-Core Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,
16 GB RAM, one NVIDIA Tesla T4 GPU card with 16 GB on-board memory and 128 GB NVMe
SSD. We deploy CUDA 11.0, Intel MKL, PyTorch 1.7.1 and MPICH 3.4.1.

F.2 Implemented methods

We implement DeepReduce 4 as an extension of GRACE [84], a framework that supports many
popular sparsification techniques and interfaces with various low-level communication libraries for
distributed deep learning. Table 3 presents a summary of the methods we implement.

Table 3: Summary of implementations. DRval
idx denotes instantiation of DeepReduce with idx and val as

index and value compression method, respectively.
Method Idx Val Device Framework
DR!

BF ! Naive ! CPU TFlow
DR!

BF ! P0 , DR!
BF ! P1 ! GPU PyTorch

DR!
BF ! P0 , DR!

BF ! P1 , DR!
BF ! P2 ! CPU TFlow, PyTorch

DR!
RLE ! CPU TFlow, PyTorch

DR!
Hu!man ! CPU PyTorch

DRFit ! Poly
! ! GPU, CPU TFlow, PyTorch

DRFit ! DExp
! ! GPU TFlow

DRDeßate
! ! CPU PyTorch

DRQSGD
! ! GPU PyTorch

DRFit ! Poly
BF ! P0 , DRFit ! Poly

BF ! P1 ! ! GPU PyTorch
DRQSGD

BF ! P2 ! ! GPU PyTorch
3LC ! GPU TFlow
SketchML ! CPU PyTorch
SKCompress ! ! CPU PyTorch

Run Length Encoding (RLE). Since RLE is a lossless method designed for continuous repetitive
symbols, it is not directly applicable to non-repetitive gradient indices. We convert gradient indices
into bitmap format, which is a boolean bit string indicating which elements are selected. In this way,
RLE can be used to encode the continuous zeros and ones in the bitmap. Note that, the compression
rate is highly dependent on the distribution of the indices. That is, RLE is more beneficial if gradient
indices contain more continuous integers.

Huffman Encoding. The key idea of Huffman Coding is to use fewer bits to represent more frequent
symbols. We note that most indices are much smaller than 232, and consequently their binary format
start with continuous zero bits. Based on this observation, we can use Huffman Coding to compress
the binary format of each index to remove the redundancy. The codec is constructed from all possible
indices of the target model. (i.e. If the largets gradient size is d, then we use 0 ~ d ! 1 for codec
construction). The encoding phase contains 2 steps: unpack each 32-bit integer gradient key into
Byte format and then encode each index with the pre-defined codec. The decoding phase is just a
reversed process.

F.3 Additional results

Bloom filter-based index compression: Effect of false positive rate (FPR). We train ResNet-20
on CIFAR-10 on 8 nodes for 328 epochs and measure the top-1 accuracy and transferred data volume.
Our baseline transmits the original uncompressed gradients. To generate sparse gradients, we employ
the Top-r [6] and Rand-r [69] sparsifiers; each achieves different accuracy [84]. We vary FPR
and measure its effect; smaller FPR corresponds to larger bloom filter. The results for our three
index compression policies are shown in Figure 15. Recall (Section 4) that policy BF-P0 transmits
extra data for each false positive index. The advantage, as shown in Figure 15a is that accuracy is
only marginally affected by FPR, irrespective of the gradient sparsifier (i.e., Top-r or Rand-r). The
disadvantage is that the amount of transferred data increases with higher FPR; if it is high enough

4Available at: https://github.com/hangxu0304/DeepReduce

31

https://github.com/hangxu0304/DeepReduce

(a) Policy P0: DR!
BF ! P0 (b) Policy P1: DR!

BF ! P1 (c) Policy P2: DR!
BF ! P2

Figure 15: Effect of FPR on top-1 accuracy for the three Bloom filter policies, for ResNet-20 on CIFAR-10.
The sparse input gradients were generated by Top-r and Random-r sparsification methods. Data volume is
relative to the no-compression baseline.

(e.g., more than 0.004 in our figure), then BF-P0 transfers more data than the sparse input gradient.
Policy BF-P1, on the other hand, resolves bloom filter conflicts randomly; as expected, Figure 15b
confirms that the amount of transferred data decreases when FPR increases. The trade-off is that
accuracy also decreases because more erroneous gradient elements are received. Fortunately, our
next policy, BF-P2, improves this issue, as shown in Figure 15c; by resolving conflicts in an informed
way.

Figure 16: Top-1 test accuracy
of ResNet-50 on ImageNet. We
compare DeepReduceidx and
DeepReduceval against Top-r ,
SketchML64 , 3LC and baseline.

a: ResNet-20 - CIFAR-10 b: DenseNet40-K12 - CIFAR-10

Figure 17: (a) Data volume vs. accuracy of ResNet-20 on CIFAR-10.
(b) Data volume vs. accuracy of DensNet40 on CIFAR-10. We compare
DR!

BF (with P0, P1, P2, Naïve policy) against Top-r and baseline. Ratios
of Top-r are 1% for ResNet20, and 0.5% for DenseNet40. FPR is set to
0.001.

Bloom filter-based index compression: Trade-offs for different polices. We show the trade-off
between accuracy and data volume for different policies of bloom filter in Fig17. BF-P0 can always
maintain the accuracy while sending marginally more data than BF-P1 and BF-P2. BF-P2 has
consistently better accuracy than BF-P0 due to the sophisticated conflict-set algorithm.

DeepReduce on top of the Top-r sparsifier v.s. stand-alonecompressors. To contrast with the
common practice, we compare DeepReduce against state-of-the-art stand-alonegradient compressors
[84] that are applied directly on the original gradient. We consider two instantiations of DeepReduce:
(i) DR!

BF ! P2 that uses Bloom filter index compression with policy P2 and FPR=0.001; and (ii)
DRFit ! Poly

! that uses value compression with polynomial fit. Both operate on the sparse tensor
generated by Top-r, with r = 1% . We compare against two stand-alone gradient compressors: 3LC
[50] with spasification multiplier set to 1, and SketchML [39]; we use 26 quantile buckets, since
we opt for best accuracy. For the latter the number of quantile buckets affects accuracy and data
volume; for instance, with 21 buckets SketchML achieves only 56.05% Top-1 accuracy. We opt
for best accuracy; therefore we use 26 quantile buckets. Memory compensation is enabled for all
methods. For this experiment, we employ a much larger benchmark: ResNet-50 on ImageNet. The
results are shown in Figure 16, where data volume is relative to the no-compression baseline. Both
DeepReduce instantiations provide a good balance between data volume and accuracy, whereas each
of the stand-alone methods is biased towards one of the two metrics.

32

Table 4: Time breakdown and data volume of DeepReduce variants, Top-r , and Baseline (FedAvg [55]) in a
simulated FL setting. (CLI, SER, S2C and C2S stand for Client, Server, Server-to-Client, and Client-to-Server,
respectively.)

Avg. Encoding/Decoding Time (s) Avg. Comm. Time (s) Avg. Relative Data Volume Test Accuracy
CLIdecode CLIencode SERdecode SERencode S2C C2S S2C C2S

*Baseline 0 0 0 0 1.3980 1.3609 1.0 1.0 0.1856
*Top-r(0.1) 0.0044 0.0501 0.0032 0.0258 0.3167 0.3904 0.2033 0.2033 0.1840
* DR!

BF ! P0 0.0179 0.0707 0.0183 0.0629 0.1936 0.1957 0.1425 0.1426 0.1841
* DRFit ! Poly

! 0.0288 0.1586 0.0183 0.1170 0.1742 0.1429 0.1039 0.1039 0.1838
* DRQSGD

BF ! P0 0.0190 0.0713 0.0198 0.0706 0.0852 0.0859 0.0621 0.0621 0.1836

This is evident in Figure 16 as SketchML compresses less aggressively than the other compressors,
thus it achieves the highest accuracy. In contrast, 3LC sends the least data and the accuracy suffers
the most. This is because 3LC is a hybrid method [84] that quantizes the values into (! 1, 0, 1) and
selects the non-zero values for encoding. We use the default setting of 3LC that gives the least
sparsification (but fails to recover the baseline accuracy). DeepReducecan be applied on top of any
sparsifier and the sparsification ratio is flexible to choose. Figure 16 shows that DeepReduceon
Top-r not only reduces the data volume, but also improves accuracy by 0.7%.

Simulated FL experiments in a bandwidth-limited local environment. Apart from the realistic
multi-region deployment, we also test DeepReduce with clients and the server in the same region
connected with 100 Mbps network to simulate the low bandwidth scenario. The results are shown is
Table 4. The total encoding/decoding overhead of DeepReduce is about 1.5-3.41 higher than Top-r.
In contrast, the communication time is decreased by 1.8-4.01 for different DeepReduce variants,
compared with Top-r. However, the extra overhead of DeepReduce is relatively low compared to
their communication time reduction. Even with compression overhead taken into account, DRQSGD

BF ! P0
is 2.21 faster than Top-r and 7.81 faster than the Baseline. Unlike the multi-region case which is
suffering from the high latency network, the communication time of DeepReduce here is proportional
to the transmitted data volume.

FL training of MobileNet with DeepReduce. We report the FL training of MobileNet [36] on
CIFAR-10 [48] dataset by using 10 clients. The CIFAR-10 dataset is partitioned into totally 10
clients by Latent Dirichlet Allocation (LDA). The experiment follows the same training procedure
as the standard FedAVG algorithm. We use 64 local batch size, 0.001 learning rate, 1 local epoch
and ADAM [46] optimizer for the clients. We train MobileNet for 800 rounds and achieve 88.17%
Top-1 accuracy for the baseline, which is consistent with the FedML benchmark [33]. We use Top-r
(r=10%) as the sparsifier to generate sparse tensors for DeepReduce, and compression is applied
bidirectionally with error feedback. Figure18 shows that Top-r slightly affects the convergence rate
compared with the baseline. Nonetheless, applying DeepReduce on Top-r does not compromise the
convergence behavior and the final accuracy while largely reducing the data volume (see Table 5).

Figure 18: Convergence timeline of training Mo-
bileNet on CIFAR-10 datasets.

Method Relative Data Volume Top1 Test Acc.
Baseline 1.0 0.8817
Top-r 0.2069 0.8708
DRFit ! Poly

! 0.1087 0.8700
DR!

BF ! P0 0.1475 0.8758
DRQSGD

BF ! P0 0.0713 0.8740

Table 5: Relative data volume and Top-1 test ac-
curacy of MobileNet on CIFAR-10 in FL setup.

Figure 19: Time breakdown in one iteration training of NCF on ml-20m. We show the speedup of training by
DR on 4 nodes with different network bandwidth: 100Mbps vs. 1Gbps vs. 10Gbps, and also with FP16 mixed
precision training.

33

Figure 20: Convergence timeline of training an
RNN to do next-word-prediction on Stack Overflow
datasets.

Figure 21: Communication time (with error bars)
for realistic Federated Learning deployments.

Method Relative Data Volume Best Hit Rate
Baseline 1.0 0.9497
SKCompress 0.2175 0.9513
DRQSGD

BF ! P0 0.2063 0.9496

Table 6: We train NCF, an inherently sparse model, on ML-20m, with 106 local batch size. We test DRQSGD
BF ! P0

, which uses BF-P0 (FPR=0.6) for indices, but combines it with QSGD [7], an existing method for value
compression. This demonstrates that DeepReduce is compatible with various existing compressors. We compare
against SKCompress [40], an improved version of SketchML, optimized for sparse tensors. We configure QSGD
and SKCompress for 7-bits quantization and set the QSGD bucket size to 512. For SKCompress, we omit the
grouped MinMaxSketch and separation of positive/negative gradients, as they have only minor effects. All
methods achieve virtually the same best hit rate (i.e., the quality metric for NCF), and both DRQSGD

BF ! P0 and
SKCompress reduce the data volume by 5(compared with Baseline. However, in practice DRQSGD

BF ! P0 can be
more easily implemented on GPUs. Therefore, in our experiments (see Figure 8b) it is 380(faster in terms of
compression and decompression time.

Algorithm 2 FedAvg with DeepReduce
Input: Number of clients K indexed by k, local minibatch size b, number of local epochs E, learning

rate η, DeepReduce compression:=DR, DeepReduce decompression:=DR! 1

Output: Trained model x
On server side:
Initialize x0
for roundt = 1 , 2, . . . , do

St 2 (random set of m clients out of K clients)
gt 2 DR(xt ! x0)
for each clientk " St in parallel do

g
k
t +1 2 CLIENTUPDATE(k, gt)

gt +1 2 1
m

" m
k=1 DR! 1(gk

t +1)
xt +1 2 xt ! ηgt +1

On client k side:
Pull x0 from server
while training do

CLIENTUPDATE(k, gt)

function CLIENTUPDATE(k, gt)
Pull gt from server
xt 2 x0 + DR! 1(gt)
gt +1 2 0
for each local epochi from 1 toE do

for batchb " local training datado
gt +1 2 gt +1 + . *(xt ; b)

Push DR(gt +1) to server

34

	Introduction
	Background
	System Architecture
	Bloom Filter for Indices
	Curve Fitting for Values
	Experimental Evaluation
	Simulated deployment on a local testbed
	Realistic Federated Learning deployment in the cloud
	Practical applicability of DeepReduce

	Related Work
	Conclusions
	Background
	Lossless encoding strategies
	Further details on classic Bloom filter
	Inequalities used in this paper
	Preliminary results

	Bloom filter based index compression
	Naïve compression
	Policy P0
	Deterministic policy
	Random Policy: Policy P1
	Algorithmic details of conflict set policy: Policy P2

	Approximation error due to polynomial fit
	Compression error from value fitting

	Compression error from combined index and value fitting
	Convergence of distributed compressed SGD without error feedback

	Implementation details
	Additional experimental results
	Details of the Testbed
	Implemented methods
	Additional results

