
Appendix for “Introspective Distillation for Robust
Question Answering”

A Causal QA Model
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Figure A1: Causal graph for QA.

In this section, we introduce the causal QA models following
Niu et al. [20]. Given a visual or natural language context
C=c and a question Q=q as input, the QA model generates
an answer A=a.

Figure A1 shows the causal graph for QA. Causal graph reflects
the causal relations between variables. Here, X denotes the input variables {Q,C}, Y denotes the
output variable A. We introduce an intermediate variable, mediator M , to denote the multi-source
knowledge extracted from both Q and C. Note that different from Niu et al. [20] that separately
represent Q and C in the causal graph, we group them as a whole X for simplicity and generalization.
There are two paths in the causal graphs:

X→M→ Y . This path represents the comprehensive reasoning process. We expect QA models to
answer questions via comprehensive reasoning. Intuitively, the QA models first extract the knowledge
from all the inputs, and then make inferences based on the knowledge.

X→Y . This path represents the single-source alignment. For VQA, this path is Q→A, i.e., the
question bias without watching the image. For extractive QA, this path is C→A, i.e., the position
bias without reading the question. Since only one source of inputs is utilized, this path reflects the
shortcut bias.

Given the causal relations, we can estimate the total effect of (q, c) on a:

(Total Effect) TE = Yx,m − Yx∗,m∗ (1)

where x∗ and m∗ denote the counterfactual values of X and M , respectively. Since the total effect
includes the effect of the single-source alignment, the ID inductive bias is introduced. Therefore, we
can use total effect as the predictions of ID teachers. In order to exclude the effect of the single-source
alignment, we can use the indirect effects on the path X→M→ Y for debiased inference. There are
two types of indirect effects:

(Natural Indirect Effect) NIE = Yx∗,m − Yx∗,m∗ (2)

(Total Indirect Effect) TIE = Yx,m − Yx,m∗ (3)

According to Niu et al. [20], RUBi and LM use NIE for debiased inference, while CF-VQA uses TIE
for debiased inference. We use indirect effects as the predictions of OOD teachers.

B Datasets

We use VQA v2, VQA-CP v2, SQuAD as the benchmark datasets. All the used datasets are open-
sourced for research use. To the best of our knowledge, the used dataset does not contain personally
identifiable information or offensive content.
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VQA. We use VQA v2 and VQA-CP v2 benchmark datasets to evaluate the in-distribution and
out-of-distribution performances for VQA. VQA v2 contains ∼83K images, ∼444K questions, and
∼4.4M answers in the training set, and ∼41K images, ∼214K questions, and ∼2.1M answers in the
validation set. VQA-CP v2 contains ∼121K images, ∼438K questions, and ∼4.4M answers in the
training set, and ∼98K images, ∼220K questions and ∼2.2M answers in the test set.

Extractive QA. We follow Ko et al. [16] to conduct experiments on the SQuAD [22] benchmark
datasets to evaluate the robustness of extractive QA models. Ko et al. [16] proposed a position-bias
setting where a subset of the original train set is used as the training split. All the answers in this
training split locate in the k-th sentences. Take k=1 as an example, all the answers in the train split
SQuADk=1

train are in the first sentences. SQuADk=1
train consists of 28,263 samples out of 87,599 samples

in the original train set SQuADtrain. The dev set SQuADdev for the evaluation consists of 10,570
samples. For k=1, SQuADdev is further divided into two splits, SQuADk=1

dev (3,637 out of 10,570)
for in-distribution evaluation, and SQuADk 6=1

dev for out-of-distribution evaluation.

C Training Details

C.1 Implementation of LMH

For the teacher model, we implement LMH [10] based on its official source codes [1] (GPL-3.0
License). We train the teacher model following the source codes. During the training stage, LMH
ensembles a VQA main branch and a QA branch. The VQA main branch is UpDn [6]. Instead of
establishing a QA model, LMH uses the statistics of answer distribution per question type as the
shortcut QA branch. Given a question, the QA branch looks up the corresponding answer distribution
from the statistics according to its question type. During the test stage, only the VQA main branch is
kept for debiased inference.

For the student model, we use the same VQA main branch, the baseline model UpDn, as implementa-
tion. The network architecture for inference is the same as LMH. Therefore, we do not include extra
parameters and keep the inference speed unchanged. We train the student model for 15 epochs with a
learning rate of 0.002 and the Adamax optimizer using PyTorch [21]. The training is conducted on a
single RTX 2080 Ti GPU with 11GB memory. The batch size is set as 512.

C.2 Implementation of CSS

We implement CSS [9] based on its official source codes [2] (no specific license), and use the released
model as our teacher model on VQA-CP v2. Since the pretrained model on VQA v2 is not provided,
we train the model following the source code. CSS is a variant of LMH by generating counterfactual
{v, q, a} triplet, and shares the same architecture as LMH. The inference stage is the same as LMH.
Also, the training of the student model is the same as LMH. The training is conducted on a single
RTX 2080 Ti GPU with 11GB memory. The batch size is set as 512.

C.3 Implementation of RUBi

For the teacher model, we implement RUBi [8] based on its official source codes [3] (BSD-3-Clause
License). We train the teacher model following the source codes. During the training stage, RUBi
ensembles a VQA main branch and a QA branch. The VQA main branch is S-MRL [8], a simplified
version of MUREL [7]. The QA branch is Skip-thought [15].

For the student model, we use the same VQA main branch, S-MRL, as the architecture. The training
is conducted on a single RTX 2080 Ti GPU with 11GB memory. Following RUBi [8], all the
experiments are conducted with the Adam optimizer for 22 epochs. The learning rate linearly
increases from 1.5×10−4 to 6×10−4 for the first 7 epochs, and decays after 14 epochs by multiplying
0.25 every two epochs. The batch size is set as 256.

C.4 Implementation of CF-VQA

For the teacher model, we implement CF-VQA [20] based on its official source codes [4] (Apache-
2.0 License). We train the teacher model following the source codes. Similar to RUBi, CF-VQA
ensembles a VQA main branch, a QA branch, and a VA branch. The architectures of VQA branch
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Table A2: Effects of feature representations on VQA. “Retraining” denotes the retrained modules
of the student model. “Feat.” denotes that the module for feature extraction like fusion and attention
mechanisms are retrained. “CLF” denotes the classifier is retrained.

Retraining? LMH [10] CF-VQA [20] CSS [9]
Notes Feat. CLF OOD ID HM OOD ID HM OOD ID HM
ID-Teacher 38.74 63.46 48.11 37.10 63.22 46.76 38.20 63.30 47.65
OOD-Teacher 52.01 56.35 54.09 55.05 60.94 57.85 58.95 56.98 57.95

X 51.91 60.87 56.04 52.38 62.14 56.84 59.77 61.54 60.64
ICD X X 51.31 62.05 56.17 55.17 63.40 58.99 60.17 62.57 61.35

and QA branch are the same as RUBi. The training is conducted on a single RTX 2080 Ti GPU with
11GB memory. Other training details are the same as the implementation of RUBi.

C.5 Implementation of LM

For the teacher model, we follow Ko et al. [16] to implement LM [10] based on the official source
codes [5]. Specifically, the main branch uses XLNet [29] or BERT [11] as the baseline models. The
shortcut branch that captures the position bias uses the sentence-level answer-prior on the training set.
Take SQuADk=1

train . For each training sample, the sentence-level answer prior of i-th word position is
defined as the frequency in the first sentence. A detailed explanation and example illustration can be
found in this literature [16]. The training details of the teacher model exactly follow Ko et al. [16].

For the student model, we use the same main branch, XLNet or BERT, as the architecture. XLNet
and BERT are trained for 5 epochs with batch sizes 10 and 12, respectively. The learning rate is
3×10−5 with Adam optimizer. The training is conducted on two single RTX 2080 Ti GPUs.

D Additional Experimental Results

D.1 Compared with State-of-the-art Methods Table A1: Comparison with state-of-the-
art debiasing VQA methods. “OOD” and
“ID” denote the overall accuracy on VQA-CP
v2 test set and VQA v2 val set, respectively.
∗ indicates our reimplemented results based
on the open-sourced codes.

Dataset OOD ID HM
AttAlign [24] 39.37 63.24 48.53
AdvReg. [23] 41.17 62.75 49.72
Unshuffling [25] 42.39 61.08 50.05
RUBi [8] 47.11 61.16 53.22
HINT [24] 46.73 63.38 53.80
LMH [10] 52.01 56.35 54.09
DLR [14] 48.87 57.96 55.03
LM [10] 48.78 63.26 55.08
SCR [28] 49.45 62.20 55.10
VGQE [17] 50.11 63.18 55.89
RandomImg [26] 55.37 57.24 56.29
CF-VQA [10] 55.05 60.94 57.85
CSS∗ [9] 58.95 56.98 57.95
CSS+CL [18] 59.18 57.29 58.22
SSL [30] 57.59 63.73 60.50
MUTANT [12] 61.72 62.56 62.14
CSS + IntroD (Ours) 60.17 62.57 61.35

Table A1 shows the comparison between our IntroD
and state-of-the-art methods. According to the trade-
off metric HM, our IntroD with CSS as the teacher
outperforms most of the state-of-the-art methods ex-
cept for MUTANT [12]. The gap comes from the
OOD performance. Note that there is a large gap
between CSS and MUTANT’s performances, and our
IntroD successfully closed the gap. In the future, we
will explore how to establish a strong causal teacher
model to further promote IntroD.

D.2 Evaluations on Feature Quality

Our IntroD not only achieves more accurate classi-
fiers, but also better feature representations. Take
VQA as an example. We designed an ablation study
to evaluate the effectiveness of IntroD on improving
the quality of feature representations. Recall that the
student shares the same baseline architecture (e.g.,
UpDn, S-MRL) as the teacher model. In IntroD, the
student model is totally retrained. In the ablation
study, we fixed the feature extraction module and
only retrained the classifier. In this case, the student
and the teacher model outputted the same features. As shown in Table A2, we can obtain a better
classifier on top of LMH and CSS. Without retraining the feature extraction module, the performance
drops compared with IntroD. In particular, the accuracy drops by 2% for CF-VQA. Especially, the ID
performance drops by over 1% for all the three teachers. These results indicate that IntroD achieves
better feature representations by retraining the feature extraction module.
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Table A3: Error bars of IntroD on VQA.
LMH [10] CF-VQA [20] CSS [9]

OOD ID OOD ID OOD ID
IntroD 51.31±0.16 62.05±0.08 55.17±0.11 63.40±0.05 60.17±0.15 62.57±0.08

Table A4: Results on Natural Language Inference task.
ID OOD

Method MNLI-m (dev) MNLI-mm (dev) HANS MNLI-m (hard) MNLI-mm (hard)
BERThans 84.7 84.7 62.0 - -
LMhans 83.8 84.1 63.1 - -

+IntroD 84.9 84.7 63.2 - -
BERThypo 84.7 84.7 - 75.8 77.2
LMhypo 80.2 81.1 - 78.8 80.3

+IntroD 83.0 83.8 - 78.8 80.5

D.3 Error Bars

We ran the experiments 5 times with different random seeds. Note that we focus on how to conduct
the distillation rather than establish a better teacher model in this paper. For fair evaluation, we use
the same teacher model for distillation. The error bars of IntroD on VQA are shown in Table A3. The
standard deviation for LMH, CF-VQA and CSS are less than 0.2 on OOD evaluation and less than
0.1 on ID evaluation. These results indicate that the effectiveness of our IntroD is stable.

D.4 Results on Natural Language Inference

In addition to language prior in VQA and position bias in extractive QA, our proposed IntroD
is also useful for other annotation biases, e.g., lexical-overlap bias in natural language inference
(NLI), another fundamental natural language understanding task. NLI can be formulated as a multi-
classification task like VQA and extractive QA. Given a pair of premise and hypothesis sentences,
NLI model predicts its inference labels (i.e., entailment, neutral, and contradiction). Here, we report
the results on the MNLI [27] dataset, consisting of two ID datasets MNLI-m and MNLI-mm and
two OOD datasets HANS [19], where the word overlapping between premise and hypothesis is
strongly correlated with the entailment label, and MNLI-hard [13], where a hypothesis-only model
outperforms much better than the random-guess baseline. We use LM as the causal teacher model.

Table A4 shows that LM achieves higher OOD performance on HANS and MNLI-hard with the
sacrifice of ID performance on MNLI-m and MNLI-mm. As a comparison, our IntroD can achieve
both high OOD performance with less or even no sacrifice ID performance. These results demonstrate
that our IntroD is also useful for other annotation biases including lexical-overlap bias.

E Social Impacts

Our proposed Introspective Distillation aims to achieve a good trade-off between in-distribution
and out-of-distribution performances for the question answering tasks. We believe this method has
a positive impact on the fairness of AI systems. While previous VQA and extractive QA models
over-rely on or over-correct the inductive bias, our method can lead to a more robust and fair QA
system. This robustness to the training bias would help with a fair human-computer interactive system.
Besides, this technology may help to overcome other biases beyond QA, like gender bias, education
bias, and racial discrimination. A potential negative impact comes from the training process. Since
our implementation is based on knowledge distillation, we need to first train a teacher model and
then train a student model. Compared to the one-stage training, the two-stage distillation strategy
may lead to more computing resources, which is less environmentally friendly.
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