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A APPENDIX

A.1 PRIVACY ANALYSIS: PROOF FOR THEOREM [I]AND[2]

In the proofs of Theorem [I] and 2] we follow the line of reasoning in [Abadi et al. (2016), which
analyzes the privacy of DPSGD. We first state the following lemma from|Abadi et al.[(2016).

Lemma 2. (Abadi et al.| 2016, Theorem 1) There exists constants c¢1 and co such that given the

sampling probability p = L and the number of steps T, for any ¢ < ¢1p*T, DPSGD is (e, 0)-

p/T log(1/9)

differentially private for any § > 0 if we choose o > c3

To prove Theorem|[I] we also need the following definitions and lemmas.

Definition 3 (¢5-sensitivity). Let f : U — R? be some arbitrary function, the ly-sensitivity of f is
defined as

Aof = 1£(D) = f(D)]l2 (15)

adjacent D D’eud

Definition 4 (Rényi Divergence). (Mironov| 2017, Definition 3) Let P, QQ be two probability distri-
bution over the same probability space, and let p, q be the respective probability density function.
The Rényi Divergence with finite order « 7£ 1is:

DuPIQ) = i [ 4 <x>(§§g)adx (16)

Definition 5 ((«, ¢)-Rényi Differential Privacy). (Mironov, 2017, Definition 4) A randomized
mechanism f : D — R is said to have («, €)-Rényi Differential Privacy if for all adjacent D, D' € D

it holds that:
Do (f(D)||f(D")) <e. (17)

Lemma 3. (Mironov, 2017, Corollary 3) The Gaussian mechanism is (o, a(2(As f)?/02))-Renyi
Differentially Private.

Lemma 4. (Mironov| 2017, Proposition 3) If f is («, €)-RDP, then it is (e + lo(gl(%, 0)-DP for all
6> 0.

We begin by proving the first part of Theorem 1, where ¢ # m.

Proof for Theorem|[I}: ¢ ;é m. Note that aggregation step in line 8 of Algorithm[I|can be rewritten as

ot = ot + i Z gt+1 ( 7) +N(O’U2Idxd) (18)

T+1
rd g 2
2
1 g g 2
Jr § gt+ ( ||gt+1||2> +N<0, <’Y> 0% Idxd) (19)
1 )cs,

2
(Z gt+1 min( ||gtzl|2) + N (0, (qj> 72Id><d>> . (20)
kes

From here, we can directly apply Lemma [2| with o set to be q,y—“. Hence, we conclude that when

2
q # m, there exists constants ¢; and ¢, such that given the number of steps 7', for any € < ¢y #T,

74/ T'log(1/96) 0

me

MY T is (e, §)-differentially private for any > 0 if we choose o > ¢,

This proof can extend to the case where ¢ = m. In the remainder of this section, we provide a proof
that gives a more specific bound on the variance o2 in the case where ¢ = m

Proof for Theorem[I} ¢ = m. Define H" : T[]/, D; x W — W as

HU({D;}, {h:()}, @) = @' + — Zh (D, @'). 1)
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As aresult, we have M*({D;},{h;(")},wt,0) = H'({D;}, {hi(-)}, w') + 3.
By Lemma[3] M! is (o, 2a(A2 H*)? /do?)-Renyi Differentially Private. Note that

Ao HN)2 = H'({Dy,---.D;,--- ,D,)}) — H({Dy,---,D.,--- ,D,, 2
( 2 ) mjaX adjacentIrDl??(D; €D, H <{ 1, I ) }) ({ 1, y js s })H
(22)
1 2
= t timy it
B mjax adjacemr?)aXD’ €D, h (D ) - Ehj(Dj’ w ) 23)
1 ~t ~ 2
= — h(D. ht / t 24
m?2 mjax adjacentH];?,XD; €D, || J( 3w ) ( )H (24)
1
= oz max(Bahg)” 25)

Hence, by sequential composition of Rényi Differential Privacy (Mironovl 2017, Proposition 1),
MY T s (a, 327 2a max;(Agh’)?/m?c?)-RDP.

By Lemma we know that M7 is (27| 20 max; (Aght)?/m20? + los(1/9) '5)-pp.

Plugging in o = 21°8(1/9) 5 — 47+/Tlog(1/3)

. s = , we have
T T
log(1/4) 1 1/6
ZQamaX(A2h§)2/m202 + =" og( / < 22047 /m2a log(1/9) (26)
Py i a—1
a m2(4'y\/Tlog(1/5))2 4log(1/6) _ 1
<5+5 (28)
—c 29)
Hence, MYT is (¢, §)-IDP if we choose o = —1VT 0el1/%) ”Ezg(l/é). O

By Theorem|[T|and Billboard Lemma, it directly follows that Algorithm[T]is (e, §)—JDP.

Proof for Theorem Theorem shows that Algorithm consists of a (¢, §)-DP process to produce
global model. After that each task learner trains local model with the DP global model and its private
data. By Lemmall] it directly follows that Algorithm I]is (e, §)-JDP. O

A.2 CONVERGENCE ANALYSIS(NONCONVEX):

We first present the formal statement of Theorem 3.
Theorem 7 (Convergence under nonconvex loss). Let fi, be (L + \)-smooth. Assume = is sufficiently
large such that v > maxy¢ ||Vt fr(wh; wt )||2 Further let ;! = miny, g fr(w;w) and p = L. If

we use a fixed learning rate n, =1 = Algorzthmlsatlsﬁes

_ (L+A+p%) S (fr(wds @) = £7)

Z SV filwls @)? < =

t=0 k=1
O(L+XA+ %)Yy B A2
n ( ”2) =0 O(Ld)\+d)\2+> o2,
T p?
(30)
where
B, = max fr(wh;wh). 31
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Let o chosen as we set in Theorem|§| Take T = O (#) the right hand side is bounded by

0% 2Tl m (L A+ ) Ay 7 (Falwds @) — )

S IVlwhi @) < =

t=0 k=1
L+A+% iy L+X+ 2 log(1/6
_|_(9<1"> Ad7223t+1+(9 P Og(Q/)'
m m

€
t=0

(32)

Proof for Theorem[]] Let w; = argmin,, fi(w;w*). Let I}, be the random variable indicating
whether task k£ is selected in communication round ¢. Note that the probability task learner £ is

( - 1)
-1
selected in any arbitrary communication round p; = AN DA L Thus E[I}] = pr = L. By

(2) )

Elfi(wlts @) - fk<wz;m>1<E[<ka<wz;wt>7w;“—wz> Lt — ,i||2] 33)

L-smoothness of f;, we have

[<ka<wk, IV (s @) + & IV ks >|2}
(34)
L+

= (5520t - ) 1V Al @ 65)

Hence, we have

Elfr(wi w0 = fe(wi; w")] < Elfe(wi™ 0" = fe(wpts @) + (Lnfpi - mm) IV fr(wh; @) |12

2
B
(36)
It suffices to bound B:
B=E|2fwlt — @12 — 2wt —W] (37)
P 217k
A .
= SEllla" — @ [|2wp " — @ — @] (38)
A PO -
< 5\/E[Ilwt — WHI2]E[|2w) T — @t — @t |2] (39)

A
= S VETE =@ PIyE(l @+ — &) + 2} - 5+)|) 0)
A
SVETE =@ TP El@+ — @)+ 4wt — @12 + 4E[|7+ - @ |wf - @]

(41)

IN

IN

B — TP [Ell@+ — @)+ 4 gt = @ +ayEl@ - @)t - @
N e’ N ————

C1 C2
(42)
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where the first and third inequality follows from Cauchy-Schwartz Inequality: E[XY] <

E[XZ2]E[Y2]. We can then upper bound C; and Cs.

Z gt+1 mln( t+1 ) +Bt
12 15T

Z e+ tﬂmm(l,m) + VETFT
2 PR

2
C,=E

IN
&=

|
=

m
Itgitt min( T t+1H ) +Vdo
k=1

t+1 t+1 .
I o)™ min (1 W )H

r 2
I,’;"'lntka(wZ) min <1, fy>

+ Vdo

IA

] 3
NE
&=

~
Il
—

Jr\/(ior

nellV e (wp)ll2

~
Il

IA

] 3
NE
&=

1

>

2
+\/go

IN

S
V fi(wh) min (1,)
eV fi(w) NI

2
. We have:

Denote h(t) = \/71” Z;}n:l ntka(wtk) min (17 77t||vfl:/(wltc)|2>

C2 S 2 >\H t+1 ~t+1||2

| /\

*fk( t+1, ~t+1)

_2p
)\ t+1

Plugging the bounds for C; and Cs into B yields:

B < %(h(t) Vido) (h(t) + \/Ea+2,/i3t+1> .

Denote the right hand side as 3(¢), we have

L+ A

Bl 5 a) - fulwli @) < 500+ (£

Let §; = E[fy(wl; w") — fi(wy; w*)], we have

L+X, .
duir < b4 500) + (520 ) IV Fuluks 70
In the nonconvex case, we have
T-1
L+ A ~
Z(mpk—2n3pz) 19 fu(wks @) = B(0) < i(wfs@®) = fi
t=0

16

vk — mpk) IV il @) 2.

(43)

(44)

(45)

(46)

(47)

(48)

(49)
(50)

61y

(52)

(53)

(54)

(55)
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Summing over k on the left handed side, when +y is large enough so that no clipping happens we have

m -

L+ A ~
Z Z <77th - ;nfpi) IV fio(wi; @)|I* = B(2) (56)
=1 t=0
T—

(e = 520 ) S I s i) &7

t=

o

1 m
q

L + A 2 q? 9
(s ) IVt
) 2 ) 2d
mh2(t) + | 2vVdo + 2 3 Bevt | mh(t) +m | do® + 204 5= By
¢ L+X,¢ A Am 2d
2 (ntm - 72 H?W — 5 )\\/ \/70' + *Bt—&-l T]th — 7 dO' =+ 20 731;4_1

(58)

(59)
<D frelwps @) = £, (60)
k=1
where Gy = />, IV fi.(wk; w?)||2. Picking 1, = T (mgys vields
T-1 qQ G2 B )\\/’I’% (\/&0’ + \/ %BtJrl) qu m d Lo 27dB
= 2q?L — (m? —g*)A) ! gL — (m —q)A 2 VT
(61)

(62)
k_

This is equivalent to

T-1 2

> Gt -2)2/m <\/&a + ,/iBtH) %Gt - (L + A - T;/\) Am (da2 + 204/ Q)iiBtH)
t=0

(63)

2 m
<L+A— A) Sr(wp; @°) — fi. (64)
C] k=1

Hence, we have

T-1 5 m 2
Z <Gt — )\m <\/&g’ + A.B15+1> q ) (65)
t=0

m? \ & o ~o = N [2d m3ABy41

2
k=1 t=0 q
(66)
This implies
T—1
> G (67)
t=0
2 m T-1 2,3 3
22 2d AB
<2 (2 <L+)\ - ”qéx) 37 fe(wd @) — fi 4 Y (LAm +mA? + q;” ) <d02 + 2"‘/ABt+1> +4mq2t+1> .
k=1 t=0
(63)
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Hence, we conclude that
T—1 m

= Z D IV fulwh; @t (69)

t()kl

< T +
(70)
‘ B 2
(L4 A= ZA) S (e @) — 1) 0 22 ) S (Vo + /2B
< +
T T
(71)
* Am> T-1
(L+>\ )Zk L (Fie(wis @°) = f7) O( pe )mtho Biy 5 dN*m? 9
< + +(9(Ld)\+d)\ + )ma.
T T q>?
(72)
Taking o = 21V F‘;l:g(l/[s ndT =0 (/\dv ),we have
1 — m
— Z > IV frwh; @) (73)
mT = o
A(L+A =0 S (e @) — f7) O (L+A+ZA) S Bia
- ( q ) k=1 k k N ( q ) t=0 +1O<L+)\+)\>10g(1/6)
mT T m q 2
(74)

O

A.3 CONVERGENCE ANALYSIS (CONVEX):

We first present the formal statement of Theorem 5.

Theorem 8. Let fi, be (L + \)-smooth and (p + N)-strongly convex. Assume 7 is sufficiently
large such that oy > maxy,; ||V fr(wh; @) 2. Further let wj; = argmin,, fi(w;@*), where

w* = L 3" wiand p = L. If we use a fixed learning rate n, =1 =

¢ such that 0 < np(c — 2)(p + A) < 1, Algorithml[I satisfies:

A mA (do? +2vdo /3B + 1 B)
np(c = 2)(n+A)

——=—— for some constant
o + >\p

Ar <1 —nplc—2)(u+\)"

(75)
m (do® + 2Vdo /3B + 1 B)
np(c —2)(p+A) ’
where Ay = Y1t fr(wh; @) — fr(w); w*) and B = max, max;, fi(w}; w').
Let o be chosen as in Theorem|2| then there exists T = O W such that
(e
log(1/4) mB log(1/4)
A 1-— -2 Ny — —=—=>
r < (1=l = 2) e+ ) ( 0 e 1O np(c—2)(p+ A) e (76)

+0 (o)

Proof for T heorem@ Let wj; = argmin,, fr(w;w*). Let I! be the random variable indicating
whether task k is selected in communlcatlon round ¢. Thus E[I t] = pr. By L 4+ A-smoothness and

18

2 m ~ % 2 AZm? T-1 2 2d 2Bt
4(L+>\—%)\) >y (fr(wi; @) = £7) O(L/\m+)‘ e ) t=0 (da +20\/ BBy + 25 )
T
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1 + A-strong convexity of fx, we have

E[fi(wy™s @

Hence, we have

B

I /\

) = Sulus @) < B (0 fluki @)l - uf + St - o] o
— B |(Vfuluks @) 0I{V ok @ >>+2||m1,szk<wz;m>||2]
(78)
L+ A ~
= (55 ot = ) IV etk @) 19)
L+ A ~ ~
< (Bt - ) 2+ N (0l @) - Fluis ) 50)
L+ X o . o
< (B2 et ) 20+ N ks @) Flui )
(1)
I (w0 — fu(wgs @] <Elfu(wf 0) = fulwf™it)
B (82)
(L N~ 2m) (i -+ N s @) 7).
It suffices to bound B:
A R W] (53)
B[t — 2wl — i — @] 84
— L REl 2w ) 5)
Bt — a2 B@ 1 — @) + 20w — ot )| (36

IN

IN
v | >

=E

>\

WE [

Bl — @ 2@t — @2 + 4l

Elf|w

Cy

~t {DtJrl ”2}

87)

— @2+ 4E[|@ ! — @t [lwy - @]

E[H{DtJrl

~ t+1
— w'?] + 4 ||lwy,
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where the first and third inequality follows from Cauchy-Schwartz Inequality: E[XY] <
VE[XZ]E[Y2]. It suffices to find the upper bound of C; and Cs.

2

C1 =K Z gt+1 ( t-l—ryl) + Bt (89)
a3 g™ ll2
2
- o -
< B[S X e i (12 )| |+ VAT 90)
Rt lgi" ll2
2
- o -
= | B> 1igltt mi (1;71) + Vdo 1)
it gk Il2
_ 2
m m 2
< —QZE I,i+1g,t€+l min (1 t+1 ) +Vdo 92)
22| TR
_ 2
m m . v 2 \f
< — E [([IE719,V fi(w!) min (1,) +Vdo (93)
qz; I g |V fie(wp) 12
2
1 m v 2 \/’
< =S |nV fi(w!) min (1) +Vdo | . (94)
m 2 |1V AL
2
Denote A (t) = [ = >0, ||V fre(w!) min (LmHVﬁj(w,i)lz) . On the other hand,
2A L _ 12
< —
C < )\ 2Hw l 95)
sffk( P ettt (96)
= —B . 97
aan C0)

Plug the bounds for C; and C; into B:

B < i(h(t) Vdo) <h(t) + Vdo + 24/ iBm) (98)
<A <h2(t) +do? + 2\/&0\/ %BH»I + /I\Bt+1> 99)

Denoting the right hand side as 3(t), we have

[\]

E[fu(wy, 0™ = fi(wis@)] < B + (L + Nnipk — 2mpw) (0+ N (f (wis @) = f).
(100)

Letting 8}, = E[fx(wh; ") — fu(w}; w*)], we have

Gt < (1= (L + Nnipk — 2nepr) (1 + X)) 0, + B(2). (101)
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Table 2
Dataset Number of tasks Model Task Type
FEMNIST (Cohen et al.;|2017||Caldas et al.||2018) 205 4-layer CNN 62-class image classification
StackOverflow (tft) 400 Logistic Regression  500-class tag prediction
CelebA (Liu et al.|[|2015{|Caldas et al.}||2018) 515 4-layer CNN Binary image classification

Summing over k on the left handed side, when -y is large enough so that no clipping happens we have

Za,@“ (102)

< (1= ((L+Nnip* —2mp) (1 +N)) Zék +mp(t) (103)

= (1 — ((L + )\p2 — 2)’[]? — 277,5]9 M + A ) 25 + mA <d0’ + 2\/>0'\/ Bt+1 + )\Bt+1> .
k=

1 (104)

mA (d<72+2\/aa\/ %B+%B)

Let Ay = > -, 6f. Assume max,<7 B; = B. Pick C' = o= =z iy Ve have

Appr —C < (1= (L4 = 2)n7 = 2mp) (u+ X)) (A = O). (105)
Choose = n = L;++>\p for some constant c¢ such that 0 <
(1= ((L+xp* = 2)nf — 2mp) (1 + A)) < 1. Apply recursively to all ¢, we obtain

@2+ N\ mA (do® +2Vdo\ /3B + 3B) | mA(do? +2Vdo\ /3B + 1B)
Ar=<|l-"—1 Bo — (=2 (N ™ (=20 (N :
LA BN
(106)

Take ¢ = 20V 8179) v 'log(1/9) and wecanfind T = O m(c=2c)(u+X) such that,
me (L 2+/\)d 2
P

)

)\ . st (B (5

N §<1_<c2—Lz§><u+A>>T Al (mB(5

2 (2 —2¢)(pu+ A €2 (2 —=20)(u+ N
(107)
Divide both side by m, we have
T L—2

1 (2=20)(u+N) (1, log(1/s) B (52 +))

miT = (1 Tz )\ w™ Tee %\Ewniy)) W
L—2
| log(1/9) B (4 +3)

C me2 +0 (c2—20)(n+AN) |~ (109)
O

A.4 DATASETS AND MODELS
We summarize the details of the datasets and models we used in our empirical study in Table[2] Our

experiments include both convex (Logistic Regression) and non-convex (CNN) loss objectives on
both text (StackOverflow) and image (CelebA and FEMNIST) datasets.
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A.5 HYPERPARAMETERS

Each fixed privacy parameter € could be computed by different combinations of noise scale o, clipping
norm -, number of communication rounds 7', and subsampling rate p = -Z. In all our experiments,
we subsample 100 different tasks for each round, i.e. ¢ = 100, to perform local training as well as
involved in global aggregation. For FEMNIST and CelebA, we choose o € {0.02,0.05,0.1} and
v € {0.2,0.5,1}. For StackOverflow, we choose o € {0.01,0.05,0.1} and v € {0.1,0.5,1}. We
summarize both utility and privacy performance for different hyperparameters below.

FEMNIST, y=0.2 FEMNIST, y=0.5 FEMNIST, y=1
0.8 0.8 0.8
> > >
®0.6 ©0.6 ©0.6
£04 0=0.1 L04 0=0.1 S04 0=0.1
9 0=0.05 9 0=0.05 9 0=0.05
2o.2 0=0.02 202 0=0.02 202 0=0.02
f non-private f non-private non-private
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Communication rounds Communication rounds Communication rounds
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Figure 4: FEMNIST results
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5 0=0.02 5 0=0.02 5 0=0.02
154 n 1} . o "
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@ @ @
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0.5 054! 0.5
0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000
Communication rounds Communication rounds Communication rounds
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w 1.0 w w
2
05 5
0.0 0 0
0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000
Communication rounds Communication rounds Communication rounds

Figure 5: CelebA results

A.6 COMPARISON WITH FEDPROX

Besides FedAvg, we also compared private mean-regularized MTL with other methods that aims
to train a global model privately. In particular, we studied private FedProx (L1 et al., |2020b)) as
an alternative global baseline. Note that although the local objective being solved in FedProx is
similar to that in mean-regularized MTL, FedProx is a fundamentally different method to handle
data heterogeneity in FL from MTL. Specifically, FedProx learns a global model where each client
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StackOverflow, y =2

StackOverflow, y=1
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Figure 6: StackOverflow results

Communication rounds

solves an inexact minimizer by optimizing local empirical risk with a regularization term. We instead
explore learning a multi-task objective where each client solves a mean-regularized objective and
learns a separate, client-specific model. The results are shown in Figure /| In all three datasets,
private FedProx is very similar to private FedAvg under different private parameters ¢ and worse than
private MTL. In particular, in FEMNIST and Stackoverflow, private MTL significantly outperforms
training a private global model (FedAvg and FedProx), for all €’s.
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Figure 7: Comparison of PMTL and training a private global model(Fed Avg/FedProx).
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