
Under review as a conference paper at ICLR 2021

6 ADDITIONAL RESULTS

6.1 REINFORCEMENT LEARNING

Maze Navigation Easy. We experiment with a slightly different version of the Maze Navigation
task. Instead of an agent with forward, turn-left and turn-right actions, the agent has no orientation
and there are only 4 movement actions corresponding to 4 cardinal directions. This makes navigation
easier because the agent do not need to keep track of its orientation. Further, it is much easier to
compute relative locations given a history of actions. This might explain why standard Transformers
are not far behind Feedback Transformers in performance as shown in Figure 6 (left). We also
compare to LSTMs, which performs much worse. See Section 7.2 for more implementation details.

Water Maze. We modify the Morris Water Maze task (Morris, 1981) to make it more challenging.
The maze is defined by a goal position and a mapping of cell to ID — these remain fixed within an
episode but change between episodes. The agent receives as an observation the cell IDs of its current
location and the target cell. When the agent finds the target, it receives +1 reward and is randomly
teleported. During the same episode, if the agent reaches a previously seen cell, it needs to remember
how it reached the target from there to go back. Results are shown averaged over 10 trials (the reward
is reported averaged over the last 500 episodes for each trial). As shown in Figure 6 (right), the
Feedback Transformer converges to higher average reward.

0.0 0.5 1.0 1.5 2.0

Training steps ⇥109

0

5

10

15

20

R
ew

ar
d Transformer

Feedback Transformer

LSTM

0 1 2 3 4 5

Training steps ⇥108

0

1

2

3

4

5

6

R
ew

ar
d

Transformer

Feedback Transformer

LSTM

Figure 6: Averaged cumulative reward during training on (left) Maze Navigation Easy and (right)

Water Maze tasks.

6.2 IWSLT DE-EN

We additionally evaluate the Feedback Transformer on IWSLT De-En, a small machine translation
dataset. We train a small Transformer model with 6 layers. For generation, we use beam size
5 without checkpoint averaging. Model quality is evaluated using tokenized BLEU. Results are
shown in Figure 7 (left) and show that for shallower models, the Feedback Transformer has better
performance than the standard Transformer.

6.3 SUMMARIZATION ON CNN-DAILYMAIL

We evaluate on the CNN-Dailymail multi-sentence summarization benchmark of 280K news articles
Hermann et al. (2015), modeling the first 400 words of the article See et al. (2017). We evaluate
using ROUGE Lin (2004). and use 3-gram blocking and tune length Fan et al. (2017). Figure 7
(right) displays the performance of the Feedback Transformer as the decoder layers are reduced,
making the model shallower only. For all model depths, the Feedback architecture maintains a
consistent improvement in ROUGE compared to the standard Transformer. Compared to sentence-
level tasks such as translation, this summarization benchmark requires multi-sentence generation,
and the increased capacity of the Feedback architecture is beneficial.

12



Under review as a conference paper at ICLR 2021

4000 6000 8000 10000 12000 14000

words per second

33.75

34.00

34.25

34.50

34.75

35.00

35.25

T
es

t
B

L
E

U

Transformer

Feedback Transformer

1 2 3 4 5 6

Decoder Depth

35.5

36.0

36.5

37.0

37.5

T
es

t
R

O
U

G
E

-L

Transformer

Feedback Transformer

Figure 7: Results on (left) the IWSLT De-En dataset, and (right) Summarization on

CNN-Dailymail, test set ROUGE-L for varying decoder depths.

Model Pre-norm + Adapt. Increase dev
higher LR span BPTT ppl

Transformer no no no 22.9
Transformer no no yes 22.9
Transformer yes no yes 21.0
Transformer yes yes no 20.6
Feedback no no no 19.7
Feedback no no yes 19.9
Feedback yes no yes 19.6
Feedback yes yes yes 19.0

Table 5: Ablation on WikiText-103 of various modeing choices. Results are shown without
finetuning.

6.4 ABLATION STUDIES ON LANGUAGE MODELS

Here we study how different techniques affect the model performance on WikiText-103. The
results shown in Table 5 indicate:

• Pre-normalization combined with higher learning rates helps the performance, particularly
for the standard Transformer.

• Increasing the context size with adaptive span further improves the performance for both
models.

• The technique of increasing the BPTT length during training for efficiency does not affect
the final performance.

• The gap between two model is consistent along those variations.

Next, we examine the effect of the model depth on performance on char-PTB and WikiText-103
This time, we keep the total number of parameters constant and only vary the number of layers to
isolate the effect of depth. This is achieved by proportionally increasing the head dimension and the
ReLU layer size when we decrease the number of layers. The results in Figure 8 demonstrate that
for the standard Transformer improves as the depth increase. In contrast, the Feedback architecture
is much robust reduced depth, even achieving the best performance on char-PTB with only two
layers.

13



Under review as a conference paper at ICLR 2021

2 4 6 8

Model depth

1.2

1.4

1.6

1.8

2.0

D
ev

.
(b

p
c)

Transformer

Feedback Transformer

2 4 6 8

Model Depth

20

25

30

35

D
ev

.
(p

p
l)

Transformer

Feedback Transformer

Figure 8: The performance on (left) char-PTB and (right) Wikitext-103 as a function of the
model depth. The number of parameters is kept constant by increasing the width.

vision range

Figure 9: (left) Maze Navigation task and (right) Water Maze task.

7 ADDITIONAL IMPLEMENTATION DETAILS

7.1 RANDOM WALK TASK DETAILS

We provide additional details for the random walk toy task we explore. The agent starts at a fixed
position of a 8 ⇥ 8 grid. Available actions are 1) move one step forward, 2) turn left and 3) turn right.
At every time step, the agent randomly picks on of the three actions and executes it. An action would
be ignored if it can’t be executed like going out of the grid. After 100 actions, the agent is reset back
to the initial position.

The input to the model is a sequence of actions taken by the agent, and a special symbol if there was
a reset. The output is a sequence of location symbols corresponding to the agent’s location after each
action. We generate 10k training episodes, totalling 1M tokens.

We use the same setup as our language modeling experiments, except now the model predicts separate
output tokens rather than a next token. We concatenate all the episodes and feed them to the model
as a single sequence. The training is done with the negative-log-likelihood loss. See Table 7 for the
hyperparameters used in the experiment. The attention span is set to 100, so that the models can
attend to all the information they needs to solve the task.

7.2 MAZE NAVIGATION DETAILS

We generate random 9 ⇥ 9 mazes using Kruskal’s algorithm. Dead ends are eliminated by randomly
removing one of the blocks surrounding them. We randomly place 8 target objects with different
colors as shown in Figure 9 (left). The agent is given a randomly selected color as a target. If the
agent manages to reach the correct target, it gets a reward of +1 and a new target color is sampled.
An episode ends after 200 steps. The observation includes the 3 ⇥ 3 area around the agent and target
color.

We train 2-layer Transformers with a hidden size 256 and 4 heads. We set the BPTT to 100 and the
batch size to 1024. The reward discount rate is 0.99. The attention span is 200 so the agent can keep
an entire episode in memory. All agents were trained using A2C with Adam with a learning rate of
0.0003 and a entropy cost of 0.0005. For the easy version of the task, we use RMSprop with a batch

14



Under review as a conference paper at ICLR 2021

Hyperparameter Summarization WMT En-De IWSLT De-En

Encoder Layers 6 6 6
Decoder Layers 6 6 6
FFN Size 2048 4096 1024
Attention Heads 8 16 4
Dropout 0.3 0.3 0.3
Hidden Size 512 1024 512
Learning Rate 0.0005 0.001 0.0005

Table 6: Hyperparamers for sequence to sequence experiments.

Hyperparameter Random Walk char-PTB Enwik8 WikiText-103 WikiText-103
small large

Layers 4 6 12 4 8
Hidden size (d) 256 384 512 512 1024
FF size 4d 4d 8d 8d 4d

Head count (h) 4 4 8 8 8
Head dim d/h d/h 2d/h 2d/h d/h

Attention span 100 512 8192* 512 512, 2048*
Dropout rate 0.2 0.5 0.5 0.1 0.3
Embed. dropout - - - 0.1 0.2
BPTT len (M ) 64 128 128 256 256
Batch size (B) 512 2048 1024 512 512
Learning rate 0.0001 0.0015 0.0015 0.0007 0.0007
Gradient clip 0.1 1.0 0.1 0.1 0.1
LR warm-up steps 1k 1k 8k 8k 8k

Parameters 3.2M 10.7M 77M 44M 139M

Table 7: Hyperparamers for language modeling experiments. Here * indicates the adaptive span.

size of 128 and a learning rate of 0.0003. The RMSProp epsilon regularization parameter is set to
0.01 The LSTM model is a 3-layer LSTM with a hidden size of 256.

7.3 WATER MAZE DETAILS

The water maze task we designed is depicted visually in Figure 9 (right). The grid size is 15 ⇥ 15. To
help exploration, the agent can see if the goal is within a 3 ⇥ 3 area around it. An episode ends after
200 steps. We train for 500M steps (2.5M episodes). We use 2-layer Transformers with hidden size
of 64 and 1 head. The attention span is 200 so the agent can put an entire episode in memory.

All agents where trained using A2C with RMSprop with entropy cost of 0.0001, RMSProp epsilon
regularisation parameter of 0.01, batch size of 64, and BPTT 200. Feedback Transformer and
Transformer baseline were trained with a learning rate of 0.0003. LSTM model is a 2-layer LSTM
with hidden size of 64. For LSTM model we used a learning rate of 0.0004.

7.4 MACHINE TRANSLATION AND SUMMARIZATION

We detail the hyperparameters in Table 6. Summarization experiments are done with the Transformer
base architecture size and WMT En-De experiments are done with the Transformer big architecture
size. As IWSLT De-En is a smaller dataset, we use a smaller model. For all sequence to sequence
experiments, only the decoder is modified to have the Feedback Transformer architecture.

7.5 LANGUAGE MODELING

In the language modeling experiments, we added several improvements on top of the original
Transformer Vaswani et al. (2017) to better adapt to unbounded sequences:

15



Under review as a conference paper at ICLR 2021

• Hidden representation caching Dai et al. (2019): Since the input to the model is an un-
bounded sequence and the model needs to process it in small blocks, hidden representations
from previous blocks are kept in cache so that any token in the current block will the same
context length regardless of its position in the block.

• Relative position embedding Shaw et al. (2018): Relative position embeddings allow
each token in a block to be processed in the same way regardless of its absolute position
in the block. We found that adding shared embeddings to key vectors at every layer to be
effective.

• Adaptive attention span Sukhbaatar et al. (2019) Language modeling requires a model
to have a very long attention span, which is computationally expensive. The adaptive span
mechanism allows each attention head to learn different attention spans for efficiency.

• Pre-normalization Child et al. (2019): We observed that pre-normalization makes train-
ing more stable for Transformers, which allowed us to use larger batch sizes for better
parallelization.

Dropouts are applied to attention and ReLU activations. In WikiText-103 models, additional
dropouts are added to the embedding layer output and the last sublayer output.

In Table 7, we present the hyperparameter values used for our experiments. We use the same
hyperparameters for both Transformers and Feedback Transformers, and optimize them with Adam.
The final performances are obtained by finetuning the models with a 10x smaller learning rate.

Details on the char-PTB experiments We trained the models for 15k updates (or earlier if the
validation loss stops decreasing), and funetined them for 1k steps. We varied the depth of the models
while keeping the number of parameters constant. This is achieved by changing the FF size and the
head dimension inverse proportionally to the depth.

Details on the enwik8 experiments We used an adaptive span limited to 8192 tokens with a loss
of 0.0000005. The training is done for 100k updates and another 10k steps is used for finetuning. The
warming up BPTT length is used for speeding up the training, where the BPTT length is decreased to
64 for the first half of the training.

Details for Training on WikiText-103 We employed the adaptive input Baevski & Auli (2019)
and the adaptive softmax Grave et al. (2017) techniques for reducing the number of parameters within
word embeddings. The models are trained for 200k steps and the finetuned for additional 10k steps.

While most of the models have a fixed attention span of 512, the best performance is achieved by
extending the attention span to 2048 with adaptive span loss 0.00001.

After training our models, we noticed that our tokenization method differed from others by omitting
end-of-line (EOL) symbols. Since our dictionary already contained the EOL token, we were able
finetune our trained models on the data with EOL tokens, rather than training them from scratch. This
change alone brought about 1ppl improvement.

16


