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ABSTRACT

Neural Fields (NF) have gained prominence as a versatile framework for com-
plex data representation. This work unveils a new problem setting termed Meta-
Continual Learning of Neural Fields (MCL-NF) and introduces a novel strat-
egy that employs a modular architecture combined with optimization-based meta-
learning. Focused on overcoming the limitations of existing methods for continual
learning of neural fields, such as catastrophic forgetting and slow convergence, our
strategy achieves high-quality reconstruction with significantly improved learning
speed. We further introduce Fisher Information Maximization loss for neural radi-
ance fields (FIM-NeRF), which maximizes information gains at the sample level
to enhance learning generalization, with proved convergence guarantee and gen-
eralization bound. We perform extensive evaluations across image, audio, video
reconstruction, and view synthesis tasks on six diverse datasets, demonstrating
our method’s superiority in reconstruction quality and speed over existing MCL
and CL-NF approaches. Notably, our approach attains rapid adaptation of neural
fields for city-scale NeRF rendering with reduced parameter requirement. Code is
available at https://github.com/seungyoon-woo/MCL-NF.

1 INTRODUCTION

Neural fields have recently emerged as a versatile framework for representing complex data with
neural networks (Park et al., 2019; Mildenhall et al., 2020; Yariv et al., 2021; Yu et al., 2022). In
this framework, a data point (e.g., an image, a video, or a 3D scene) is regarded as a field, and a
neural network is trained to map a coordinate to the corresponding field value (e.g., pixel value,
signed distance, radiance). Following the success of neural fields, multiple attempts have been made
to learn neural fields in continual learning (CL) settings (Yan et al., 2021; Guo et al., 2023; Wang
et al., 2023; Chung et al., 2022). The primary assumption of these approaches, which we collectively
refer to as continual learning of neural fields (CL-NF), is that the information of a field is not fully
accessible at once but instead sequentially obtained. Naively training a neural network on such a
non-stationary data stream would result in catastrophic forgetting (Robins, 1995; Kirkpatrick et al.,
2016), and thus additional techniques are introduced to mitigate the forgetting.

Meanwhile, one of the significant challenges of neural fields is the extensive training time. Rapid
training of neural fields is crucial for practical applications, and it has motivated the emergence
of meta-learning approaches for neural fields (ML-NF) (Tancik et al., 2021; Chen & Wang, 2022;
Kim et al., 2023). Unlike conventional neural field training, which fits a neural network to a single
data point, the meta-learning approaches consist of multiple data points split into meta-training and
meta-test sets. By optimizing the learning process using the meta-training set, they can significantly
reduce the training time of neural fields for new tasks.

In this work, we explore a novel problem setting that aims to combine the best of both worlds:
Meta-Continual Learning of Neural Fields (MCL-NF). Within this setting, we meta-learn how to
learn neural fields not only continually but also rapidly. Although there are several meta-continual
learning (MCL) approaches in image classification domains (Javed & White, 2019; Beaulieu et al.,
2020; Banayeeanzade et al., 2021), to the best of our knowledge, ours is the first work that explores
MCL in the context of neural fields.

MCL-NF is powerful in drone and satellite applications, where large-scale environments are cap-
tured by resource-constrained edge devices and the memory limitation hinder full exploitation of
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captured data. MCL-NF can leverage neural fields’ ability to compress complex 3D environments
into compact representations and continual learning’s capacity to seamlessly transition between dif-
ferent levels of detail based on viewpoint and resources; as a result, MCL-NF offers fast learning,
scalability, real-time rendering, and adaptability. This powerful combination facilitates fast gener-
ation of highly detailed virtual models for applications like urban planning, construction, environ-
mental monitoring, and disaster response. We experiment our MCL-NF on real-world scenes in
city-scale such as MatrixCity (Li et al., 2023) to shed a potential light on large-scale renderings.

As a first solution to MCL-NF so far, we explore a strategy that combines modular architecture with
optimization-based meta-learning. Existing CL-NF approaches mostly rely on replaying previous
data to prevent forgetting. However, replay-based approaches suffer from consistently increasing
replay costs, which can be problematic in the MCL-NF setting where rapid adaptation to large-scale
rendering is desired. Modularization is a major branch of CL that circumvents this problem by as-
signing a separate module for each task (Rusu et al., 2016; Aljundi et al., 2017). Moreover, modular
architectures have been popularly studied in the neural field literature, especially for NeRF (Milden-
hall et al., 2020), to improve the efficiency of handling large-scale scenes (Reiser et al., 2021; Turki
et al., 2022; Mi & Xu, 2023). By learning a good initialization for the modules with an optimization-
based meta-learning such as MAML (Finn et al., 2017), our approach can rapidly learn new tasks
while maintaining existing knowledge. Previously, modularization techniques employed a fixed
number of sub-modules for processing, despite the potential advantages of a continual learning that
allows separating modules in a task-wise manner. By sharing initializations between sub-modules,
we can increase the number of sub-modules whenever stakeholders require. This continual approach
to modularization can dynamically adapt to evolving requirements without being constrained by a
predetermined, finite number of modules.

We also introduce a Fisher Information Maximization loss for Neural Radiance Fields (FIM-NeRF)
as a novel approach that incorporates Fisher Information directly into the NeRF training process.
FIM-NeRF weights individual samples in the loss function based on their Fisher Information con-
tribution, effectively prioritizing more informative regions of the scene during training. FIM-NeRF
maximizes the mutual information between the model parameters and the observed data, potentially
leading to more efficient learning and better generalization. We also present the theorems for proving
the convergence guarantee and generalization bound of this new loss function. This sample-level ap-
plication of Fisher Information distinguishes FIM-NeRF from previous parameter-level approaches
in CL (Chaudhry et al., 2018; Konishi et al., 2023), offering a new perspective on how to leverage
information theory in 3D scene representation and rendering.

Our approach, synergizing modular architecture with meta-learning, leads to no performance degra-
dation incurred by forgetting during test-time. Our framework is versatile across various NF modal-
ities. We carry out extensive empirical evaluation across the image, audio, video reconstruction,
and view synthesis tasks on six diverse datasets, including three 2D image datasets (CelebA (Liu
et al., 2015), FFHQ (Karras et al., 2019), and ImageNette (Deng et al., 2009)), one video dataset
(VoxCeleb2 (Chung et al., 2018)), one audio dataset (LibriSpeech (Panayotov et al., 2015)), and
one NeRF dataset (MatrixCity (Li et al., 2023)). Our method surpasses both previous MCL and
CL-NF approaches in reconstruction quality and speed. Ultimately, our unified approach efficiently
addresses city-scale NeRF challenges on MatrixCity (Li et al., 2023) using a smaller parameter size
than existing single neural field methods.

2 RELATED WORKS

Continual Learning of Neural Fields (CL-NF). Neural fields learn a function fθ : Rd → Rq

that maps a coordinate x ∈ Rd to a field quantity y ∈ Rq using a neural network to represent a
complex data point. Continual learning trains a model on a series of tasks, T1, T2, . . . , Tn, each
associated with its own data. In video examples, each frame can be a task Ti, and in NeRF con-
texts, each grid separated by its 3D coordinates is a distinct task. Every task Ti consists of samples
{(x1

i , y
1
i ), (x

2
i , y

2
i ), . . . , (x

m
i , ymi )}, each of which is made up of the coordinates. A significant chal-

lenge here is catastrophic forgetting (Robins, 1995; Kirkpatrick et al., 2016); when the model, after
training on a new task Ti+1, loses the knowledge acquired from the prior tasks.

Among several branches to handle forgetting, replaying previous samples has been a popular ap-
proach due to their simplicity and effectiveness. For the CL of neural fields, CNM (Yan et al., 2021)
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utilizes experience replay to reconstruct a 3D surface from streaming depth inputs. Later, Guo et al.
(2023); Chung et al. (2022); Po et al. (2023) leverage knowledge distillation to generate pseudo-
samples of past experience using a neural network as memory storage. However, replay methods
have scalability issues and increase computation in large-scale environments. Our proposed method
is far from this limitation while solving challenges that arise in the CL problems.

Meta-Learning of Neural Fields (ML-NF). In the field of NF, several works leverage meta-learning
for rapid learning and generality to unseen data instances and data-type agnostic features. MetaSDF
(Sitzmann et al., 2020) learns a weight initialization for fitting neural representations to signed dis-
tance fields. LearnedInit (Tancik et al., 2021) and GradNCP (Tack et al., 2023) exploit bilevel
optimizations to encode meta-initializations prior to expanding their horizons to general NFs. Mod-
ulating sub-parts of the architecture such as TransINR (Chen & Wang, 2022) and Generalizable IPC
(Kim et al., 2023) can increase the efficiency of NF training. While they show promising results,
they have to yet satisfy some applications like drone or satellite imagery (Po et al., 2023), which
require sequential data processing with limited memory storage and immediate updates. Our ap-
proach introduces optimization-based weight initializations in CL settings, and effectively meets
such demands of NFs while promoting quicker convergence and enhanced generality.

Meta-Continual Learning (MCL). Optimization-based meta-learning (Finn et al., 2017; Antoniou
et al., 2019; Nichol et al., 2018; Fallah et al., 2020; Flennerhag et al., 2020) tries to find a favorable
starting point of model’s parameters to enhance the SGD optimization. However, a straightforward
use of meta-learning makes all parameters vulnerable to SGD updates, which can lead to excessive
adaptability and forgetting. Online meta-learning (Javed & White, 2019) is introduced as an MCL
strategy to tackle this; in its inner loop, only the top layers are updated while fixing the other lay-
ers, which are updated in turn in the outer loop. ANML (Beaulieu et al., 2020) seeks to balance
stability and plasticity in meta-learning; rather than freezing the lower part of the encoder, it uses
a neuromodulatory network that remains static during the inner loop. However, they inherit some
challenges from meta-learning, like the need to compute second-order gradients through the entire
inner loop, leading to high computational demands and potential gradient issues.

Modularization in Mixture-of-Experts. Modularization can be viewed as a special case of the
Mixture-of-Experts (MoE) framework (Jacobs et al., 1991), which has seen significant advance-
ments in recent years particularly in the realm of large language models. For continual learning,
Progressive networks (Rusu et al., 2016) and ExpertGate (Aljundi et al., 2017) are typical examples
of this one-task-per-expert modularization strategy. Interestingly, Chen et al. (2023); Shen et al.
(2023); Pan et al. (2024) optimize the distribution of data among experts by maximizing the mu-
tual information (MIM) between the input and the expert selection. For instance, Pan et al. (2024)
propose an MIM-based expert routing to improve the performance and interpretability of language
tasks. In the context of neural fields, this has led to novel NeRF techniques for scene decomposition
and representation (Rebain et al., 2021; Tancik et al., 2022). They leverage information-theoretic
principles to guide the division of 3D space among different modules, effectively creating a modular
representation of complex scenes.

Extending the concept of information-guided modularization to the meta-continual learning, we
use Fisher Information Maximization (FIM) into our loss function, drawing parallels to the MIM
approaches in MoE, but in the sample-specific level. This allows us to prioritize informative samples
during training, potentially leading to more efficient learning and better generalization in the CL-NF.

3 PROBLEM STATEMENT

3.1 CONTINUAL LEARNING OF NEURAL FIELDS (CL-NF)

In the continual learning of NF, the model fθ updates its parameters θ based on the sequential task-
specific data. They are a series of context sets Ci, each comprising coordinates (xj , yj) in Rt, Rs

for j = 1, . . . ,m. A context set can be defined as a subset of data relevant to a particular task
within a sequence of tasks to be learned. While learning from a context set Ci, the model cannot
access the previous context set Ci−1, adhering to the constraint of CL. Each context set functions
as a distinct task Ti such as each frame in a video domain (Wang et al., 2023) or each 3D grid in
a NeRF problem (Chung et al., 2022; Po et al., 2023) without explicit geometric supervision. The
model fθi updates its parameters based on the sequence of context Ci, producing an output f∗

θi
for
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Figure 1: Illustration of the transition from traditional MSE loss to FIM-Loss in a neural network.
It highlights how the FIM is used to calculate sample-specific weights. These weights are then
incorporated into the final loss function, allowing the model to prioritize more informative samples.

Ti, which then becomes the starting point for Ti+1. The loss function for each Ti is defined as the
Mean Squared Error (MSE): Li(fθi) =

1
m

∑m
j=1(fθi(x

j
i , y

j
i )− sji )

2, where fθi(x
j
i , y

j
i ) predicts the

signal value for coordinates (xj
i , y

j
i ), and sji is the true value. The objective is to minimize the mean

loss across all tasks up to t: Ltotal =
1
t

∑t
i=1 Li(fθi), which aims to reduce the cumulative loss and

thereby mitigating catastrophic forgetting across all previously seen tasks.

3.2 MCL-NF: CL-NF MEETS META-LEARNING

Continual learning in the NF domain often requires a large number of convergence steps (Tack et al.,
2023; Yan et al., 2021; Chung et al., 2022) and lacks generality across tasks (Guo et al., 2023; Wang
et al., 2023). A prevalent solution may be to adopt optimization-based meta-learning, which not
only addresses the challenges of convergence and generality but also brings forth the benefits of
well-defined task variants and modality-agnostic features (Nichol et al., 2018; Zintgraf et al., 2019;
Antoniou et al., 2019) .

We structure our approach into episodes (E1, E2, . . . , En), each consisting of two stages: task-specific
adaptation and meta-update. The task adaptation stage, akin to upon mentioned CL-NF, comprises
sequences of signals forming context sets. For any given Ti in this stage, the model fθi updates over
k iterations, starting from the end state of the previous Ti−1, denoted as fθ∗

i−1
, where k typically

spans hundreds of thousands of iterations in prior works (Yan et al., 2021; Chung et al., 2022). The
meta-update stage optimizes the initial model configuration fθ0 of each episode, based on the final
output fθ∗

t
. Here, the parameter θ′ is optimized using

θ′ = θ0 − η∇θ0

(
1

t

t∑
i=1

1

m

m∑
j=1

(fθi(x
j
i , y

j
i )− sji )

2

)
, (1)

where the initialization θ′ is optimized by multiple meta-train episodes and becomes a starting point
for the meta-test set, thereby enabling rapid adaptation to new tasks within meta-test episodes.

Meta-learning enables neural networks to assimilate priors for swift adaptation, thereby facilitating
rapid learning and efficient memory usage. However, the mere conjunction of continual learning and
meta-learning, like previous methodologies (Javed & White, 2019; Beaulieu et al., 2020), does not
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Algorithm 1 Modularized MCL-NF with Fisher Information Maximization Loss

Require: (1) A sequence of tasks {T1, T2, . . . , Tt} along with context sets {C1, C2, . . . , Ct}, (2)
Learning rates ηinner, ηouter, and (3) Fisher Information weight λ.

1: Shared Initialization:
2: Initialize a shared set of parameters θshared.
3: for i = 1 to t do
4: Initialize module fθi with θshared for task Ti.
5: end for
6: for i = 1 to t do
7: Select m coordinates of a context set Ci for task Ti.
8: Initialize Fisher Information Matrix Fi for task Ti.
9: Inner Loop (Task-specific Learning):

10: for each training sample (x, y) in context set Ci do
11: Compute output ŝ = fθi(x, y).
12: Compute Fisher Information weight: w(θi) = 1 + λ · tr(g(θi)TF−1

i g(θi)),
13: where g(θi) = ∇θi log p(s|ŝ).
14: Compute FIM Loss: LFIM(θi;x, y) = w(θi) · ∥ŝ− s∥2.
15: Update θi for task Ti:

θ
(k)
i = θ

(0)
i − ηinner

∑k
j=1 ∂LFIM(f

θ
(j−1)
i

(x, y), s)/∂θ
(j−1)
i .

16: Update Fisher Information Matrix Fi.
17: end for
18: if new task arrives then
19: Expand module fθi by adding new parameters θnew initialized with θshared.
20: end if
21: Outer Loop (Meta-learning):
22: for each validation sample (xval, yval) in query set Qval do
23: Compute FIM Loss LFIM(θi;xval, yval) as in steps 10-12.
24: Update θi for meta initialization: θ∗i = θi − ηouter∇θiLFIM(f

θ
(k)
i

(xval, yval), sval).
25: end for
26: end for
27: Inference:
28: for each coordinate (x, y) in the input space do
29: Determine a subset of modules where (x, y) belongs to: Gi(x).
30: Obtain the final output from relevant modules: s(x, y) =

∑T
i=1 Gi(x) · fθ∗

i
(x, y).

31: end for

inherently ensure the mitigation of forgetting. Therefore, we propose a simple yet effective method
to address these challenges.

4 APPROACH

4.1 SPATIAL AND TEMPORAL MODULARIZATION

We adopt MAML (Finn et al., 2017) as an optimization-based meta-learning algorithm, known
for its efficiency with small convergence steps. Then, our method utilizes modularization within
the MCL framework of NFs. The modular approach, inspired by the recent successful large-scale
NeRFs such as MegaNeRF (Turki et al., 2022) and SwitchNeRF (Mi & Xu, 2023), not only en-
sures efficient memory usage with quicker computations but also mitigates catastrophic forgetting
by keeping task-specific parameters separate. We can harness the intrinsic spatial and temporal
correlations of coordinates, based on that subsequent frames in video or views in NeRF are highly
overlapped. Thus, we enhance module adaptability by sharing initialization of each module, a key
factor in large-scale radiance fields. Moreover, our shared initialization provides the flexibility to
adjust the number of modules, independent of the number of tasks, which is vital for managing
varying complexities within large datasets. Unlike the traditional MAML approaches that struggle
with forgetting over extensive iterations in test-time, our strategy enables super-resolution image en-
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hancements and detailed city-scale NeRF reconstructions while overcoming the spectral bias (Tack
et al., 2023) often seen in NFs through effective test-time optimization.

4.2 THE FISHER INFORMATION MAXIMIZATION LOSS

For large-scale, resource-constrained continual learning, efficient knowledge re-use is crucial. How-
ever, standard modularization struggles with sharing knowledge across overlapping tasks such as
repeating building appearances in city-scale 3D modeling. These limitations call for an addi-
tional method to complement modularization, facilitating efficient knowledge transfer, optimizing
resources, and maintaining performance across tasks.

Hence, our approach takes advantage of sample re-weighting to replace popular rehearsal methods
that may struggle when storage is limited and rapid processing is required. This approach dynam-
ically adjusts the input importance based on information content, and prioritizes learning from the
most relevant aspects of current inputs. Consequently, it can achieve similar knowledge retention
and transfer as rehearsal methods, but without memory and computational overheads.

As modularization is viewed as a mixture of single-task experts, mutual information maximization
can be a useful vehicle. Our solution is to perform sample re-weighting exploiting Fisher Infor-
mation Matrix (FIM), which captures task-relevant information within model parameters without
explicit storage of past experiences. It provides a computationally efficient proxy for mutual infor-
mation through a local quadratic approximation of KL-divergence between parameter distributions.

FIM calculation from readily available gradient information facilitates efficient optimization, mak-
ing it particularly suitable for our large-scale, resource-limited settings.

We propose the Fisher Information Maximization loss (FIM loss) to replace Eq.(1) by appending
only weight term:

θ′ = θ0 − η∇θ0

(
1

t

t∑
i=1

1

m

m∑
j=1

wij(θi)(fθi(x
j
i , y

j
i )− sji )

2

)
, (2)

and wi(θ) is a weight derived from the Fisher Information:

w(θi) = 1 + λg(θi)
TF(θ)−1g(θi), (3)

where gi(θ) = ∇θ log p(sji |fθ(x
j
i , y

j
i )) is the score function, F(θ) is the Fisher information matrix,

and λ > 0 is a hyperparameter. The weight wi(θ) comprises a base weight of 1, a hyperparameter
λ controlling Fisher Information influence, the gradient gi(θ) representing sample sensitivity, and
the inverse Fisher Information Matrix F(θ)−1 for parameter importance normalization. Eq.(3) pri-
oritizes the samples causing big changes in important model parameters. Larger gradients indicate
more informative samples, while F(θ)−1 adjusts for varying parameter importance. This weighting
focuses the samples most likely to improve model performance, balancing knowledge preservation
with new information acquisition, which is crucial for meta-continual learning.

4.3 THE RELATION WITH INFORMATION GAIN MAXIMIZATION

We now establish the connection between our FIM loss and the principle of information gain max-
imization. Based on the theorem in (Kunstner et al., 2019) that links KL-divergence to Fisher In-
formation, we can show that the FIM loss approximates mutual information maximization between
model parameters θ and data D. The theorem and its detailed proof is presented in Appendix A.1.

Let p(D|θ) and p(D|θ + ∆θ) be two probability distributions parameterized by θ and θ + ∆θ, re-
spectively. The Kullback-Leibler (KL) divergence between these distributions can be approximated
as (Belghazi et al., 2018; Veyrat-Charvillon & Standaert, 2009):

KL[p(D|θ)∥p(D|θ +∆θ)] ≈ 1

2
∆θTF(θ)∆θ, (4)

where F(θ) is the Fisher Information Matrix. As F (θ) provides a local quadratic approximation of
KL-divergence, by using F (θ) in our sample-level loss function, we implicitly measure and priori-
tize information content, optimizing mutual information without explicit calculation.
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Comparison with EWC. EWC (Chaudhry et al., 2018) also use Fisher Information against catas-
trophic forgetting. It works at the parameter level, penalizing changes to important previous task
parameters. On the other hand, our FIM loss operates at the sample level, dynamically weighting
samples based on the Fisher Information contribution. This enables finer learning control, crucial
for neural fields’ spatial and temporal information locality. By prioritizing informative data regions
or timepoints, it enhances rapid adaptation to new tasks in continual learning of complex 3D envi-
ronments, while preserving previous knowledge.

4.3.1 CONVERGENCE ANALYSIS AND GENERALIZATION BOUND OF FIM-SGD

In Appendix A.2, we present the theorem and its derivation about the convergence of our Fisher
Information Maximization via Stochastic Gradient Descent (FIM-SGD). This analysis guarantees
the convergence of our FIM-SGD algorithm to the optimal parameters, with a rate that depends on
the condition number of the problem and the variance of the stochastic gradients. This convergence
property can further explain the effectiveness of our algorithm.

A generalization bound provides a probabilistic limit on the generalization error, which measures
how well an algorithm performs on unseen data compared to training data (Pérez & Louis, 2020;
Cao & Gu, 2020). We present the theorem and its derivation on a generalization bound for our FIM-
loss in Appendix A.3. It shows that our FIM-Loss maintains good generalization properties with the
bound scaling similarly to standard VC-dimension based bounds.

5 EXPERIMENTS

We evaluate the performance of our approach across image, video, audio, and NeRF datasets with
high diversity and minimal redundancy. Moreover, we investigate the compute and memory usage
of our approach in large-scale environments. Due to space limitation, we include additional details
of experiments in Appendix, which covers ablation study, visualizations, and computation analysis.
They provide a more comprehensive view of our method’s performance and characteristics.

5.1 EXPERIMENTAL SETUP

We set the number of continual tasks to four, following prior works (Mi & Xu, 2023; Cho et al.,
2022). This translates to four frames in the video domain and four 3D grids in the NeRF domain.
We measure increased performance over multiple iterations from meta-initialization, focusing on the
order of computations (steps). We run all experiments three times, reporting average performance
until 500K outer steps, following (Tancik et al., 2021).

Baselines. LearnedInit (Tancik et al., 2021) is an ML-NF approach, which can be regarded as
an upper-bound baseline (Meta (UB)) since it leverages batch processing while bypassing contin-
ual learning challenges. Other ML-NF methods such as (Chen & Wang, 2022; Kim et al., 2023)
employ transformer-based hypernetworks, which are not applicable to our problem setting. We
compare with OML (Javed & White, 2019) as a representative MCL baseline, and MAML (Finn
et al., 2017) combined with CL setup, which is denoted by ’MAML+CL’. We select OML because
it supports both classification and regression tasks, aligning with neural fields’ regression output.
We also include EWC (Kirkpatrick et al., 2016) and ER (Rolnick et al., 2019), which represent typ-
ical regularization-based and rehearsal-based CL approaches in our comparisons, as well as MER
(Riemer et al., 2019), which exemplifies advanced CL baseline with bi-level optimization. Through-
out the experiments, ’Ours (mod)’ and ’Ours (MIM)’ refer to the proposed MCL-NF method with
modularization without or with MIM, respectively.

5.2 RESULTS OF IMAGE RECONSTRUCTION

We first experiment 2D image reconstruction using CelebA (Liu et al., 2015), FFHQ (Karras et al.,
2019), and ImageNette (Deng et al., 2009) datasets. We process a 2D image by dividing it into
multiple patches; for instance, a 180×180 image is split into four 180×45 patches. The coordinate-
based MLP consists of five layers with Sine activations, configured with d = 128, din = 2 for image
signal input, and dout = 3 for RGB outputs. We measure the reconstruction accuracy for the entire
images in terms of PSNR.
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Figure 2: The PSNR comparison between various meta-learning methods over the adaptation steps.
Our method demonstrates consistent improvement in PSNR as the number of steps increases, out-
performing traditional MAML (Finn et al., 2017) and OML (Javed & White, 2019), particularly in
longer adaptation sequences in all modalities and datasets.

Highly-Structured Images. The CelebA (Liu et al., 2015) has been actively used in meta-continual
learning research. The consistent positioning of faces in the center of images provides a strong prior,
ensuring a level of uniformity across the dataset. For CelebA, we use 178 × 178 resolution images
with 1-pixel zero-padding for 180× 180 input resolution, adhering to established practices.

High-Resolution Images. The FFHQ (Karras et al., 2019) consists of 512 × 512 high-resolution
images. It evaluates whether even with limited memory meta-learning can reconstruct the data.

High-Diversity Images. The ImageNette (Deng et al., 2009) with a 160× 160 resolution shows its
high diversity, containing various classes, objects, and backgrounds. It can demonstrate the model’s
robustness to reconstruct images with less redundancy in patches in just a few learning steps.

Results. Fig.2a–2c show the results of three image benchmarks. The consistently superior perfor-
mance demonstrates the robustness of our method, with each dataset highlighting unique benefits.
The PSNR values of our method are stably high across all test-time optimization steps in CelebA and
FFHQ, suggesting that our method can maintain its great quality despite computational constraints.
Furthermore, results on ImageNette show gradual improvement, implying our method’s capability
to handle diversity and complexity effectively.
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5.3 RESULTS OF VIDEO RECONSTRUCTION

We use the VoxCeleb2 dataset (Chung et al., 2018) for 3-dimensional video processing. Each video
is dissected into consecutive frames with a size of 112 × 112, extracted at consistent time intervals
to form a sequence. Following prior works, we utilize a five-layer MLP with Sine activations, con-
figured with d = 256, din = 3 for (x, y, t) coordinates, where t represents the temporal dimension,
and dout = 3 for RGB outputs. Four sub-modules are divided along temporal axis, meaning that
each sub-module configured with ( d = 128, din = dout = 3) is allocated to each of the frame
sequence. The goal of the test is to accurately reconstruct these sequential frames, thereby achieving
a coherent and continuous representation of the video. The temporal aspect of videos is essential for
models to understand not only static features but also their sequence evolving over time.

Results. As shown in Fig.2d, the consistent enhancement in PSNR at each step confirms that our
method can capture and reconstruct the temporal dynamics of video sequences. This trend validates
our method’s efficacy in dealing with sequential data, where temporal correlations are crucial.

5.4 RESULTS OF AUDIO RECONSTRUCTION

Our framework is further extended to audio experiments with the LibriSpeech-clean dataset (Panay-
otov et al., 2015). We train our framework on randomly cropped segments of audio data. In previous
works (Kim et al., 2023; Tack et al., 2023), the coordinate-based MLP is equipped with five layers
using Sine activations (d = 256, din = 1 for the (x, y) coordinates, and dout = 1), amounting
to the parameter size of (p = 197, 120). We transition from a singular MLP to a more modular
architecture. We divided the model into four sub-modules, each having a reduced dimensionality
of (d = 128) and cumulatively totaling (p = 196, 704) parameters. For evaluation, we reconstruct
audio segments for accurate and coherent playback. Test samples are meticulously trimmed into seg-
ments of three seconds. By breaking down long audio sequences into smaller, manageable segments
for continual learning, models can meta-learn the characteristics of speech more effectively.

Results. In Fig.2f, our method consistently increases its reconstruction quality whereas the OML
loses its ability up to 64 steps and its baseline MAML suffers from the same issue within the CL
setting. Moreover, our methods show comparable or even higher performance (in some time-steps)
than LearnedInit, the upper bound (UB) of meta-learning. Our model can understand and gener-
ate speech by capturing the relations between phonemes and the subtleties within various speech
attributes, leading to more natural and accurate speech processing.

5.5 RESULTS OF VIEW SYNTHESIS

We evaluate our approach to view synthesis in the context of large-scale city rendering in the Matrix-
City dataset (Li et al., 2023). Each city scene is processed into a set of multi-view images captured
from various viewpoints to ensure comprehensive coverage of the urban environment. The resolu-
tion of 1920× 1080 pixels is resized into 480× 270 due to its memory constraint. We partition the
city blocks into meta-training and meta-test sets, allocating 70% of the total blocks to meta-training
and the remaining 30% to meta-testing. Following standard NeRF practices, we employ a ten-layer
MLP with ReLU activations, configured with d = 1024, din = 5 for (x, y, z, θ, ϕ) coordinates,
where θ and ϕ represent viewing angles, and dout = 4 for RGB and density outputs. We reduce the
original hidden dimension by a half, configured with d = 512, as the computation of second-order
derivatives in longer sequences significantly increases memory requirements. Four sub-modules
are divided along spatial axes, meaning that each sub-module configured with d = 256, din = 5,
dout = 4. Following MegaNeRF (Turki et al., 2022), we aim not for the SOTA performance but for
the practicality and efficiency of our method in a city-scale volumetric rendering.

Results. Both Ours (mod) and Ours (MIM) show higher quality results compared to the
MAML+CL. The MAML+CL approach exhibits a symptom of forgetting during inner adaptation, as
reflected in the performance metrics. Throughout most of the experimental periods, Ours (MIM) at-
tains better performance than Ours (mod). Additionally, Ours (MIM) displays a more stable increase
in performance over time, a characteristic that is necessary for test-time optimization scenarios.
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Table 1: Performance comparison in terms of PSNR (with the best and second best) at three key
points: Step 1 (initial performance), Best (step), and Step 4096 (final performance). Methods are
categorized into offline learning (OL), Continual learning (CL), continual meta-learning (CML),
Meta-offline learning (MOL), and Meta-continual learning (MCL).

Modality Image

Dataset CelebA ImageNette FFHQ

Metric (PSNR) Step 1 Best (step) Step 4096 Step 1 Best (step) Step 4096 Step 1 Best (step) Step 4096

OL OL 11.78 38.15 (4096) 38.15 12.16 38.75 (4096) 38.75 12.78 32.98 (4096) 32.98

CL

CL 12.41 15.60 (256) 15.57 13.14 16.76 (64) 16.49 13.74 16.35 (128) 15.93

ER 12.53 43.90 (4096) 43.90 13.23 45.74 (4096) 45.74 14.87 35.30 (4096) 35.30

EWC 12.59 20.08 (256) 18.19 13.23 19.77 (256) 17.30 13.96 21.29 (512) 19.25

CML MER 11.90 21.97 (256) 20.27 12.28 21.31 (256) 19.28 12.88 23.09 (256) 20.61

MOL MOL 29.21 45.28 (4096) 45.28 24.35 45.68 (4096) 45.68 26.71 35.21 (4096) 35.21

MCL

MAML+CL 29.38 33.22 (64) 28.06 24.63 29.21 (64) 25.03 26.94 29.91 (64) 23.88

OML 28.81 31.64 (32) 23.06 24.04 26.66 (16) 17.96 26.60 28.65 (32) 22.23

Ours 29.29 45.40 (4096) 45.40 25.18 44.83 (4096) 44.83 27.20 35.89 (4096) 35.89

Modality Audio Video

Dataset LibriSpeech1 LibriSpeech3 VoxCeleb2

Metric (PSNR) Step 1 Best (step) Step 4096 Step 1 Best (step) Step 4096 Step 1 Best (step) Step 4096

OL OL 29.63 48.44 (4096) 48.44 29.63 38.61 (4096) 38.61 12.93 36.10 (4096) 36.10

CL

CL 31.07 32.83 (256) 32.77 30.85 32.31 (32) 31.34 15.00 19.80 (32) 18.18

ER 30.86 49.83 (4096) 49.83 30.42 38.49 (4096) 38.49 14.08 40.39 (4096) 40.39

EWC 30.98 32.92 (64) 32.43 30.75 32.32 (64) 30.91 15.13 20.82 (256) 19.04

CML MER 29.27 34.86 (2048) 34.85 29.39 33.19 (1024) 33.07 12.78 21.80 (256) 20.49

MOL MOL 40.74 55.76 (4096) 55.76 35.83 41.97 (4096) 41.97 28.21 41.75 (4096) 41.75

MCL

MAML+CL 41.30 43.40 (8) 37.63 36.47 37.47 (4) 28.98 28.45 30.05 (32) 25.04

OML 43.46 44.40 (16) 41.62 40.04 41.40 (8) 35.11 28.14 29.16 (16) 21.59

Ours 42.09 67.58 (4096) 67.58 38.84 51.09 (4096) 51.09 29.84 47.80 (4096) 47.80

Modality NeRF

Dataset MatrixCity-B5 MatrixCity-B6

Metric (PSNR) Step 1 Best (step) Step 1024 Step 1 Best (step) Step 1024

CL
ER 14.318 30.214 (3488) 26.339 6.956 28.869 (3984) 26.235

EWC 17.241 28.811 (3904) 24.781 10.442 28.457 (3856) 26.25

MOL MOL 22.901 30.569 (1024) 30.569 21.961 26.837 (1024) 26.837

MCL

MAML+CL 22.722 25.792 (1024) 25.792 22.253 25.218 (1024) 25.218

OML 23.082 26.5 (1024) 26.5 22.305 24.83 (1024) 24.83

Ours (mod) 23.885 32.712 (1024) 32.712 23.217 30.407 (1024) 30.407

Ours (MIM) 24.223 32.804 (1024) 32.804 23.341 30.761 (1024) 30.761

6 CONCLUSION

We introduced MCL-NF, a framework combining modular architecture and optimization-based
meta-learning for neural fields. Our approach, featuring FIM-Loss, effectively addresses catas-
trophic forgetting and slow convergence in continual learning. Experiments across diverse datasets
show superior performance in reconstruction quality and learning speed, especially in resource-
constrained environments. MCL-NF demonstrates potential for scalable, efficient neural field appli-
cations in complex, dynamic data streams.

Limitations. Despite its advantages, MCL-NF faces challenges: potential performance degradation
over very long, dissimilar task sequences; increased memory usage with task number growth; and
possible limitations in handling abrupt, significant data distribution changes. These areas present
opportunities for future research to enhance the framework’s real-world applicability.
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A APPENDIX

A.1 DETAILED PROOF OF FISHER INFORMATION MAXIMIZATION

Theorem 1 (Fisher Information and KL-Divergence). Let p(D|θ) and p(D|θ+∆θ) be two probabil-
ity distributions parameterized by θ and θ+∆θ respectively. The Kullback-Leibler (KL) divergence
between these distributions can be approximated as:

KL[p(D|θ)∥p(D|θ +∆θ)] ≈ 1

2
∆θTF(θ)∆θ (5)

where F(θ) is the Fisher Information Matrix.

Proof. We begin with the definition of KL-divergence Zhu et al. (2016):

KL[p(D|θ)∥p(D|θ +∆θ)] = ED∼p(D|θ)

[
log

p(D|θ)
p(D|θ +∆θ)

]
(6)

Expand log p(D|θ +∆θ) using Taylor series around θ Jiang (2021):

log p(D|θ +∆θ) ≈ log p(D|θ) + ∆θT∇θ log p(D|θ) + 1

2
∆θTHθ∆θ (7)

where Hθ is the Hessian of log p(D|θ). Substituting this into the KL-divergence:

KL[p(D|θ)∥p(D|θ +∆θ)] ≈ −ED∼p(D|θ)

[
∆θT∇θ log p(D|θ) + 1

2
∆θTHθ∆θ

]
(8)

The first term vanishes as E[∇θ log p(D|θ)] = 0 Jiang (2021). The negative expectation of the
Hessian is the Fisher Information Matrix:

F(θ) = −ED∼p(D|θ)[Hθ] (9)

Therefore, we arrive at the desired approximation Barajas-Solano & Tartakovsky (2019); Spantini
et al. (2015):

KL[p(D|θ)∥p(D|θ +∆θ)] ≈ 1

2
∆θTF(θ)∆θ (10)

A.2 CONVERGENCE ANALYSIS

We now analyze the convergence properties of our Fisher Information Maximization Stochastic
Gradient Descent (FIM-SGD) algorithm.
Theorem 2 (Convergence of FIM-SGD). Under the following assumptions:

1. The expected loss function L(θ) = ED[LFIM (θ;D)] is µ-strongly convex and has L-
Lipschitz continuous gradients Gong & Ye (2014).

2. The stochastic gradients are unbiased estimates of the true gradient: E[∇LFIM (θ;D)] =
∇L(θ) Gong & Ye (2014).

3. The variance of the stochastic gradients is bounded: E[∥∇LFIM (θ;D)−∇L(θ)∥2] ≤ σ2

Gong & Ye (2014).

4. The Fisher Information Matrix F(θ) is positive definite and its eigenvalues are bounded
between λmin and λmax Wilson & Murphey (2014).
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The FIM-SGD algorithm with a constant learning rate η satisfying 0 < η < 2µ
λmaxL2 converges in

expectation to the optimal parameter θ∗:

E[∥θt − θ∗∥2] ≤ (1− 2ηλminµ+ η2L2λ2
max)

t∥θ0 − θ∗∥2 + ησ2λ2
max

2λminµ− ηL2λ2
max

(11)

where t is the number of iterations.

Proof. Let Vt = ∥θt − θ∗∥2 be our Lyapunov function. The update rule for FIM-SGD is:

θt+1 = θt − ηF(θt)
−1∇LFIM (θt;Dt) (12)

where Dt is the mini-batch at iteration t. We analyze the expected decrease in Vt Wilson & Murphey
(2014):

E[Vt+1|θt] = E[∥θt − ηF(θt)
−1∇LFIM (θt;Dt)− θ∗∥2|θt] (13)

= Vt − 2η(θt − θ∗)TF(θt)
−1∇L(θt) + η2E[∥F(θt)−1∇LFIM (θt;Dt)∥2|θt] (14)

Using the µ-strong convexity of L(θ), we have:

(θt − θ∗)T∇L(θt) ≥ µ∥θt − θ∗∥2 (15)

And from the bounded eigenvalues of F(θ):

(θt − θ∗)TF(θt)
−1∇L(θt) ≥ λminµ∥θt − θ∗∥2 (16)

For the last term, using the L-Lipschitz continuity of ∇L(θ) and the bounded variance of stochastic
gradients Gong & Ye (2014):

E[∥F(θt)−1∇LFIM (θt;Dt)∥2|θt] ≤ λ2
max(L

2∥θt − θ∗∥2 + σ2) (17)

Combining these inequalities:

E[Vt+1|θt] ≤ (1− 2ηλminµ+ η2L2λ2
max)Vt + η2σ2λ2

max (18)

Taking the total expectation and applying this recursively:

E[Vt] ≤ (1− 2ηλminµ+ η2L2λ2
max)

tV0 +
ησ2λ2

max

2λminµ− ηL2λ2
max

(19)

which completes the proof.

A.3 GENERALIZATION BOUND

We now derive a generalization bound for our Fisher Information Maximization Loss.
Theorem 3 (Generalization Bound for FIM Loss). Let H be a hypothesis class with VC-dimension
d, and LFIM be our Fisher Information Maximization Loss. Then, with probability at least 1 − δ,
for all h ∈ H:

|LFIM (h)− L̂FIM (h)| ≤ O

(√
d log(N/d) + log(1/δ)

N

)
(20)

where LFIM (h) is the true expected Fisher Information Maximization Loss and L̂FIM (h) is the
empirical Fisher Information Maximization Loss.
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Proof. We begin by noting that our Fisher weights are bounded:

1 ≤ wi(θ) ≤ 1 + λFmax (21)

where Fmax is the maximum eigenvalue of F(θ) over all θ. Let W = 1 + λFmax.

We can now apply the standard VC-dimension based generalization bound to our weighted loss
function Yang & Honorio (2020); Luxburg & Schölkopf (2011). For any ϵ > 0:

P

(
sup
h∈H

|LFIM (h)− L̂FIM (h)| > ϵ

)
≤ 4S(H, 2N) exp

(
− Nϵ2

32W 2

)
(22)

where S(H, 2N) is the shattering coefficient of H on a sample of size 2N . Using the fact Luxburg &
Schölkopf (2011) that S(H, 2N) ≤ (2N)d for a hypothesis class with VC-dimension d, and setting
the right-hand side to δ, we get:

ϵ = O

(
W

√
d log(N/d) + log(1/δ)

N

)
(23)

Noting that W is a constant (with respect to N ), we arrive at the stated bound Chen et al. (2021).

B QUANTITATIVE RESULTS

The results in 1 indicate that our Meta-Continual Learning method, specifically Ours (MIM), gen-
erally demonstrates better initial performance and faster convergence across all tested modalities.
When compared to Offline Learning (OL) and Continual Learning (CL) approaches, our method
shows a consistently strong start, suggesting effective initialization and continual adaptation. In
terms of achieving the highest PSNR (Best Step), Ours (MIM) often performs at least as well
as Meta-Offline Learning (MOL), with significantly fewer optimization steps. Furthermore, Ours
(MIM) maintains competitive quality at later steps, indicating stability during the learning process.
CL methods, on the other hand, require much more optimization steps to reach comparable perfor-
mance levels, and even then, often fall short of Ours (MIM) in terms of reconstruction quality. This
trend is consistent across image, audio, video, and NeRF datasets in resource-constrained environ-
ments where rapid training is essential. Overall, the findings suggest that Meta-Continual Learning
can offer a robust alternative to more resource-intensive methods, without sacrificing reconstruction
quality.

We implement SSIM (Structural Similarity Index Measure) (Wang et al., 2004) for the image and
video domains, and PESQ (Perceptual Evaluation of Speech Quality) (Rix et al., 2001) for the audio
domain. In the table, we focus on a meta-continual learning specifically designed for learning to
continually learn neural radiance fields. We excluded the methods that are categorized as Continual
Bi-level optimization (Gupta et al., 2020; von Oswald et al., 2021; Wu et al., 2024) based on (Son
et al., 2023), since their settings differ from ours. MCL aims to create an initialization or strategy
that quickly adapts to new tasks while retaining prior knowledge. In contrast, the latter focuses on
adapting the meta-learner itself over time. Instead, we plan to experiment with multiple MAML
variants (Li et al., 2017; Antoniou et al., 2019; Nichol et al., 2018). The SSIM values show that our
approach (Ours) maintains strong visual similarity, achieving higher scores at Step 4096 across all
image and video datasets. Similarly, PESQ for the audio domain reveals that our method provides
consistent perceptual quality compared to others, especially for longer adaptation sequences (Step
4096). Notably, our approach outperforms baseline models in terms of both PSNR and perceptual
quality metrics, highlighting its robustness in maintaining quality during sequential learning.

C ABLATION STUDY

Our ablation study compared four variants of our method: modular (mod) and Mutual Information
Maximization (MIM) approaches, each with hidden dimensions of 256 and 512 4. Results show that
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Modality Image Video

Dataset CelebA ImageNette VoxCeleb2

Metric (SSIM) ↑ Step 1 Best (step) Step 4096 Step 1 Best (step) Step 4096 Step 1 Best (step) Step 4096

OL OL 0.329 0.969 (4096) 0.969 0.248 0.98 (4096) 0.98 0.347 0.967 (4096) 0.967

CL

CL 0.313 0.519 (64) 0.463 0.248 0.526 (128) 0.477 0.365 0.611 (64) 0.493

ER 0.316 0.547 (64) 0.504 0.273 0.555 (128) 0.489 0.438 0.629 (64) 0.505

EWC 0.321 0.63 (256) 0.503 0.251 0.617 (256) 0.475 0.369 0.648 (256) 0.526

CML MER 0.332 0.711 (256) 0.633 0.251 0.674 (256) 0.581 0.348 0.68 (256) 0.603

MOL MOL 0.82 0.995 (4096) 0.995 0.729 0.997 (4096) 0.997 0.807 0.991 (4096) 0.991

MCL

MAML+CL 0.822 0.92 (64) 0.816 0.742 0.884 (32) 0.789 0.815 0.888 (32) 0.773

OML 0.796 0.884 (32) 0.65 0.696 0.81 (16) 0.553 0.796 0.855 (16) 0.599

Ours 0.817 0.995 (4096) 0.995 0.751 0.996 (4096) 0.996 0.857 0.996 (4096) 0.996

Modality Audio

Dataset LibriSpeech1

Metric (PESQ) ↑ Step 1 Best (step) Step 4096

OL OL 1.03 1.82 (2048) 1.82

CL

CL 1.02 1.12 (2048) 1.12

ER 1.02 1.13 (4096) 1.13

EWC 1.02 1.12 (2048) 1.12

CML MER 1.03 1.16 (2048) 1.16

MOL MOL 1.33 2.48 (4096) 2.48

MCL

MAML+CL 1.37 1.62 (32) 1.59

OML 1.34 1.62 (512) 1.59

Ours 1.3 3.73 (4096) 3.73

Table 2: Evaluation results for various methods across multiple modalities (Image, Video, Audio)
and datasets. Metrics such as SSIM (for Image and Video) and PESQ (for Audio) are reported for
different steps of optimization. Best results are highlighted in bold.

MIM consistently outperforms the modular approach across all steps, regardless of dimension size,
indicating its significant contribution to the method’s effectiveness. Increasing the hidden dimension
from 256 to 512 generally improves performance, especially in later steps, with the improvement
more pronounced in the modular approach. Notably, the MIM variant with 256 dimensions of-
ten outperforms the modular variant with 512 dimensions, suggesting MIM achieves better results
with fewer parameters. All variants demonstrate consistent improvement over steps, showcasing
the method’s continual learning capability. The performance gap between variants widens as the
number of steps increases, highlighting the benefits of MIM and larger hidden dimensions in longer
sequences. These findings underscore the importance of both the MIM component and appropriate
dimensionality in our method’s overall performance.

To demonstrate the scalability and effectiveness of the MIM method over longer sequences, we
expanded the number of tasks to 5 and 10 5. The metrics were evaluated at steps doubling from 1 to
1024. Overall, ”Ours (MIM)” consistently outperforms ”Ours (mod)” in terms of PSNR, especially
at later steps. This suggests that the Fisher Information Maximization (MIM) strategy contributes
to improved reconstruction quality during extended optimization. This trend is observed in both the
5-task and 10-task scenarios.

D RESOLUTION-REDUCED SEQUENTIAL OPTIMIZATION

In this experimental setup, we focus on dividing images into lower resolutions. Specifically, an n×n
image is split into four smaller sub-images of resolution (n//2) × (n//2), where each sub-image
maintains the same height and width as the original image but with half the resolution. These smaller
sub-images are then optimized sequentially, enabling faster convergence by processing less complex
data in each optimization step. Importantly, the total image area remains unchanged, and only the
resolution is reduced while preserving essential content and structure for training.
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Modality Image Video

Dataset CelebA ImageNette VoxCeleb2

Metric (PSNR) ↑ Step 1 Best (step) Step 4096 Step 1 Best (step) Step 4096 Step 1 Best (step) Step 4096

OL OL 11.84 38.2 (4096) 38.2 12.19 38.87 (4096) 38.87 13 37.83 (4096) 37.83

CL

CL 17.63 26.3 (4096) 26.3 16.7 26.67 (2048) 26.67 17.53 33.77 (1024) 33.39

ER 17.63 26.5 (1024) 26.47 16.7 26.69 (2048) 26.66 17.53 33.79 (1024) 33.44

EWC 18.21 28.12 (4096) 28.12 17.01 26.88 (1024) 26.75 17.96 34.18 (4096) 34.18

CML MER 12.21 26.62 (4096) 26.62 12.56 26.62 (2048) 26.61 13.03 33.94 (4096) 33.94

MOL MOL 29.28 46.36 (4096) 46.36 24.52 48.55 (4096) 48.55 28.9 44.21 (4096) 44.21

MCL

MAML+CL 33.12 34.12 (4) 32.6 27.6 28.24 (2) 26.83 33.65 36.3 (16) 34.09

OML 32.55 33.69 (4) 33.14 26.96 27.53 (2) 26.85 34.05 36.67 (16) 35.19

Ours 24.22 48.94 (4096) 48.94 20.62 46.81 (4096) 46.81 24.81 42.31 (4096) 42.31

Modality Image Video

Dataset CelebA ImageNette VoxCeleb2

Metric (SSIM) ↑ Step 1 Best (step) Step 4096 Step 1 Best (step) Step 4096 Step 1 Best (step) Step 4096

OL OL 0.329 0.969 (4096) 0.969 0.248 0.98 (4096) 0.98 0.347 0.967 (4096) 0.967

CL

CL 0.469 0.915 (4096) 0.915 0.344 0.892 (4096) 0.892 0.438 0.93 (1024) 0.918

ER 0.469 0.916 (4096) 0.916 0.344 0.893 (2048) 0.892 0.438 0.93 (1024) 0.919

EWC 0.483 0.926 (4096) 0.926 0.357 0.892 (2048) 0.891 0.462 0.935 (2048) 0.932

CML MER 0.343 0.914 (4096) 0.914 0.258 0.882 (4096) 0.882 0.356 0.93 (4096) 0.93

MOL MOL 0.82 0.995 (4096) 0.995 0.729 0.997 (4096) 0.997 0.807 0.991 (4096) 0.991

MCL

MAML+CL 0.912 0.933 (64) 0.902 0.852 0.878 (32) 0.826 0.913 0.95 (16) 0.912

OML 0.892 0.925 (8) 0.915 0.805 0.836 (4) 0.822 0.913 0.952 (16) 0.925

Ours 0.669 0.996 (4096) 0.996 0.532 0.996 (4096) 0.996 0.659 0.984 (4096) 0.984

Table 3: This table presents the results of the experiment on resolution-reduced sequential opti-
mization for image, and video modalities. The table compares the performance of various methods,
including ”Ours,” in terms of image and video reconstruction quality at different optimization steps
(Step 1, Best Step, and Step 4096).

Steps 1 2 4 8 16 32 64 128 256 512
Ours (mod; 256) 23.885 24.205 24.334 25.436 26.332 27.342 28.663 30.089 31.124 32.088
Ours (MIM; 256) 24.223 24.64 24.655 25.471 26.387 27.362 29.031 30.281 31.186 32.437
Ours (mod; 512) 24.02 23.906 24.502 25.445 26.29 27.94 29.354 30.231 31.403 32.486
Ours (MIM; 512) 24.124 24.176 24.813 25.555 26.399 27.859 29.115 30.301 31.529 32.63

Table 4: Performance comparison of our methods across different model configurations (rows) and
optimization steps (columns). In each row, ’mod’ refers to modularization, and ’MIM’ to modular-
ization with mutual information maximization. The number next to ’mod’ or ’MIM’ indicates the
hidden dimension and the ray batch size for each iteration.

The experimental results demonstrate that our resolution-reduced sequential optimization approach
consistently outperforms other methods across image and video modalities. For the image datasets
(CelebA, ImageNette), our method (”Ours”) achieves the highest SSIM scores of 0.995 at step 4096,
surpassing upper bound approaches such as MOL. Similarly, for video data (VoxCeleb2), ”Ours”
yields the best SSIM score of 0.996 at step 4096, again outperforming competitors. These results
highlight the effectiveness of reducing image resolution while maintaining essential content, en-
abling faster convergence and improved reconstruction quality during extended optimization steps.
The advantage of our method becomes more apparent in later steps, where it consistently delivers
better results in terms of SSIM, confirming the benefits of the proposed optimization strategy.
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# of Tasks Method Step 1 Step 2 Step 4 Step 8 Step 16 Step 32 Step 64 Step 128 Step 256 Step 512 Step 1024
5 Ours (mod) 24.072 24.155 24.484 24.696 25.072 25.631 26.645 28.075 29.665 30.836 31.681

Ours (MIM) 24.143 24.276 24.394 24.775 25.102 25.61 26.83 28.23 29.73 31.005 31.822
10 Ours (mod) 23.415 23.514 23.618 24.001 24.298 24.768 26.037 27.62 28.88 29.76 31.069

Ours (MIM) 23.493 23.548 23.783 24.119 24.464 24.793 26.238 27.667 28.886 29.71 31.098

Table 5: Performance metrics (PSNR) for ”Ours (mod)” and ”Ours (MIM)” across different opti-
mization steps, for 5 and 10 tasks. The metrics are evaluated at steps doubling from 1 to 1024.

E COMPUTATIONAL COST ANALYSIS

We note that the actual computational cost can vary significantly based on the specific hardware
and the software implementation used. In this work, we evaluate the computational cost using our
PyTorch implementation, conducted on NVIDIA TITAN X Pascal GPUs which have 12 GB of
VRAM.

Table 6 presents a comparison of the number of parameters, GPU memory consumption (in MiB),
test-time optimization speed (measured in episodes per second), and reconstruction quality (PSNR)
on the CelebA dataset. An episode corresponds to a single image with a resolution of 180 × 180,
and each episode consists of 4 tasks, with each task corresponding to an image patch of size 180 ×
45. The reported test-time optimization costs are based on a batch size of 1, with 128 optimization
steps per task, performed across a total of 4 tasks.

Our proposed method demonstrates a compelling balance of performance and efficiency in the meta-
continual learning landscape. Despite a marginal increase in parameters (201.23K compared to
198.91K for other methods), our approach achieves the highest PSNR of 38.10, surpassing all other
techniques including offline and meta-offline learning. Notably, it accomplishes this while utilizing
the least GPU memory (787 MiB), significantly lower than the next best performer. The test-time
optimization (TTO) speed of 68.27 ep/s is competitive, outpacing several other methods including
traditional continual learning approaches. This combination of top-tier performance (PSNR) with
minimal memory footprint showcases our method’s efficiency in resource utilization. While not
the fastest in terms of TTO speed, the substantial gains in output quality and memory efficiency
make our approach particularly valuable for applications where high-quality results and resource
constraints are critical factors, especially in continual learning scenarios.

Category Method Parameters (↓) GPU Memory (↓) TTO Speed (↑) PSNR (↑)

Offline Learning OL 198.91K 1068 MiB 65.51 ep/s 25.18

Continual Learning

CL 198.91K 989 MiB 59.90 ep/s 15.55

ER 198.91K 991 MiB 37.20 ep/s 30.83

EWC 198.91K 968 MiB 70.45 ep/s 19.70

Continual Meta-Learning MER 198.91K 890 MiB 9.27 ep/s 21.69

Meta-Offline Learning MOL 198.91K 1044 MiB 79.02 ep/s 37.69

Meta-Continual Learning

MAML+CL 198.91K 977 MiB 65.12 ep/s 33.04

OML 198.91K 1011 MiB 160.29 ep/s 30.85

Ours 201.23K 787 MiB 68.27 ep/s 38.10

Table 6: Computational cost comparison.

Method Number of Networks Hidden Dimension Number of Layers Parameter Count (with Bias)
Un-modularized 1 512 10 2,628,099

Modularized 4 256 10 4 ×659, 459 = 2, 637, 836

Table 7: Comparison of parameter counts for different network configurations, including un-
modularized and modularized versions with bias terms included.
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F VISUALIZATIONS

Our proposed method demonstrates superior performance across diverse image datasets, consis-
tently achieving the highest PSNR scores. In the CelebA dataset, our approach attains a PSNR of
45.4, significantly outperforming other methods, with the nearest competitor (ER) at 43.90. The vi-
sual quality of our result closely matches the ground truth, preserving fine facial details and overall
image clarity. For ImageNette, our method again leads with a PSNR of 44.83, showcasing its ability
to handle complex, non-facial images with high fidelity. In the challenging FFHQ dataset, which
features high-resolution facial images, our method achieves a PSNR of 35.89, surpassing all other
approaches. Notably, our results consistently show better preservation of intricate details, accurate
color reproduction, and reduced artifacts compared to other methods. This performance is particu-
larly impressive given that it maintains high quality across different image types and complexities,
from facial features to intricate object details, demonstrating the robustness and versatility of our
approach in continual learning scenarios for image reconstruction tasks.

GT CL ER EWC MER MAML+CL OML Ours

PSNR 15.60 43.90 20.08 21.97 33.22 31.64 45.4
(a) CelebA

PSNR 16.76 45.74 19.77 21.31 29.21 26.66 44.83
(b) ImageNette

PSNR 16.35 35.30 21.29 23.09 29.91 28.65 35.89
(c) FFHQ

Figure 3: Qualitative results of image reconstruction. The first column represents the ground truth,
while the remaining columns show the reconstruction results from different methods. The numbers
below each image indicate the PSNR with respect to the ground truth. These images correspond to
the Best results (those with the highest PSNR among 1 to 4096 steps), as presented in Table 1. For
detailed results, please refer to Table 1.
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Step 1 Step 2 Step 4 Step 8 Step 16 Step 32 Step 64

Step 128 Step 256 Step 512 Step 1024 Step 2048 Step 4096 GT

(a) mod

Step 1 Step 2 Step 4 Step 8 Step 16 Step 32 Step 64

Step 128 Step 256 Step 512 Step 1024 Step 2048 Step 4096 GT

(b) mim

Step 1 Step 2 Step 4 Step 8 Step 16 Step 32 Step 64

Step 128 Step 256 Step 512 Step 1024 Step 2048 Step 4096 GT

(a) mod

Step 1 Step 2 Step 4 Step 8 Step 16 Step 32 Step 64

Step 128 Step 256 Step 512 Step 1024 Step 2048 Step 4096 GT

(b) mim

Figure 4: Visualization of Reconstruction Progression Over Steps for ”mod” and ”mim” Methods.
(a) shows the progression of reconstruction for the ”mod” (modularized) version, and (b) shows
the ”mim” (modularized with Fisher Information Maximization) version. Each row presents the
reconstructed scene at different optimization steps (Step 1 to Step 4096) along with the ground truth
(GT). The visualization demonstrates how the quality of reconstructed details gradually improves as
the number of steps increases, highlighting the efficiency of both methods in learning the underlying
structure of the scene, with ”mim” exhibiting more rapid refinement.
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