A Datasheet for Datasets

A.1 Motivation
Question 1: For what purpose was the dataset created?

The dataset was created as a test-bed to evaluate the systematic generalization ability of visual
imagination models, with an emphasis on compositionality at the level of intra-object factors (e.g.,
color, shape, size, etc.) and visual complexity.

Question 2: Who created the dataset (e.g., which team or research group) and on behalf of
which entity (e.g., company, institution, organization)?

The dataset was created by the authors who are affiliated with Machine Learning and Mind Lab
(MLML) situated in the School of Computing at Korea Advanced Institute of Science and Technology
(KAIST) and Rutgers University.

Question 3: Who funded the creation of the dataset?

This work is supported by Brain Pool Plus Program (No. 2021HID3A2A03103645) through the
National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT.

A.2 Composition

Question 1: What do the instances that comprise the dataset represent (e.g., documents, photos,
people, countries)?

The dataset comprises several tasks. Within each task, we provide 1) several training splits of different
difficulties of systematic generalization, and 2) a test split. Within each split, we provide several pairs
of images, with the first image in each pair serving as the input and the second image serving as the
prediction target. These images are purely synthetic and procedurally generated using the Blender’
and the Spriteworld API®. The images showcase multi-object scenes where the objects have simple
shapes (e.g., sphere, cube), simple colors (e.g., red, blue), standard materials (e.g., brick, rubber,
metal), and multiple sizes (e.g., small, medium, large). No real data (e.g., about people or countries)
was collected or used in our data creation process. Along with the images, we also provide scene
meta-data files detailing the configurations of the objects, lighting, camera, and background of the
scene. We also provide the ground truth object masks.

Question 2: How many instances are there in total of each type?

In our dataset, there are a total of 12 tasks, 4 tasks per environment (SVIB-dSprites, SVIB-CLEVR,
and SVIB-CLEVRTex). Within each task, we provide 4 training splits corresponding to « values
0.0, 0.2, 0.4, and 0.6. The training splits 0.2, 0.4, and 0.6 are denoted as Hard, Medium, and Easy,
respectively. Within each training split, we provide 64000 input and target images. Furthermore,
within a task, we provide a test split containing 8000 out-of-distribution input and target images. We
illustrate the complete directory structure of our dataset in Figure 6.

Question 3: Does the dataset contain all possible instances or is it a sample (not necessarily
random) of instances from a larger set?

For each intra-object factor (e.g., color or shape), we define a library of primitives from which the
factor takes values. These libraries of primitives are finite meaning that these libraries are not an
exhaustive list of all possible values that a factor can theoretically take. Nevertheless, our libraries
are designed to capture all standard factor values as also done in the previous works [54, 55].

"https://www.blender.org
Shttps://github.com/deepmind/spriteworld

18



Table 2: Factor primitives for various object properties in SVIB-dSprites.

Shape Color (RGB) Size

circle (0, 255, 0) 0.125
triangle (255, 0, 255) 0.225
square (0, 127, 255) 0.325
star_4 (255, 127, 0) 0.425

Table 3: Factor primitives for various object properties in SVIB-CLEVR.

Shape Color (RGB) Size  Material
SmoothCube_v2 (255, 0, 0) 1.0 Rubber

Sphere (0, 255, 0) 1.5 MyMetal
SmoothCylinder (0, 0, 255) 2.0

Suzanne (0, 255, 255)

(255, 0, 255)
(255, 255, 0)

Question 4: What data does each instance consist of?

Each instance consists of 4 files: source.png, source. json, target.png, target. json. The
source.png and target . png are PNG files containing the 128 x 128-sized source and target images,
respectively. The source. json and target. json are JSON files detailing the scene meta-data of
the source and the target scenes, respectively. See Figure 7 for an illustration of the JSON contents.

Question 5: Is there a label or target associated with each instance?

Yes, in each instance, the prediction target is a 128 x 128 RGB image (denoted as the target image)
and is provided as the PNG file target . png.

Question 6: Is any information missing from individual instances?

No, our scenes are not partially observable as we took care to ensure that all objects in our scenes have
at least a certain number of visible pixels in the observation images source.png and target.png.

Question 7: Are relationships between individual instances made explicit (e.g., users’ movie
ratings, social network links)?

No relationships are present between individual instances.

Question 8: Are there recommended data splits (e.g., training, development/validation,
testing)?

Yes, for each task, we provide 4 training splits and one OOD test split. The 4 training splits capture
different levels of systematic generalization difficulty and correspond to o values 0.0, 0.2, 0.4, and
0.6. We do not provide a separate validation split, it is completely up to the learner how they want
to leverage the training splits for validation e.g., via hold-out validation, K -fold cross-validation,
leave-one-out validation, etc.

Question 9: Are there any errors, sources of noise, or redundancies in the dataset?

No.

Question 10: Is the dataset self-contained, or does it link to or otherwise rely on external
resources (e.g., websites, tweets, other datasets)?

Yes, the dataset is self-contained and does not require external resources to work with.

19



Table 4: Factor primitives for various object properties in SVIB-CLEVRTex. For materials, we use 8
free textures provided by Poliigon (https://www.poliigon.com)

Shape Size Material
Cone 1.0 PoliigonBricksFlemishRed001
Cube 1.5 PoliigonBricksPaintedWhiteOO1
Cylinder 2.0 PoliigonChainmailCopperRoundedThin001
Suzanne PoliigonFabricDenim003
Icosahedron PoliigonFabricFleece001
NewellTeapot PoliigonMetalSpottyDiscoloration001
Sphere PoliigonRoofTilesTerracotta004
Torus PoliigonWoodFlooring061

Question 11: Does the dataset contain data that might be considered confidential (e.g., data
that is protected by legal privilege or by doctor-patient confidentiality, data that includes the
content of individuals’ non-public communications)?

No.

A.3 Collection Process

Question 1: How was the data associated with each instance acquired?

The data was procedurally generated using the Spriteworld and Blender APIs.

Question 2: What mechanisms or procedures were used to collect the data (e.g., hardware
apparatus or sensor, manual human curation, software program, software API)?

The SVIB-dSprites images were generated from the Spriteworld API, the SVIB-CLEVR images
using Blender 2.78, and the SVIB-CLEVRTex using Blender 2.93. All implementations were done
in Python. The Blender processes were run on GPU instead of CPU-only for faster rendering. In the
creation of individual splits such as specific training or testing splits, a single instance of a modern
Nvidia GPU was enough, demanding less than 25GB of GPU memory.

Question 3: If the dataset is a sample from a larger set, what was the sampling strategy (e.g.,
deterministic, probabilistic with specific sampling probabilities)?

To generate a specific split e.g., a specific training or testing split, the combinations of factor values
that would be exposed in that split were predefined as discussed in Section 2. From this predefined
set of combinations, a specific combination was selected uniformly at random to instantiate each
object within the scene. If a generated scene had an object that was fully occluded by another, or if
two objects were too close, such scenes were discarded.

Question 4: Who was involved in the data collection process (e.g., students, crowdworkers,
contractors) and how were they compensated (e.g., how much were crowdworkers paid)?

The authors of this paper alone were involved.

Question 5: Over what timeframe was the data collected?

The data generation process took several months and involved multiple refinement and deliberation
steps.

Question 6: Were any ethical review processes conducted (e.g., by an institutional review
board)?

No.

20



A.4 Preprocessing / Cleaning / Labeling

Question 1: Was any preprocessing/cleaning/labeling of the data done (e.g., discretization or
bucketing, tokenization, part-of-speech tagging, SIFT feature extraction, removal of instances,
processing of missing values)?

No. Since our data was procedurally generated, there was no raw data collected or used. As such,
there was nothing to preprocess or clean.

Question 2: Was the raw data saved in addition to the preprocessed/cleaned/labeled data (e.g.,
to support unanticipated future uses)?

Not Applicable.

Question 3: Is the software that was used to preprocess or clean or label the data available?

Not Applicable.

A.5 Uses

Question 1: Has the dataset been used for any tasks already?

Yes, the dataset has been used in our paper to evaluate various state-of-the-art architectures in terms
of their ability to systematically generalize.

Question 2: Is there a repository that links to any or all papers or systems that use the dataset?

We plan to list these on the official website of this benchmark.

Question 3: What (other) tasks could the dataset be used for?

Given that we provide scene metadata and object masks, future explorations might investigate the
utility of mask supervision in solving our tasks. That said, we also note that using the scene metadata
and object masks is not the intended path to solving our benchmark.

Question 4: Is there anything about the composition of the dataset or the way it was collected
and preprocessed/cleaned/labeled that might impact future uses?

No, the dataset was procedurally generated. No real data about people was used. As such, it is
unlikely that using our data would cause direct harm. While the intended goal of our benchmark is to
spur the development of more capable models, future deployments of such models should be mindful
of any potential harms.

Question 5: Are there any tasks for which the dataset should not be used?

We are not aware of tasks that, if performed via our dataset, would lead to direct negative conse-
quences.

A.6 Distribution

Question 1: Will the dataset be distributed to third parties outside of the entity (e.g., company,
institution, organization) on behalf of which the dataset was created?

Yes, the dataset will be publicly available on our official website.

Question 2: How will the dataset be distributed (e.g., tarball on website, API, Github)?

The dataset will be distributed via the official project page https://
systematic-visual-imagination.github.io/.

21



Question 3: When will the dataset be distributed?

The full dataset will be distributed upon acceptance of the paper. For the purposes of the review, a
smaller sample of the dataset containing 100 instances per split is available now.

Question 4: Will the dataset be distributed under a copyright or other intellectual property (IP)
license, and/or under applicable terms of use (ToU)?

The dataset will be released under the most liberal Creative Commons license i.e., CC0O. While not
mandatory, we do encourage future works to cite our paper when using our benchmark.

Question 5: Have any third parties imposed IP-based or other restrictions on the data
associated with the instances?

We are not aware of any IP-based restrictions imposed by third parties on our dataset.

Question 6: Do any export controls or other regulatory restrictions apply to the dataset or to
individual instances?

We are not aware of any.

A.7 Maintenance

Question 1: Who is supporting/hosting/maintaining the dataset?

The research lab at KAIST led by Sungjin Ahn will maintain the dataset.

Question 2: How can the owner/curator/manager of the dataset be contacted (e.g., email
address)?

The manager can be contacted via email: sungjin.ahn@kaist.ac.kr

Question 3: Is there an erratum?

If errors are found at a later date, we will provide an erratum on the official website.

Question 4: Will the dataset be updated (e.g., to correct labeling errors, add new instances,
delete instances)?

Yes, in case there are updates, we will release the new version on our website. The older versions will
also remain available.

Question 5: If the dataset relates to people, are there applicable limits on the retention of the
data associated with the instances (e.g., were individuals in question told that their data would
be retained for a fixed period of time and then deleted)?

Not Applicable.

Question 6: Will older versions of the dataset continue to be supported/hosted/maintained?

Yes.

Question 7: If others want to extend/augment/build on or contribute to the dataset, is there a
mechanism for them to do so?

Yes, we shall release all our source code, including the code we used to generate the datasets under a
highly permissive CCO license. Others can freely download, modify and create their own variants of
the dataset.

A.8 Author Statement of Responsibility

We, the authors, confirm that we bear all responsibility in the case of violation of rights and licenses.

22



Table 5: Accuracy of Ground-Truth Factor Prediction in SVIB-CLEVRTex. We perform a factor
prediction task where we take SVIB-CLEVRTex images as input and predict the factors for the scene.
We indicate these by Shape;, Size;, Mat;, where 7 = 1, 2 denotes object index in the scene based on
closeness to the camera. We also predict the background material denoted with Maty,.

Test Accuracy Shape, Shape,, Sizeq Sizeo Mat, Maty Maty,,
Top-1 Acc. (%) 92.81 88.39 94.99 93.46 95.67 92.98 99.99

B Additional Experiment Results

In this section, we provide additional experimental results that could not be included in the main
paper due to the limitation of space.

B.1 MSE on the Benchmark Tasks

In Figure 10, we report the in-distribution and out-of-distribution MSE for all benchmark tasks.

B.2 Generalization Gap on the Benchmark Tasks

In Figure 11, we report the systematic generalization gap for all benchmark tasks. The systematic
generalization gap is defined as the difference between the OOD MSE and in-distribution MSE in the
log scale.

B.3 Qualitative Results

In Figures 12, 13 and 14, we visualize the predicted images of various baselines on the benchmark
tasks.

B.4 MSE on the Analysis Tasks

In Figure 15, we plot the MSE performance on the analysis tasks. A detailed description of how the
analysis tasks are constructed is provided in Section D.1.2.

B.5 Comparison of In-Distribution Performance between Image-to-Image and State-Space
Models

In Figures 4 and 10, one observation is that state-space models (SSMs) generally have worse in-
distribution MSE than image-to-image models. This can be expected since the image-to-image
models minimize the prediction error directly in the image space while state-space models minimize
the prediction error in the latent space which is an indirect objective.

B.6 Factor Prediction

The SVIB-CLEVRTex environment, which is highly textured data, has a relatively high level of visual
complexity. Consequently, within this environment, the importance of visual recognition abilities can
significantly increase. Therefore, we conducted an experiment in which we trained a simple 4-layer
CNN encoder to take SVIB-CLEVRTex images as input and predict GT labels to ascertain whether
128 x 128 image resolution can provide sufficient information in this setting.

C Additional Related Work

Benchmarks for Video Prediction. In the realm of video prediction, there are several real-world
benchmarks [33, 50, 20, 21]. However, these cannot be used to study systematic visual imagination
since, being real-world datasets, do not provide control over factor combinations and their demarcation
between training and testing. Although synthetic benchmarks provide more control over such data-
generating factors: [11, 94, 37, 110, 82, 9, 65], such benchmarks have only so far focused on
in-distribution video prediction and do not focus on systematic out-of-distribution evaluation.

23



Table 6: Limitations of Existing Studies: The table contrasts our proposed Systematic Visual
Imagination Benchmark (SVIB) with the existing studies. We note that existing studies do not offer a
benchmark for evaluating systematic perception ability in the image domain.

Study Task Modality Systematic Perception Perceptual Complexity
Laneuage SCAN [63] Text — Text Not Applicable Not Applicable
guag gSCAN [83] Image + Text — Text v (Toy Multi-Object)

. Xu et al. [109] Image — Latent v (Toy Single-Object)
Disentanglement Montero et al. [74] Image — Latent v (Toy Single-Object)

X . ARC [19] Image — Image X (Non-Systematic) X (Very Low Resolution)
Vistall gt Sort-of-ARC [4] Image — Image X (In-Distribution) X (Very Low Resolution)
SVIB (Ours) Image — Image v v (Realistic Multi-Object)

Benchmarks for Generalization in RL. Although OGRE and NovPhy [1, 32] provide a platform
to study out-of-distribution objects, these lack well-defined primitives and systematic evaluation
unlike ours. [56] focuses on causal induction rather than systematic perception unlike ours. [31] also
provides a platform to study out-of-distribution environments, however, its scene dynamics involve
interactions between low-level powder particles rather than high-level abstractions, unlike ours. Yet,
all of these are RL benchmarks meaning that they do not provide an isolated way of studying the
world modeling itself which is possible in our benchmark.

Large-Scale Pretraining and Prompting. Large-scale pretraining of vision models followed
by prompting has shown remarkable zero-shot abilities. Some of these are focused on performing
classification or class-conditional image generation via prompting [51, 104] unlike ours which focuses
on image-to-image generation tasks. A more recent line focuses on image-to-image prediction via
prompting [100, 8, 101, 93]. A large-scale pre-trained image-to-image model can indeed have
capabilities as a world model given appropriate in-context prompts. However, since large-scale
pretraining is done on real datasets without access to the underlying factors, it is difficult to quantify
how well the pre-trained model generalizes. On the other hand, in our benchmark, the underlying
factors are known and generalization ability can be clearly assessed in terms of « required for task
success. Furthermore, large-scale pretraining is an expensive endeavor and which makes it difficult to
quickly test and analyze models. On the other hand, with our simple and lightweight benchmark, it
is possible to test a model with less than a single modern GPU within a 2-day training timeframe.
There have been some studies on the compositional generalization ability of large models, however,
to our knowledge, these are confined to the text domain [64, 3].

D Details of the Benchmark

D.1 Rule Definitions

In this section, we will provide a pseudo-code for all the rules proposed in this benchmark. We first
describe notations that we use in our pseudo-code and then proceed to describe the rules.

Symmetricity. Our rules are designed to be applied symmetrically to both objects. As such, we
describe the rule definitions relative to just one of the objects that we denote as self. We will
denote the other object as other. We will access a factor of an object using square brackets e.g.,
other[‘color’] shall denote the color of the other object.

Integer Factor Value. In the following descriptions, we will assume that the value of a fac-
tor is represented as an integer. For instance, the color of an object self [‘color’] can take
avalue in 0,1,... ,num_colors — 1, where num_colors is the total number of color primitives
in the color vocabulary. Similarly, the shape of an object self [‘shape’] can take a value in
0,1,...,num_shapes — 1, where num_shapes is the total number of shape primitives in the shape
vocabulary.

D.1.1 Benchmark Rules

We define four benchmark tasks for each subset: SVIB-dSprites, SVIB-CLEVR, and SVIB-
CLEVRTex. These tasks align with the four rule categories outlined in Section 2.

24



Single Atomic. In this task, the transformation is executed by swapping the shapes of the two objects
in the input image. For brevity, we sometimes call it the Shape-Swap task and denote it as S-A.

self [‘shape’] < other[‘shape’]

Single Non-Atomic. This task involves a transformation where the shape of each object is updated
based on the shapes of both objects in the input image, as determined by a lookup table. For brevity,
we sometimes denote this task as S-NA.

self [‘shape’] « (self[‘shape’] + other[‘shape’]) mod num_shapes

Multiple Atomic. In this task, the transformation involves simultaneous updates to the color and
size of each object. The new color is determined by the object’s own shape, and the new size is
determined by the color of the other object. Both determinations are made by a lookup table. For
brevity, we sometimes denote this task as M-A.

self[‘color’] < self[‘shape’] mod num_colors

self[‘size’] < other[‘color’] mod num_sizes

Multiple Non-Atomic. In this task, the transformation involves simultaneous updates to the color
and size of each object. The new color is determined by the object’s own shape and quadrant, and the
new size is determined by the other object’s color and quadrant. Both determinations are made by a
lookup table. For brevity, we sometimes denote this task as M-NA.

self[‘color’] - (self[‘shape’]
+ quadrant (self[‘position’])) mod num_colors
self[’size’] + (other[‘color’]
+ quadrant (self[‘position’])) mod num_sizes

For SVIB-CLEVRTex, the color factor indicates texture.

D.1.2 Analysis Tasks

We design 16 analysis tasks, a broad pool of tasks from which we eventually choose the rules to
construct the final benchmark. The analysis rules in these tasks are designed to be broad-based by
keeping the following points in mind:

1. All rules taken together should cover all factors.

2. All rules taken together should cover various types of factor interactions: no interaction,
interactions between factors of the same object, and interactions between factors of different
objects.

With these design considerations we design the rules as shown in Figure 16. For this, we first create
four atomic rules. We then construct rules with greater complexity by incrementally adding factors
and parent edges to the causal graph. By analyzing the model performance on these rules in the
dSprites environment, we choose 4 rules—one per each rule complexity category—that will be used
to create the final benchmark tasks. The rules for the final benchmark tasks are chosen by identifying
the rules for which Oracle can solve the tasks well while the other baselines struggle. This is done to
balance the difficulty and solvability of our benchmark. The fact that Oracle can solve the tasks shows
that our tasks are indeed solvable and do not pose an insurmountable challenge to the community. At
the same time, we also ensure that the tasks we choose are difficult to solve for the current models.
Note that it is expensive to run 5 baselines on 16 tasks (totaling 80 experiments) for all environments.
Therefore, we perform the analysis experiments only in the dSprites environment. The 4 finalized
rules are then used for SVIB-CLEVR and SVIB-CLEVRTex as well. When adopting the finalized
rules to SVIB-CLEVRTex, we interpret the color factor of the SVIB-dSprites environment as the
texture factor of the SVIB-CLEVRTex environment.

D.2 Core Combinations

To show each primitive in the visual vocabularies individually during training, we create a set of core
combinations. This is the smallest set that contains all visual primitives at least once. Given the factor
vocabularies V1, ..., Vs, we construct the core combinations as described in Algorithm 1.

25



Algorithm 1 Collecting Core Combinations

Input: Vocabularies Vy, ...,V
Output: Set C containing core combinations, each combination represented as tuple.

Initialize an empty set C
N + maxM_, [V,

fori=0to N — 1do
Initialize an empty tuple T’
for m = 1to M do
Append sz modulo |V, | toT
end for
Add T toC
: end for

RN AR

— e
LA e

: return C

—_
W

E Details of the Baselines

In this section, we provide the details of the implementation of the baselines. In Table 7, we report
the hyperparameter for modules used in our baselines.

E.1 Image-to-Image Models

The image-to-image models consist of an encoder and a decoder.
e = Encodery(x) = ¥ = Decoder, (e)

We implement two variants for the encoder: CNN and ViT. To implement the decoder, we adopt a
transformer decoder. The complete model is trained in an end-to-end manner by minimizing the mean
squared error (MSE) between the predicted image and the target image, i.e., £(0,7) = ||y — y||>.

E.2 State-Space Models
To train the modules of the state-space models, we adopt the following three-stage approach:

1. In the first stage, we train the encoder Encoder,, network. For this, we use the combined dataset
of input and target images of a given task.

2. In the second stage, we freeze the Encodery and train only the dynamics model Dynamics, via
a simple latent-level MSE loss: £() = ||Dynamics,(zx) — zy||?>. This dynamics model is
implemented as a 4-layer transformer.

3. In the third stage, we freeze the encoder ¢ and the dynamics model 6 and train a probe
parametrized by «. The probe takes the latent z,, predicted by the dynamics model and decodes it
to render the target image y. We deliberately implement the probe as a transformer decoder using
the same implementation that was also used for the Image-to-Image models and the Oracle to
perform a fair comparison of performance across baselines.

E.2.1 SSM-VAE

We train the VAE on the task images using its standard auto-encoding objective. After training the
VAE, we use the mean of the posterior network as the Encoder (+) to acquire latent representations of
task images. Given the latent representations, we train a dynamics model to predict the target latent
given the input latent by minimizing a latent-level MSE objective.

E.2.2 SSM-Slot

We train SAVi in a fully unsupervised manner, by considering input and target images (x,y) from a
task as a 2-frame video. After training the SAVi, we utilize the encoder portion to obtain the aligned

26



Table 7: Baseline Hyperparameters. In this table, we provide the hyperparameters for all baselines
evaluated in our experiments.

Benchmark Subset

Module Hyperparameter SVIB-dSprites SVIB-CLEVR  SVIB-CLEVRTex
General Batch Size 32 40 40
Training Steps 160K 160K 160K
CNN Encoder Kernel Size 5 5 5
Stride 2 2 2
Padding 2 2 2
Hidden Size 64 64 64
Learning Rate 0.0001 0.0001 0.0001
ViT Encoder # Encoder Blocks 8 8 8
# Encoder Heads 8 8 8
Hidden Size 192 192 192
Dropout 0.1 0.1 0.1
Learning Rate 0.0001 0.0001 0.0001
SSM-VAE # Dynamic Blocks 4 4 4
VAE Latents 64 64 64
VAE g8 1.0 1.0 1.0
VAE o 0.01 0.01 0.01
Learning Rate 0.0003 0.0003 0.0003
SSM-Slot # Dynamic Blocks 4 4 4
# Dynamic Heads 4 4 4
# Slots 4 4 4
Slot Size 64 64 64
# Iterations 3 3 3
Learning Rate 0.0002 0.0002 0.0002
Transformer Decoder ~ # Decoder Blocks 8 8 8
# Decoder Heads 4 4 4
Patch Size 4 x 4 pixels 4 x 4 pixels 4 x 4 pixels
Hidden Size 192 192 192
Dropout 0.1 0.1 0.1
Learning Rate 0.0003 0.0003 0.0003

slot representations for the task images. Given the slot representations, we train a dynamics model to
predict the slots for the target image given the slots for the input image by minimizing a slot-level
MSE objective.

E.3 Oracle

Oracle is designed to bypass the perception step by directly taking the ground truth scene factors
as input. Oracle consists of an encoder that maps the ground truth scene factors to a representation
comprised of a set of vectors e € RIVM+EG) XD where N is the number of objects, M is the number
of factors per object and G is the number of global scene factors such as background texture, lighting,
camera, etc. D is the size of each embedding. In e, the categorical factors are represented via learned
embeddings while the float factors are represented as sine-cosine embeddings. With this design,
Oracle has the perfect systematic generalization ability for perception since it always receives a
correctly factored multi-vector representation as the input, regardless of what the input image is.
Finally, a transformer decoder decodes e to predict the target image.

e = Encoder(sx) = ¥y = TransformerDecoder., (e)

E.4 Transformer Decoder

In previous sections, we refer to the use of a transformer decoder for 1) predicting the target image in
the image-to-image models and 2) as a probe to predict the target image given the predicted target
state by the SSMs. In this section, we describe the implementation of this transformer decoder.

27



Given an input representation, the transformer decoder predicts the patches of the target image.
With Hyaeh X Whaen as the dimensions of a patch, an H x TV image can be seen as a collection of

L= % patches. The transformer is given a collection of positional embeddings as input—
one for each of the L patches. Within the transformer, a layer of transformer performs self-attention
between these patches, cross-attention on the given input representation to decode, followed by a
standard MLP layer. All these steps are done with residual connections. The output of the transformer
is L embeddings. Each of these embeddings is mapped and reshaped using a linear layer to generate
each patch of size Hyaeh X Wpaeh X C, where C' is the number of channels (C' = 3 in our case for
RGB images).

A similar decoder design has also been employed in models such as MAE and OSRT [43, 84].
Compared to CNN decoders which have local receptive fields, the transformer enables much longer
range interactions via the attention layers [77, 18].

F Discussion

Balancing Difficulty and Solvability. Although our results show that our benchmark is unsolved,
yet, while designing this benchmark, we took caution to avoid posing an excessively difficult or
impossible challenge to the community. The solvability of our benchmark is confirmed by the success
of Oracle on our benchmark. Such solvability is a crucial aspect of our benchmark which sets us
apart from other benchmarks like ARC [19] which eventually turned out too difficult.

Alpha Efficiency. A model that can generalize with smaller « can be considered superior to a model
that requires a much larger « value to generalize. By providing the ability to measure the required
«, our benchmark provides a novel measurable objective for making new modeling advances. For
instance, although ViT can generalize on SVIB-dSprites for o > 0.4, Oracle can do it with smaller
a > 0.2, making it superior to ViT.

G Impact Statement

Our work in this paper focuses on the development of a novel benchmark, designed to evaluate the
systematic visual imagination capabilities of vision and machine learning models. Our benchmark
uses procedurally generated scenes and does not involve sensitive personal data or human workers.
While our benchmark targets the development of more robust and effective machine learning models,
we urge that models tested and improved upon using our benchmark should follow strong ethical
standards. They should refrain from deployment in potentially harmful use cases, such as surveillance
or spreading misinformation. Despite these broader ethical considerations, our work does not pose
immediate ethical concerns.

H Reproducibility Statement

Our experimental setup was implemented using PyTorch [78], with each experiment requiring less
than 20GB of GPU memory and concluding within a two-day timeframe. The complete benchmark
and the code used to generate the benchmark as well as that used to conduct experiments is made
accessible via our project page: https://systematic-visual-imagination.github.io.

28



data (183GB)

| dSprites (21GB)

| Single Atomic (5.1GB)

| train (5.0GB)

| _alpha-0.0 (1.3GB)

00000000
source.png
source. json
source_mask.png
target.png
target.json
target_mask.png

| 00000001

| 00063999

| alpha-0.2

| alpha-0.4

| alpha-0.6

| test (159MB)

00000000

source.png

source. json
source_mask.png
target.png
target.json
target_mask.png
| 00000001
| 00007999
| Single Non-Atomic
| Multiple Atomic
| Multiple Non-Atomic
| CLEVR (72GB)
Single Atomic (18GB)
Single Non-Atomic
Multiple Atomic
Multiple Non-Atomic
| CLEVRTex (91GB)
Single Atomic (23GB)
Single Non-Atomic
Multiple Atomic
Multiple Non-Atomic

Figure 6: Directory structure of the dataset. We show a detailed view of the SVIB-dSprites directory.
The structure of other environments i.e., SVIB-CLEVR and SVIB-CLEVRTex are identical. We also
show the directory sizes on the disk in parentheses next to the directory names.

29



{
"image_filename": "000000110120338217",
"objects": [

{
{ "color": [1.0, 1.0, 0.0, 1.0],
"image_filename": "00000000", "material": "MyMetal",
"objects": [ "3d_coords": [2.924, -2.007, 2.0],
{ "pixel_coords": [77, 62, 7.241],
"shape": "triangle", "size": 2.0,
"size": 0.325, "shape": "Sphere",
"rotation": 0.0, "rotation": 0.0
"2d_coords": [0.629, 0.365], },
"color": [255, 0, 255] {
}, "color": [0.0, 0.0, 1.0, 1.0],
{ "material": "Rubber",
"shape": "circle", "3d_coords": [-2.835, 1.059, 2.0],
"size": 0.425, "pixel_coords": [50, 30, 12.723],
"rotation": 0.0, "size": 2.0,
"2d_coords": [0.684, 0.797], "shape": "SmoothCylinder",
"color": [0, 127, 255] "rotation": 0.0
} ¥
] 1,
} "Camera": [6.990, -6.999, 5.379],

"Lamp_Back": [-1.111, 2.506, 6.118],

"Lamp_Key": [6.451, -3.099, 4.898],

"Lamp_Fill": [-3.825, -3.888, 2.036]
}

Figure 7: Examples of JSON files describing the ground truth scene structure of an SVIB-dSprites
image (left) and an SVIB-CLEVR image (right). Within each of the images, there are two objects.
Each object has factors such as shape, size, rotation, 2D coordinates, 3D coordinates, and RGBA
color values. In SVIB-CLEVR, we also have additional metadata specifying the poses of the camera
and the lights.

dSprites

CLEVR

CLEVRTex

Figure 8: Illustrations of shapes used in various environments of our benchmark. For SVIB-
dSprites, the shapes are generated using the Spriteworld API (https://github.com/deepmind/
spriteworld). The shapes used in our benchmark for SVIB-CLEVR and SVIB-CLEVRTex
are taken from the Github code (https://github.com/karazijal/clevrtex-generation) re-
leased by Karazija et al.[55].

30



dSprites

CLEVR

CLEVRTex

Figure 9: Illustrations of colors and materials used in various environments of our benchmark. For
SVIB-CLEVRTex, we use 8 free textures provided by Poliigon (https://www.poliigon. com) that
are also used in the original CLEVRTex data generation code (https://github.com/karazijal/
clevrtex-generation) released by Karazija et al.[55].

dSprites S-A dSprites M-A dSprites S-NA dSprites M-NA

L
- -0

T ge---0--

0 02 04 06

CLEVR S-A

109 = 109 =

10% = 10%=

10t - 10t -

10% - 10% =

102,

102,

—Success Line  ——12I-CNN (OOD) -~ 12I-ViT (OOD) ——Oracle (OOD) -=SSM-VAE (OOD) —+SSM-Slot (OOD)
“s-I2LCNN (ID) o 2ViT (D)~ -o- Oracle (ID) -5 SSM-VAE (ID) ¢~ SSM-Slot (ID)

Figure 10: MSE Performance. We report the in-distribution and out-of-distribution MSE for all
benchmark tasks.

31



dSprites

S-NA M-NA S-NA M-NA S-NA M-NA
M-A S-A M-A S-A M-A S-A
2 2
% = 3 ]
© |
S-NA M-NA S-NA M-NA S-NA M-NA
M-A S-A M-A S-A M-A S-A

CLEVRTex

S-NA M-NA S-NA M-NA S-NA M-NA S-NA M-NA
— I2I-CNN — I2I-ViT --- Oracle — SSM-VAE — SSM-Slot

Figure 11: Systematic Generalization Gap. We report the systematic generalization gap for all
benchmark tasks.

32



Source 0.2 0.4 Target Source 0.2 0.4 Target

- EEEREK HHRRNR
- KEKEKKEK FHMINY
» KIREEERE FHMPN
» KIKKEEKE NS
- KiEKKEKK NP

12I-CNN *
[ ]
121-ViT * ¥ 4
[ ]
SSM-VAE * ¥
[ ] a
SSM-Slot *
[ ]
Oracle *
[ ]

Figure 12: Qualitative Results on Benchmark Tasks in SVIB-dSprites. We visualize the baseline
predictions on all 4 tasks. Top-Left: Single Atomic. Top-Right: Single Non-Atomic. Bottom-Left:
Multiple Atomic. Bottom-Right: Multiple Non-Atomic.

33



Source 0.0 Target Source 0.0 Target

0.2 0.4 0.6 0.2 0.4 0.6
< NN PApeppupap
- A PPN papap.
= P I PPN
- W I PP papapp.
- NP Ppapapapups

< NPT NN IRESE -
- NITYTI T PRS-
- TSIy PRSP
ol o o |
- NI TVEu Y R pRppep

Figure 13: Qualitative Results on Benchmark Tasks in SVIB-CLEVR. We visualize the baseline
predictions on all 4 tasks. Top-Left: Single Atomic. Top-Right: Single Non-Atomic. Bottom-Left:
Multiple Atomic. Bottom-Right: Multiple Non-Atomic.

34



Source 0.0 0.2 0.4 0.6 Target Source Target

12I-CNN

12I-ViT

SSM-VAE

SSM-Slot

Oracle

12I-CNN

12I-ViT

SSM-VAE

SSM-Slot

Oracle

Figure 14: Qualitative Results on Benchmark Tasks in SVIB-CLEVRTex. We visualize the
baseline predictions on all 4 tasks. Top-Left: Single Atomic. Top-Right: Single Non-Atomic. Bottom-
Left: Multiple Atomic. Bottom-Right: Multiple Non-Atomic.

35



Single Atomic 1 Single Atomic 2 Single Atomic 3 Single Atomic 4

Multiple Atomic 3

Single Non-Atomic 2 Single Non-Atomic

Multiple Non-Atomic 1 Multiple Non-Atomic 2 Multiple Non-Atomic 3 Multiple Non-Atomic 4

. . : : . . : . . . 00 02 04 06
« « « «

~+—121-CNN (OOD) =+ I2I-ViT (OOD) —+Oracle (OOD) -#-SSM-VAE (OOD) —+ SSM-Slot (OOD)
4~ 121-CNN (IID) -0 121-ViT (D)~ -o- Oracle (D) ~ -o- SSM-VAE (IID) = -+~ SSM-Slot (ID)

Figure 15: MSE Performance on Analysis Tasks.

36



-8 ¢olle glle 9lls g 6 olle olls
=210 B|lo\e|loYo| ey o \o of o] o
Lrasten | OO 11O O} |OF | 'O O | O @ 10 Ol 9] O
-8 9o gliojelofe o oliololle e
@ O Of [0 O[O © o o\ of ¢/} 0
L O 0| |OF O} |OF O} O O o O ol 9" O
Single Single Single Single Single Single Single Single
Atomic 1 Atomic 2 Atomic 3 Atomic 4 Non-Atomic 1 Non-Atomic 2 Non-Atomic 3 Non-Atomic 4

-6 ¢lle e olfe 8] ]88 0
w0 1SN0 ol [o\o O O #O s o
e (040 |0 O (010 (O] 0] oy |17 o [l ©
[ (O] O] Ol |0 \ O 0! O O O rO!
Object 2 Shape ‘ O‘ :O‘ N N : O P4 " ‘
e IO O O 10 O O O 'O O O O
Lpostin || OO O] [O—0O O OO O—0 )
Multiple Multiple Multiple Multiple Multiple Multiple Multiple Multiple
Atomic 1 Atomic 2 Atomic 3 Atomic 4 Non-Atomic 1 Non-Atomic 2 Non-Atomic 3 Non-Atomic 4

Figure 16: Design of Analysis Set. In this figure, we illustrate the 16 analysis rules using causal
graphs, where nodes represent factors. The value of each target node is determined by the source
nodes connected by incoming edges. If a node has just one incoming edge, the integer value of the
source factor is directly assigned to the target factor, taking into account the cardinality of the target
factor’s vocabulary through modulo operation. When a node has two incoming edges, the integer
values from both source factors are summed and then assigned to the target factor, subject to modulo
based on the cardinality of the target factor’s vocabulary. For example, in the "Single Non-Atomic 4"
rule, two incoming arrows to the ’size’ factor signify that its modified value is calculated by adding
the quadrant/position of the same object to the color index of the other object, followed by a modulo
operation with respect to the cardinality of object size vocabulary. All 16 rules depicted in this
diagram can be understood in a similar manner.

37



Table 8: LPIPS Performance of SVIB-dSprites. We report the model performances on SVIB-
dSprites for three levels of difficulty: Easy, Medium, and Hard, corresponding to « values of 0.6, 0.4,
and 0.2, respectively.

Moo S il Siale - MUBE  perage
I2I-CNN 0.0304 0.0209 0.1524 0.0536 0.0643
vt 00036 ____ 00057 ____( 0.0050______ 00131 __ 00084
Easy SSM-VAE 0.0796 0.1203 0.1499 0.1638 0.1284
SSM-Slot 0.0274 0.0892 0.0228 0.0740 0.0534
Oracle 0.0006 00003 00005 0.0009  0.0006
I2I-CNN 0.1209 0.0844 0.1703 0.1249 0.1251
I2I-ViT 0.0172 0.0133 0.0535 0.0597 0.0359
Medium ~ SSM-VAE ~ 0.1251 01591 0.1483 01735  0.1515
SSM-Slot 0.0206 0.1541 0.0280 0.1241 0.0817
Oracle 00007 00004 00006 0.0007  0.0006
I2I-CNN 0.2514 0.2780 0.2336 0.3082 0.2678
I2I-ViT 0.1700 0.2999 0.1361 0.3243 0.2326
Hard  SSM-VAE 02398 02748 01975 02519 02410
_SSM-Slot_ 01022 02759 (¢ 01324 __ 02229 __0.1834
Oracle 0.0069 0.0021 0.0156 0.0010 0.0064

Table 9: LPIPS Performance of SVIB-CLEVR. We report the model performances on SVIB-
CLEVR for three levels of difficulty: Easy, Medium, and Hard, corresponding to « values of 0.6, 0.4,
and 0.2, respectively.

T T T —
I2I-CNN 0.0506 0.0380 0.0683 0.0802 0.0593
I2I-ViT 0.0487 0.0566 0.0468 0.0811 0.0583
Easy ~ SSM-VAE 00602 00768 0.0648 0.1034 00763
_SSM-Slot 00288 00552 0.0839 . 00706 __ 0.05%
Oracle 0.0101 0.0113 0.0110 0.0103 0.0107
12I-CNN 0.0967 0.1238 0.1166 0.1692 0.1265
12I-ViT 0.1313 0.0848 0.1425 0.1466 0.1263
Medium  SSM.VAE 00664 00962 0.0914 0.1303  0.0961
SSM-Slot 0.0605 0.0471 0.0517 0.0540 0.0533
Oracle 00116 00247 0.0084 0.0118 00141
12I-CNN 0.1730 0.2502 0.2080 0.2410 0.2181
12I-ViT 0.1899 0.2301 0.2005 0.2405 0.2153
Hard  SSM.VAE  0.1440 02604 01620 0.1871  0.1884
SSM-Slot 0.0973 0.1991 0.0630 0.0960 0.1139
Oracle 00124 00131 00113 00119 00122

38



Table 10: LPIPS Performance of SVIB-CLEVRTex. We report the model performances on SVIB-
CLEVRTex for three levels of difficulty: Easy, Medium, and Hard, corresponding to « values of 0.6,
0.4, and 0.2, respectively.

Models Momie  Atome  NomAtomic NomcAtomic Average
DLCNN 02803 02550 03642 02757 02938
I2L-ViT 02293 02120 03381 02322 02529

Easy  SSM-VAE 03504 03978 03832 03962 03819
SSM-Slot ~ 0.3044 03595 03442 03634 03429

Oracle 01538 01268 01514 01334 01414
RILCNN 02751 02671 03678 02057 03014
LV 02277 02300 03354 02524 02614

Medium ~SSM.VAE 03452 03917 ¢ 03817 03971 03789
SSM-Slot ~ 0.2906 03449 03578 03494 03357

Oracle 01543 01306 01492 01434 0.1444
RICNN 02819 03107 03651 03264 03210
I2LVIT 02625 03017 03145 03013 02950

Hard  SSM-VAE 03440 03866 03758 03916 03745
SSM-Slot  0.3106 03946 03546 03762 03590

Oracle 01566 01221 01473 01356  0.1404

39



059 8¢ 1L L 66'9L 9L°6 SI'6 IST1 98'6 681 44 ¢8I 1234 9[oRIO

80°T1S VO LT SC9¢eS Ic6le o' 1¢l1 8ICLI €16 Iesy 9L'19¢ 6651 LOVYLT 91191 JOIS-INSS
78°508 V8 CCL 9¢°0¥8 [€916 S1'8¢CC SOCIIT 80°¢61 9C°¢01 160811  LTEI8 86'1L9 ¢e'16€  AVA-INSS g

CL'V8C 91'6vC 16°6€S 91'vSC 00 ¥l ¢1'89 76 €01 81vL 8¥'81¢C coel ¥9°0¢ CLYC LIA-TCI
L981Y SO'T6¢ 06'S19 66'¢8¢ 00981 91°GCl 0S'v8 L0l LSOSY  ELLeCT  T16°1¢1 LY ¥91 NNDO-TCI
9689 V8L 6L'1L v1'8L [4: 31! 6L9 12 0% 901 9Ty (484 60°C 81°¢ 9[oeI0

0SPSS  SEE9F  867TE9  198EE  LEG6 0806  T966  8I'VOL  09°€L9  SE661  09°0IL  S9L9T  IOISTASS
__Se6c8 661659 6v¥68  8L9LS  Srele 98I IL00t  ST8IT  Srelel  0C0S8  cSee6  0ceed  HVANSS 4

859y 9¢'8Cy €9°C9¢ c0TCe LS'LTY vI'Gle €eLTE 9T°66¢ 65V1S 69°8¢C 09°0L CLY6 LIA-TCT
LLYSS 08'CcCs 0299 LEY8E SI'CIS OLeve CI'L9Y €I'80C  PSLOIT 99 vCrl  1+°009 127658 NNO-ICI
86'S9 16'L9 OI'IL 9168 8601 (AN 10°¢T 14! 6L'S L9 19711 VeLE 9[oRIO

¥0°C89 89°8I1¢S 68°869 69°'11v 78681 gcocl €S P8L LOY6T  0S'I891  8¥'6S9  LLT981 88165 JOIS-INSS
61618 LS9 9T 1L8 90°0¥S LOTYS Ly'eve  pe00ll  60Cle  vI'69IC 1€LTCl  0V'L2O0C  09°68c] HVA-INSS 7

€999 LS8EL Y19 Iesey ¥8°808 ¢8' 19y CL'VL6 88y  SI'SI0E  008EL  66'180C  CI'ev8 LIA-TCI
01°089 LT'LTL 98'6S9 8T Sy £6°008 IS°68y  €80S0I  LTTCOF  10TC6C vOev9l  68°¢6lC TH eyl NNDO-TCI
68'9¢6 1116 8786 0L°LT8 66168  SLOITI  6FCell  6L99¢l ¥6°'19SC 6£7TC8E 6V T0E  68'86LE 9[orI0

L8TI6 er'reL  008e0l  8I'ev9  T9LBII IT168  ¥¥'T8S1  9CTL68  80°Cect LV'88SC  €I'LSST  1T°L9¢T  IOIS-INSS
98'6101  60°CIL 9V8V0I  SE¥C9  Te0eel  $0'6S6  ¥6'OPSI  19'GL6 618y  LSTI98C  +¥9°00ey  6£C96C HVAINSS (g

€9Ce6  68°0C01  €T'LB9 8G'I6S  OI'S8PI  SOVE9  OLTYIL  ¥I'LE9  SY'OTCy  8L'L9ET  SO'6LYE  TE€THCI LIA-TCT
44954 CL'886 90°CSL LELY9  T6'0CST 89668  0S99ST 98188  98'¢cLly LSI8ST  8L'IOCE  vTE6VC NNO-ICI

VN-IN VN-S V-IN v-S VN-IN VN-S V-IN V-S VN-IN VN-S V-IN V-S S[FPON P
XOLIAHTO-4dIAS HAATO-9IAS soiidsp-gIAS

YOLIATTO-AIAS PUe JATTO-FIAS ‘SAASP-FIAS “9'1195qns Yora 10§ syse} (YN-IN) druore-uou sfdnnu
pue ‘(y-JA) d1rwoje a[dnnu ‘(YN-S) oruoje-uou o[Surs ‘(y-S) oruroje o[Surs :syse} g [[& U0 seoueuiIofiad [opoul JO SaN[eA [BOLIQWNN *9dURWLIONdJ FSIA 1T 2198L

40



