
We thank the reviewers for insightful comments and suggestions. We adopted most of your suggestions and added1

clarifications in the paper. Here, we highlight some of the more significant modifications so far.2

Updated Remark 2.1 on Batching3

Our fixed confidence algorithm, given by combining Alg. 1 with Alg. 2 as above, requires only O(1) batches in4

expectation. Here a batched algorithm operates in a small number of batched phases. At the start of each phase,5

such an algorithm chooses b arms to sample exactly s times each, where b, s can both depend adaptively on the6

previous feedback, but cannot be changed during the current phase. Minimizing the number of required batches is7

often desirable, see e.g. [PRCS16, GHRZ19]. In particular Alg. 1 uses a single batch with s1 = C log(1/η)
ε2 samples8

of b1 = C log(1/δ)
η arms. Then Alg. 2 can be implemented in a batched way with s2 = C log(1/ηδ)

ε2 and a sequence of9

batch sizes b2,i = 2i

η for 1 ≤ i ≤ log2 (C log(1/δ)). (In the latter phase, one stops after finding an arm to accept.)10

While this construction uses O(1) batches in expectation, it could be interesting to explore pure exploration with11

an exactly fixed number of batches, which is more analogous to the fixed budget setting.12

Added some intuition on the independence on η in the fixed budget setting13

To succeed in pure exploration, one should have sampled the eventually outputted arm at least Ω(log 1/δ) times.14

The main obstacle to success in the fixed budget case is that any arm we obtain many samples of might gradually15

degrade over time. The probability of this degradation is essentially given by small probabilities coming from16

Chernoff-bound type events, which dominate the prior probability that the arm is in a top quantile.17

Updated Proof for Lemma 418

Proof. At each step t, let the random variable Et denote the minimum possible conditional probability of the19

event pi∗ ≤ β for any algorithm (in the algorithm’s jointly Bayesian filtration). We claim that conditioned on A’s20

declarations holding, for any A the quantity Mt ≡ Et

∏
s≤t Ps evolves as a supermartingale in this filtration. This21

suffices because it implies E0 = M0 ≥ E[MT ] ≥ e−Cost. (Here T is the random number of total batches used.)22

Indeed suppose we are at time t and the next batch has been declared but not sampled. (Identical arguments apply23

when the adversary restricts pi∗ in the last stage.) Let the σ-field Ft denote all information up to this point including24

the declaration of the next batch. Let E denote an expectation where the samples from the next batch is distributed25

according to µt. Let Ẽ denote an expectation where A’s declaration is conditioned to hold on the next batch. The26

dynamic programming principle implies that27

E[Et+1 | Ft] ≤ Et

for any A (with equality for the optimal A). Moreover since A’s declaration has µt-probability Pt,28

Ẽ[Et+1 | Ft] ≤ E[Et+1 | Ft]/Pt ≤ Et/Pt.

Pt is Ft measurable, so Ẽ[PtEt+1 | Ft] ≤ Et. This establishes the claim and ends the proof.29

Added Conclusion30

Our aim in this paper was to understand the sample complexity of pure exploration with infinitely many arms. We31

showed that, surprisingly, the behavior of fixed confidence and fixed budget problems is provably very different. In32

the former setting, there is a nearly optimal algorithm which precisely balances between sampling enough distinct33

arms (to estimate the quantile) and obtaining enough samples of a single arm (to be output). In the latter, the optimal34

algorithm must repeatedly decide whether to continue with the current arm or switch to a fresh one, via a gradually35

decreasing sequence of rejection thresholds.36

Several interesting questions remain. One is that our fixed budget analysis is tailored to the δ → 0 setting, and does37

not apply if ε, η, δ all tend to zero at comparable rates. Hence other behaviors could be present in such parameter38

regimes. Additionally, a key conceptual feature of infinite-armed bandits is the possibility that no “good” arms are39

among those sampled by the algorithm. By definition, this simply cannot happen in K-armed bandits. It would be40

interesting to identify a natural problem setting that interpolates between them. Finally high probability bounds on41

the fixed confidence sample complexity would be another way to interpolate between the two settings we studied.42


