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A GENERATION RESULTS

Video Summarization and Detailed Description. As shown in Fig. 1, the Oryx model effectively
generates a comprehensive and detailed caption that accurately summarizes the input video. It
captures the main event while preserving essential information.

Video	Summarization	and	Detailed	Description

User:	Describe	what	is	happening	in	the	video	in	detail.

Oryx:	The	video	captures	a	moment	from	the	2018	Wimbledon	Semifinals,	featuring	two	male	tennis	players	on	a	
grass	court.	The	player	in	the	foreground	is	dressed	in	white	and	is	executing	a	forehand	shot,	while	his	opponent,	
wearing	darker	attire,	is	positioned	to	return	the	ball.	The	man	in	the	foreground	wins	the	point	and	he	is	very	
excited.	The	court is	marked	with	white	lines	for	singles	play,	and	there	are	several	officials	and	line	judges	visible	
around	the	court,	indicating	the	match's	official	nature.	The	audience	can	be	seen	in	the	background,	suggesting	that	
this	is	a	televised	broadcast	of	the	event.

Figure 1: Oryx is able to make a comprehensive video summary and detailed caption.

Video Multiple Choice and Reasoning. Oryx is also capable of reasoning based on the input video.
As demonstrated in Fig. 2, Oryx can answer questions through analogy and generate well-reasoned
responses.

Skill Learning From Videos. Oryx can acquire useful skills from the input video. As demonstrated
in Fig. 3, Oryx learns to use Google Scholar to cite a paper by following the steps shown in the video.
It illustrates all the necessary steps to complete the citation, highlighting its strong skill-learning
capability and potential for agent-based tasks and task execution.

Understanding 3D with Coarse Correspondences. Oryx enhances its 3D spatial understanding
using coarse correspondences. Fig. 4 illustrates Oryx’s reasoning process, demonstrating its ability
to improve 3D comprehension through these correspondences and generate accurate reasoning
outcomes.
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Video	Multiple	Choice	and	Reasoning

User: According	to	the	video,	if	I	have	some	expired	aspirin,	which	kind	of	waste	is	it?
A.	Waste. B.	Toxic	Waste. C.	Wet	or	Organic	Waste. D.	Dry	waste.	

Oryx:	The	answer	is	B,	because	expired	aspirin	is	a	kind	of	drug,	drugs	are	toxic	waste.
The	video	explains	that	if	you	have	some	expired	aspirin,	it	is	considered	toxic	waste.	This	is	because	drugs	can	be	
harmful	to	the	environment	and	should	not	be	disposed	of	in	the	regular	trash.	Instead,	they	should	be	taken	back	to	
a	pharmacy	or	other	designated	location	for	proper	disposal.

Figure 2: Oryx learns to reason through the input video.

Skill Learning From Videos

User: According	to	the	video,	if	I	want	to	cite	the	paper	titled	'Oryx',	what	should	I	do?	List	the	actions	below.

Oryx: To cite the paper titled 'Oryx', you should follow these steps:
1. Open google chrome and search for google scholar.
2. Search for the paper 'Oryx’.
3. Select the paper from the search results and click on the "Cite" button to generate the citation in your preferred
format.
4. Copy the generated citation and paste it into your document where you want to reference the paper.

Figure 3: Oryx learns useful skills from the input video.

B VIDEO NEEDLE-IN-A-HAYSTACK

To demonstrate the retrieval ability in long-form visual inputs and test the quality of the dynamic
compression module, we design the video needle-in-a-haystack experiment under extreme conditions,
following the methodologies established in previous work (Zhang et al., 2024a; Xue et al., 2024).
For this experiment, we select an extremely long video and then insert irrelevant image question-
answering data as a single frame at arbitrary depths within the video. The model is tasked with
answering questions related to these inserted images. We utilize LLaVA-Next-Video (Zhang et al.,
2024b) of comparable size as our baseline. As depicted in Figure 5, baseline models trained with
32 frames failed to identify the images, suffering from severe information loss. In contrast, our
method successfully retrieves the inserted images and accurately answers the questions, even with
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Understanding	3D	with	Coarse	Correspondences

User: If Alice comes out of the building and wants to go down the stairs and cross the street using the pedestrian
crossing, which direction should she turn after exiting the door?
A. Left B. Right.
Please answer from Alice’s perspective, not the observer’s. Explain why using the labels inside the images.

Oryx:	If	Alice	comes	out	of	the	building	and	wants	to	go	down	the	stairs	and	cross	the	street	using	the	pedestrian	
crossing,	she	should	turn	right	after	exiting	the	door. This	is	because	the	pedestrian	crossing	is	located	on	the	right	
side	of	the	entrance	when	facing	it	from	inside	the	building.	The	labels	inside	the	images	indicate	that	the	pedestrian	
crossing	(label	3)	is	to	the	right	of	the	door	(label	4),	and	the	stairs	(label	1)	are	also	situated	to	the	right	of	the	door	
when	viewed	from	Alice's	perspective.	Therefore,	turning	right	would	lead	Alice	towards	the	pedestrian	crossing	and	
then	across	the	street.

Figure 4: Oryx understands 3D spatial information through coarse correspondences.

Figure 5: Visualization Results on Video Needle-In-A-Haystack Experiments. We compare
Oryx-7B (right subfigure) with LLaVA-Next-Video-7B (left subfigure) on the frame retrieval task.
The results are shown for inserted depths ranging from 0.0 to 1.0 and the number of frames ranging
from 0.1k to 1.6k. The Oryx model demonstrates superior performance in long-form understanding
tasks, providing precise results even when a single relevant frame is embedded within over 1k frames
of irrelevant information.

frame counts of 1.6k. This outcome strongly demonstrates the model’s ability in long-form temporal
understanding, facilitated by the on-demand compression module.

C MORE DETAILS

C.1 IMPLEMENTATION DETAILS

Our implementation integrates the Oryx model with two sets of LLMs, Qwen-2.5-7B (QwenTeam,
2024), and Yi-1.5-34B (Young et al., 2024), to demonstrate generalizability across different model
sizes. For the visual encoder, we use our pre-trained OryxViT to support arbitrary-resolution visual
inputs. During the pre-training stage, we utilize 558k captioning data from LLaVA-1.5 (Liu et al.,
2024), unfreezing the parameters of the dynamic compression module. The image SFT stage involves
curating an open-source dataset of around 4M images. In the joint training stage, we incorporate
approximately 1.2M data consisting of images sampled from the previous stage and video/3D data.
For video data, we restrict the frame number to 64 for standard videos of low compression ratio
and 256 for long videos of high compression ratio. We use the 2× 2 average downsample for low

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

compression and 4 × 4 average downsample for high compression. Image data are maintained at
their native resolution, with a maximum size of 1536 pixels, while video data resolutions are confined
to a range of 288 to 480 pixels. The rest of the training details are provided in the appendix.

C.2 TRAINING DETAILS

Stage 1. For stage 1, we first pre-train the connector module between the visual encoder and Large
Language Model for the initial alignment between image and text modalities. We conduct our
experiments on 558k caption data from BLIP (Li et al., 2023) model following LLaVA-1.5 (Liu et al.,
2024). We only unfreeze the parameter for the connector while maintaining other parameters fixed.
We adopt the total training batch size at 256 and the overall learning rate at 1e-3. We maintain the
aspect ratio for the input image while adjusting the overall pixels to 7682 to reduce the computational
cost. The training cost for the pre-training alignment is lightweight thanks to the small number of
parameters for the connector and the relatively lower image-text data pairs. Subsequently, we conduct
the supervised fine-tuning stage with 4.1M image data. We freeze the parameter for the visual encoder
while unfreezing the connector and the Large Language Model following common practice. In this
stage, we use the native resolution of the image while restricting the maximum number of pixels
at 12802 for efficiency. For the image larger than 12802 pixels, we scale down the image to match
the overall number of pixels. We set the learning rate at 2e-5 for Oryx-7B and the learning rate at
1e-5 for Oryx-34B. We adopt the total batch size at 128 and conduct our experiments on 64 NVIDIA
A100-40G GPUs for Oryx-7B and 64 NVIDIA A800-80G GPUs for Oryx-34B, as larger models
need more GPU memories. The total model maximum length is set as 8192.

Stage 2. For stage 2, we continuously train the Oryx model from the multi-modal LLMs in stage
1. We randomly sample around 600k image data from the supervised fine-tuning stage in stage 1
and add additional 650k temporal and 3D data from open-source multi-modal datasets, resulting
in an overall number of 1.2M further supervised fine-tuning data. In the more general stage, we
increase the restriction for image pixels to 15362 to meet the longer sequential length in temporal
data. We maintain the aspect ratio of video data while normalizing each frame to the minimum size
of 2882 pixels and the maximum size of 4802 pixels, therefore the token length before compression
module ranges from 324 to 900. We adopt 1× 1 path for the image data, 2× 2 pooling path for the
multi-frame data including video and 3D-relevant data, and 4 × 4 pooling path for the extremely
long video needle-in-the-haystack retrieval data. We maintain most of the training hyper-parameters
identical to stage 1, with a total batch size of 128, a learning rate of 2e-5 for Oryx-7B, and a learning
rate of 1e-5 for Oryx-34B. We sample 1 frame per second for video data and set the max frame
number at 64 frames. We uniformly sample the frames among all the frames if the number exceeds
the upper bound. The maximum sequence length is set to 16384.

D CODE

The code is also provided in the supplementary material (see the code folder). Our Oryx is
implemented using PyTorch library (Paszke et al., 2019).
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