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1. Introduction
The term “pipeline” is used in many contexts for

processing large datasets [1], [2]. We focus on the use
of pipelines for science. We discuss two pipelines
that leverage machine learning, and suggest design
principles that are important to the analysis of visual
data from scientific experiments at scale. Our two
use cases span two extremes of measurement com-
plexity. Both cases present unique challenges, and
these are briefly discussed, along with elements of
data pipeline design for visual data in science.

2. Overview of Pipelines
2.1 ALFA
During the SARS-2-CoV pandemic, the UK’s

REACT-2 antibody prevalence study was run, con-
sisting of a series of non-overlapping cross-sectional
population surveys of the prevalence of SARS-CoV-2
antibodies in the general population of England [3].
The study used lateral flow immunoassays (LFIAs)
to detect antibodies in blood samples. Participants
were sent test kits and instructions with results
being self-reported, alongside a photograph taken
and uploaded without a dedicated App. A data
processing pipeline was built to read lateral flow
test results from more than 500,000+ user-posted
images [4].

2.2 HARMLESS
Zebrafish are widely used as models for develop-

mental biology due to their optical transparency and
rapid rate of development. The zebrafish is ideal
for studying some forms of severe cardiac disorder
[5], since oxygen diffusion allows the development
of even non-functioning cardiac structures. The role
of specific genes, and even mechanical factors [6]
influencing cardiac morphogenesis can be studied.
A pipeline for dealing with the huge variability in
imaging protocols, spatial deformations and strong
spatial anisotropy was developed to allow data to be
pooled, compared, mapped into common frames of
reference and analysed. A number of deep networks
were trained to support the different functions of the
pipeline.
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Fig. 1: The combinatorial space of the imaging ex-
periments encompasses different biological spec-
imens (individuals), microscopes, contrast mech-
anisms, instruments, cell types and time points;
static and beating hearts: all must be brought into
one common space for joint analysis and hypoth-
esis testing.

3. Components of the Pipelines
Both pipelines contain modules, trained by ma-

chine learning, to perform specific tasks. ALFA uses
a trained CNN to label three key areas of the LFIA
device; these were used to quickly detect errors in
segmentation using (non-ML based) computer vi-
sion libraries. HARMLESS required a variety of data-
driven deep networks to segment different compo-
nents of the zebrafish heart, and to do so from dif-
ferent contrast mechanisms.
Both pipelines made of use of geometric mea-

sures to constrain solutions or to provide common
coordinate systems over which ensemble statistics
could be generated. Projection-based dimension-
ality reduction was used to drop from 3D space to
local 2D space, or from 2D space to 1D, and we
found this particularly helpful in constructing inter-
pretable renderings of data.
For the case of HARMLESS, projection onto refer-

ence heart manifold was used to visualise and anal-
yse properties of cell junction connections, and to
probedifferences in cell junctionorganisationunder
treatment or mutation conditions. This work is un-
published, but an example of the visualisations pro-
duced from the pipeline is shown in Figure 4.

3.1 Findings from ALFA
We found a Cohen’s kappa of 0.797 (95% CI:

0.794–0.799) between participants’ and ALFA read-
out of test validity and IgG status. Disagreements
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Fig. 2: (Top) Participants’ phone-recorded submis-
sions; weak responses, broken devices, and
bizarrely erroneous submissions were found, of-
ten by anomaly detection; (Bottom)ML-based seg-
mentation supported analytics, and anomaly de-
tection. Ensemble-averaged profiles from lateral
flow tests led us to discover reading errors made
by participants [4].

occurred primarily when the algorithm reported an
IgG positive test and study participants submitted a
negative result. Using plots similar to the profiles of
Figure 2, we also found evidence of user-submitted
false positives in one of the antibody measures on
the multiplexed lateral flow device, with implica-
tions for the design/quality assurance of future de-
vices.

3.2 Findings from HARMLESS
• Using the data produced by theHARMLESS plat-
form, we found that specific membrane pro-
teins play a role in zebrafish cardiac shape. We
found differences in volume changes in certain
structures of the heart with certain mutant em-
bryo cells; looping ratio was also found altered,
leading to later morphogenesis effects.

• We found evidence for the role of passive
mechanical forces; this has implications for
the interaction between endocardium and my-
ocardium in the developing heart.

4. Common Elements of Good Pipeline Design
Wefound some following elementswere common

to successful development and operation of both
pipelines:

• Bootstrappingwashelpful to iteratively increase
labelling, so that components (such as segmen-
tation networks) based on data driven learning
achieved satisfactory performance.

• Geometric heuristics are useful to constrain so-
lutions, or to provide common coordinate sys-
tems over which data can be analysed.

Fig. 3: The HARMLESS pipeline supports the inte-
gration of several imaging channels, and the anal-
ysis of the data in a common space; mapping of
data from one space or channel to another is vital
to optimally combine information over diverse ex-
periments.

Fig. 4: Because of the high combinatorial space of
imaging data, conditions and specimens han-
dled by HARMLESS, components used the data
pipeline are bootstrapped to the point of usability,
then re-deployed to collect and label new data. A
similar strategy was used for the ALFA pipeline.

• Maintaining logs of pipeline processes supports
restarting the pipelinemid-processwhen errors
occur due to equipment/network failure, excep-
tions being thrown due to rare data events (out-
liers), and to track the provenance of data.

• Care was necessary – in both pipelines – to
ensure that components using data-driven ma-
chine learning did not inadvertently introduce
biases into downstream statistical analyses.

• Independent algorithms for anomaly detection
can be useful when datasets become too large
even for checks by random sampling; anoma-
lous data can then be scrutinised, and adjust-
ments made, or data rejected.
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