
Figure 9: Probability functions of the diverse distribution types considered here. Left to right:
Gaussian, Kumaraswamy, Categorical, and discrete Gaussian. We visualize a 5-bin Categorical and a
7-bin discrete Gaussian with their pseudo-probabilities. Our HMPs can combine diverse low-level
controllers with different distribution types to yield compositional synergies as in Sections 5.1& 5.2.

Figure 10: Our approach yields robust performance when tasked to solve continuous control with
discrete actions. For instance, the coarse Categorical (C, nbin = 2) performs competitively to the wide
Gaussian (N, σini = 3.0) on the torque controlled DeepMind Control Suite tasks, while improving
on the narrow Gaussian (N, σini = 0.3). This trend is reversed for generating stable PD-targets on
ANYmal, underlining the promise of deferring task-specific controller choice to the agent.

A Distributions433

The probability functions of each distribution type considered here are provided in Figure 9. The434

discrete distributions leverage the pseudo-densities as defined in (9) for improved backpropagation.435

Applications of RL to continuous control typically employ continuous distributions and the Gaussian436

distribution is a standard choice. Additionally, we consider the Kumaraswamy distribution as an437

alternative to the Beta distribution, as it is also capable of exhibiting skewness while being significantly438

easier to reparameterize than the Beta distribution [33].439

We further investigate synergies with discrete distributions and consider the Categorical distribution440

as well as a discrete Gaussian. The support of both discrete distributions is a regular 1d grid with a441

predefined number of elements n. For the categorical, we learn the probability weights wi for each442

element in its support individually. The discrete Gaussian allows for enforcing unimodality in a443

discrete setting. Thus, for the discrete Gaussian, we define the probability wi for each of its support’s444

elements xi by445

wi :=
f(xi)∑n
j=1 f(xj)

,

where f(·) is the density of a Gaussian distributionN (µ, σ2) with the mean µ and standard deviation446

σ being predicted by the neural network.447

B Discrete Actions in Continuous Control448

HMPs work well with distribution heads that differ from the standard Gaussian assumption. Inter-449

estingly, we find that our approach performs robustly even when forced to solve continuous control450

tasks with discrete policy distributions. Figure 10 compares a coarse Categorical (nbin = 2) to two451

Gaussian policies (σini ∈ {0.3, 3.0}). We observe that the Categorical yields peak performance on the452

Walker and Quadruped tasks, while achieving high performance on the Humanoid task significantly453

faster than the Gaussian distributions. As expected, coarse discrete control is ill-suited for generating454

position targets on ANYmal. This provides another perspective on the importance of hyperparameter455

choices, diversity, and enabling the robot to self-select suitable controllers.456
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Disturbance Control Freq. Obs. Stuck Obs. Drop Obs. Delay Obs. Noise
Parameters Scale Prob. ; Steps Prob. ; Steps Steps Std. Dev.
Value ×0.25,×0.5 (0.05; 5), (0.01; 1) (0.05; 5), (0.01; 1) 6, 3 0.3, 0.1

Table 1: Disturbances used to evaluate transfer robustness, provided as Quadruped, Humanoid.

C Disturbance Parameters457

The experiments on transfer robustness of a converged policy use the disturbance parameters in458

Table 1. The control frequency disturbance down-samples the control by the value indicated for459

the Quadruped and Humanoid domains. For the observation disturbances, we selected the medium460

and easy disturbances from the Real-World RL Challenge framework [13] for the Quadruped and461

Humanoid, respectively. The Stuck sensor disturbance does not update a sensor reading for several462

timesteps, while the Dropped sensor disturbance zeros a sensor reading for several timesteps. Both463

disturbances are probabilistic, taking effect with a fixed probability and lasting for a fixed number464

of timesteps. The observation delay shifts all observation by a fixed number of timesteps, while the465

observation noise applies additive white Gaussian noise with the specified standard deviation.466

D Policy Evaluation via Retrace467

In order to stabilize off-policy learning of the state-action value function Qφ we leverage the Retrace468

algorithm [37]. The optimization objective is therefore469

min
φ
L(φ) = Eτ∼D

[(
Qrett −Qφ(st, at)

)2]
. (10)

The Retrace targets are computed as470

Qrett = Qφ′(st, at) +

∞∑
j=t

γj−t

(
j∏

k=t+1

ck

)
[r(sj , aj)+

Eπ(a|sj+1)[Qφ′(sj+1, a)]−Qφ′(sj , aj)
]
,

(11)

where Qφ′ refers to a target network for the state action value function, ck = min
(

1, π(ak|sk)b(ak|sk)

)
to471

the trace coefficients, and b(a|s) denotes the probabilities under the behavior policy. The infinite472

sequence is truncated after 10 steps and we bootstrap from the target network. To increase efficiency,473

we consider two-step transitions by squashing consecutive timesteps before adding them to memory.474

E Implementation Details475

Our implementation builds on MPO as provided by the Acme library [21] and extends it to the hierar-476

chical setting, enables application with diverse sub-policy heads (distribution type, parameterization)477

and implements Retrace [37] for data-efficient off-policy learning. Throughout, we follow the MPO478

parameters described in [1] and introduce the decoupled KL bounds for non-Gaussian distributions479

as εK = [10−1, 10−1], εC = [10−1], εD = [10−1, 10−1]. Furthermore, the high-level selector shares480

its torso with the low-level controllers and employs a Categorical head with logits predicted from a481

single fully-connected layer of width 100. Our experimental results are reported with mean and one482

standard deviation over 8 random seeds for the NKCD HMP comparison to RHPO and 4 random483

seeds for the remaining experiments. Experiments were run on 4 CPU cores in combination with a484

single GPU (Nvidia V100).485

F Realworld disturbances486

Figure 11: HMP under real-world disturbances.
Our diverse mixtures can improve robustness over
homogeneous baselines and aid in generalization.

We also evaluate robustness to disturbances in487

the Real-World RL Challenge framework [13].488

We consider down-sampling of the controls and489

sensor degradation as specified in Appendix C.490

Figure 11 indicates that diversity can improve491

robustness in these real-world inspired domains.492
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