
Mipmap-GS: Let Gaussians Deform with Scale-specific Mipmap for
Anti-aliasing Rendering

Supplementary Material

In supplementary material, we first present a user study
of image quality in Section 1. Next, we report per-scene
quantitative and quality results in Section 2, and give more
analysis on initialization, scales, zoom-in mipmap and dila-
tion regularization in Section 3. Finally, we provide zoom-
in and zoom-out videos to compare the rendering quality of
3DGS [4] and ours at varying observation settings.

1. User Study
We conduct a user study on image quality of 3DGS [4],
Mip-Splatting [10] and ours. This study aims to assess the
fidelity and overall rendering quality in novel view synthe-
sis. Given 30 zoom-out images and 30 zoom-in images sep-
arately, users rate them from 1 (worst) to 5 (best). Unknown
of generation methods and GT, the score is entirely based on
human perceptual judgments. The zoom-out series consist
of shuffled images from ×1/2, ×1/4, ×1/8 scales. And
the scales of zoom-in images vary among ×2, ×4, ×8. As
shown in Table 1, 3DGS [4] is graded lowest for both zoom-
out and zoom-in. Compared with Mip-Splatting [10], our
method demonstrates better visual effects.

3DGS [4] Mip-Splatting[10] Ours
Fidelity 2.85 4.23 4.65
Overall Quality 1.95 3.67 4.02

(a) Zoom-out

3DGS [4] Mip-Splatting [10] Ours
Fidelity 2.34 4.11 4.39
Overall Quality 1.66 3.54 3.89

(b) Zoom-in

Table 1. User study on NeRF Synthetic dataset [8]. The rating is
of scale 1-5, the higher the better.

2. Per-Scene Results
In this section, we report per-scene quantitative and qual-
ity results of our adaptation and different baseline models,
namely 3DGS [4], Scaffold-GS [7], Pixel-GS [12], Mip-
Splatting [10], Octree-GS [9], Analytic-Splatting [6].

We optimize both 3DGS [4] and Scaffold-GS [7] to show
the compatibility and adaptation capacity of our method. As
a subsequent work of 3DGS, Scaffold-GS [7] leverages an-
chor points to distribute local Gaussians for view-adaptive
rendering. However, the scale adaptation of Scaffold-GS is
still limited, leading to even worse performance for zoom-in
compared with 3DGS.

In experiments, we train baseline models at ×1/8 down-
sampled images and render into three high resolutions to

simulate zoom-in effect. For zoom-out, we re-train baseline
models at full resolution and render novel views at ×1/2,
×1/4, ×1/8 resolutions. The qualitative zoom-out and
zoom-in comparisons on NeRF Synthetic dataset are shown
in Table 4 and 5, evaluated by SSIM, PSNR and LPIPS [11].
We report the arithmetic mean of each metric over three dif-
ferent scales for each scene. In Figure 4 and 6, the render-
ings of baseline models exhibit dilation artifacts or erosion
aliasing respectively. Our optimization successfully allevi-
ates the aliasing artifacts for both 3DGS and Scaffold-GS.

3. Additional Analysis
3.1. Initialize with Sparse Points

[3, 7, 12] indicate that the performance of 3DGS is highly
dependent on initial points and inadequate initialized areas
show poor texture structure. When starting from sparse
points extracted from LR images, 3DGS suffers from not
only aliasing artifacts but also missing structures when
zooming in.

To explore our scale adaptation capacity at coarse ini-
tialization, we extract the sparse point cloud from ×1/8
downsampled bicycle images, with the resolution of only
411×618. When zooming in with factor 8, the Gaussians
are rendered into image resolution of 3286×4946.

The memory size of trained Gaussians is illustrated in
Table 2, the Gaussians initialized from more sparse points
generally grow less than those initialized from default. In
Figure 1, we visualize the optimized Gaussians by setting
the scale modifier to 0.1 (left part of each result). Through
proportional reduction, it can be observed that our method
adapts finer Gaussians for a higher zoom factor to render
aliasing-free images without increased storage consump-
tion. The sparse initialization raises more challenges for
the optimization, since the small or texture-less areas are
insufficiently initialized (e.g. the accessories cropped at the
corner in Figure 1). Nevertheless, our method is still capa-
ble of achieving high-quality rendering.

Default Sparse
×2 ×4 ×8 ×2 ×4 ×8

3DGS [4] 1145 1110
Mip-Splatting [10] 1141 1137
Ours 958 963 970 902 909 916

Table 2. Comparison of memory size (MB) on bicycle scene. The
default initial SfM points given by dataset occupy 1.38 MB, while
the sparse points extracted from 1/8 downsampled images take
only 0.52 MB.
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(a) Initialized from default points.(a) Initialized from default points.
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(b) Initialized from sparse points.(b) Initialized from sparse points.

Figure 1. Comparison of zoom-in effects on Mip-NeRF 360 [1] when initialized from sparse points.

3.2. Rendering on More Scales

We test the baseline models and our method on extreme
zoom factors to show our adaptation capacity towards vary-
ing observation settings. In Figure 2, 3DGS exhibits se-
vere zoom-out blurriness at ×1/16,×1/32,×1/64 (thick
buds at the branch tip) due to the invariant fine Gaussians.
Mip-Splatting leverages the Mip filter for less dilated 2D
Gaussians, which is less robust towards extreme observa-
tion conditions. Our adaptation merges Gaussians for more
concentrated scene representation through density control
and adjusts the primitive properties by backward propaga-
tion, which mitigates the dilation blurriness efficiently even
in harsh conditions.

3.3. Different mipmap resizing methods.

Zoom-out Mipmap. We use the bilinear interpolation
method to generate downsampled novel-view rendering.
Here we report the quantitative results at 0.5 K iterations us-
ing different interpolation methods in Table 3. As observed,

bilinear and cubic interpolation achieve comparable results,
while nearest interpolation performs poorly with 3.56 dB
PSNR reduction at ×1/8.

Method SSIM PSNR
×1/2 ×1/4 ×1/8 ×1/2 ×1/4 ×1/8

Nearest 0.726 0.737 0.752 27.31 26.21 24.67
Cubic 0.810 0.811 0.845 27.76 28.19 28.25
Bilinear 0.811 0.825 0.850 27.75 28.22 28.23

Table 3. Comparison of different downsampling methods for
zoom-out on Mip-NeRF 360 [1].

Zoom-in Mipmap. Except for taking SwinIR [5] to gen-
erate zoom-in mipmap, we report the optimization results
when adopting bilinear interpolation, downsampling loss
and video SR model [2]. Generating HR mipmap via bi-
linear interpolation improves the zooming results slightly,
since the mipmap is blurry with insufficient details. To
leverage downsampling loss, the 3D Gaussians are splatted
into zoom-in scales (×N ) and then downsampled into ×1
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Figure 2. Comparison of zoom-out effects on Mip-NeRF 360 [1] at more scales.

x 4

+SwinIR GT

bicycle_8808

+bilinear +downsample loss +BasicVSR++

25.09 24.63 21.82 25.18 PSNR (dB)

Figure 3. Comparison of different SR methods for zoom-in on bicycle scene.

to calculate pixel loss with basic-scale novel views. Here
the resizing function works for current rendering, not for
pseudo-GT. The final method inserts the pretrained video
SR model [2] as the mipmap resizing function. To provide
consistent input sequences, we first concatenate the train-
ing views and test views for a dense collection. Then we
conduct frame interpolation, where an intermediate frame
between two input frames is rendered. The numerically
doubled images go through [2] to obtain ×4 SR mipmaps.
Consistent with previous settings, the test view SR images
are selected as pseudo-GT to deform the base Gaussians.
From Fig. 3, bilinear mipmap and basic scale mipmap
with downsampling loss exhibit sub-optimal rendering re-
sults compared with SwinIR mipmap. Video-based mipmap
improves the rendering quality while introducing extra time
consumption during frame interpolation and SR inference.

3.4. Dilation Regularization

The original dilation operation in 3DGS [4] involves pass-
ing the 2D projection through a low-pass filter, which recti-
fies the diagonal elements of the 2×2 covariance matrix by
a hyper-parameter s (set to be 0.3), see Eqn. 1. When zoom-

ing out, more Gaussians attend to one-pixel shading, while
the dilation hyper-parameter s is invariant towards varying
zoom factors. The mismatched dilation scale causes ex-
treme brightness and thickness for zoom-out. Mip-Splatting
[10] adjusts the 2D Gaussian by a Mip-filter, illustrated in
Eqn. 2, which is versatile for any zoom factors. Consid-
ering the lack of scale-aware guidance in previous methods
[4, 10], we regularize the dilated covariance matrix by in-
troducing the scale factor 1/N in Eqn. 3 to mitigate the
extreme thickness.

G2D
k (x)3DGS = e−

1
2 (x−µk)

⊤(Σ2D
k +sI)−1(x−µk), (1)

G2D
k (x)mip =

√
|Σ2D

k |
|Σ2D

k + sI|
e−

1
2 (x−µk)

⊤(Σ2D
k +sI)−1(x−µk),

(2)
G2D

k (x)reg = e−
1
2 (x−µk)

⊤(Σ2D
k +( 1

N )
2
sI)−1(x−µk). (3)

To compare the zoom-out effects of the scale factor, we con-
duct training at full resolution and rendering at ×1/8 in Fig-
ure 5. The results illustrate the role of scale information in
achieving aliasing-free rendering.



Method SSIM
ship drums ficus hotdog lego materials mic chair

3DGS [4] 0.827 0.851 0.921 0.930 0.882 0.882 0.991 0.915
Scaffold-GS [7] 0.806 0.821 0.909 0.929 0.857 0.868 0.892 0.899
Pixel-GS [12] 0.806 0.794 0.889 0.894 0.829 0.871 0.884 0.861
Mip-Splatting [10] 0.930 0.958 0.988 0.987 0.982 0.974 0.981 0.988
Scaffold-Ours 0.918 0.951 0.981 0.984 0.980 0.976 0.992 0.987
3DGS-Ours 0.940 0.960 0.984 0.989 0.983 0.979 0.989 0.989

Method PSNR
ship drums ficus hotdog lego materials mic chair

3DGS [4] 20.50 19.49 23.01 25.82 21.90 20.86 20.79 23.92
Scaffold-GS [7] 20.63 19.69 23.28 27.16 22.13 21.06 21.20 24.39
Pixel-GS [12] 23.64 19.98 23.37 25.20 22.32 24.49 25.73 21.15
Mip-Splatting [10] 29.27 26.07 31.74 34.70 31.34 29.56 29.86 35.23
Scaffold-Ours 30.77 26.56 33.57 36.34 33.46 30.37 35.21 35.38
3DGS-Ours 30.83 27.05 31.86 36.89 32.81 30.65 33.75 35.69

Method LPIPS
ship drums ficus hotdog lego materials mic chair

3DGS [4] 0.113 0.108 0.055 0.034 0.064 0.056 0.046 0.057
Scaffold-GS [7] 0.114 0.110 0.075 0.050 0.057 0.057 0.063 0.055
Pixel-GS [12] 0.114 0.110 0.075 0.050 0.100 0.057 0.057 0.047
Mip-Splatting [10] 0.066 0.038 0.014 0.014 0.019 0.017 0.022 0.011
Scaffold-Ours 0.078 0.038 0.010 0.020 0.018 0.024 0.008 0.013
3DGS-Ours 0.048 0.036 0.015 0.011 0.017 0.016 0.016 0.014

Table 4. Per-scene quantitative zoom-out results on NeRF Synthetic dataset [8].

Method SSIM
ship drums ficus hotdog lego materials mic chair

3DGS [4] 0.783 0.842 0.901 0.912 0.801 0.838 0.911 0.884
Scaffold-GS [7] 0.714 0.801 0.598 0.894 0.779 0.792 0.888 0.871
Pixel-GS [12] 0.769 0.821 0.878 0.896 0.792 0.843 0.905 0.864
Mip-Splatting [10] 0.852 0.899 0.929 0.958 0.906 0.924 0.958 0.938
Scaffold-Ours 0.853 0.908 0.926 0.965 0.917 0.935 0.969 0.944
3DGS-Ours 0.860 0.912 0.933 0.966 0.916 0.929 0.970 0.944

Method PSNR
ship drums ficus hotdog lego materials mic chair

3DGS [4] 20.23 18.72 19.97 24.90 19.00 18.75 20.24 23.25
Scaffold-GS [7] 17.03 16.44 17.81 23.03 16.24 15.78 17.47 21.51
Pixel-GS [12] 22.97 19.57 21.04 23.89 20.20 22.01 25.53 20.51
Mip-Splatting [10] 26.37 23.79 26.36 32.01 27.11 26.12 29.15 30.15
Scaffold-Ours 26.62 23.82 25.91 33.22 27.75 27.20 31.04 30.71
3DGS-Ours 27.41 24.24 26.52 33.69 27.87 26.80 31.79 30.90

Method LPIPS
ship drums ficus hotdog lego materials mic chair

3DGS [4] 0.203 0.131 0.081 0.095 0.155 0.125 0.085 0.093
Scaffold-GS [7] 0.222 0.179 0.121 0.099 0.171 0.164 0.100 0.106
Pixel-GS [12] 0.194 0.131 0.086 0.100 0.164 0.123 0.079 0.093
Mip-Splatting [10] 0.173 0.110 0.080 0.073 0.116 0.082 0.061 0.079
Scaffold-Ours 0.174 0.104 0.088 0.055 0.100 0.077 0.043 0.066
3DGS-Ours 0.154 0.090 0.077 0.049 0.098 0.072 0.036 0.063

Table 5. Per-scene quantitative zoom-in results on NeRF Synthetic dataset [8].
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Figure 4. Comparison of zoom-out results on NeRF Synthetic dataset [8].
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Figure 5. Comparison of simple dilation regularization on bicycle scene.
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Figure 6. Comparison of zoom-in results on NeRF Synthetic dataset [8].
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