
CCCP is Frank-Wolfe in disguise

Alp Yurtsever
Umeå University

alp.yurtsever@umu.se

Suvrit Sra
Massachusetts Institute of Technology

suvrit@mit.edu

Abstract

This paper uncovers a simple but rather surprising connection: it shows that the well-
known convex-concave procedure (CCCP) and its generalization to constrained
problems are both special cases of the Frank-Wolfe (FW) method. This connection
not only provides insight of deep (in our opinion) pedagogical value, but also
transfers the recently discovered convergence theory of nonconvex Frank-Wolfe
methods immediately to CCCP, closing a long-standing gap in its non-asymptotic
convergence theory. We hope the viewpoint uncovered by this paper spurs the
transfer of other advances made for FW to both CCCP and its generalizations.

1 Introduction
We study non-convex difference of convex (DC) optimization problems of the form:

min
x

f(x)− g(x), x ∈ D, (1.1)

where both f and g are convex functions and D is a constraint set that might itself be non-convex (we
will specify its structure later). Throughout, we assume that the optimal value f? − g? is finite.

Formulation (1.1) is a DC program. When f and g are smooth, a powerful local method is Convex-
Concave Procedure (CCCP) [Yuille and Rangarajan, 2003] that reduces (1.1) to a sequence of convex
problems. CCCP is not only algorithmically appealing, it is also widely applicable and numerous
algorithms can be viewed as special cases of CCCP, most notably the famous EM algorithm—see [§4
Yuille and Rangarajan, 2003].

But despite its wide applicability (see §2.2) and elegance, convergence theory for CCCP is quite
limited. Its asymptotic convergence can be obtained by viewing it as a specialization of the DC
algorithm (DCA) [Le Thi and Pham Dinh, 2018], or via a more refined analysis designed for CCCP
in [Lanckriet and Sriperumbudur, 2009]. A long-standing gap in the literature on CCCP has been to
obtain non-asymptotic convergence theory that establishes convergence to an ε-stationary point in
O(poly(1/ε)) or fewer iterations.1

The starting point of this paper is a discovery that is elementary yet surprising: CCCP is a special
case of the Frank-Wolfe (FW) method! This discovery not only provides insight of deep (in our
opinion) pedagogical value, but it also transfers the convergence theory of nonconvex FW to CCCP,
which closes the abovementioned gap in CCCP’s non-asymptotic convergence theory.

1.1 Main contributions

In light of this short background, we summarize now the key contributions of this paper.
� We recognize the basic (unconstrained) CCCP method to be a special case of Frank-Wolfe. By

the same argument, even its generalization to convex constrained instances of (1.1) is a special
case of FW. This realization allows us to immediately transfer non-asymptotic convergence
theory of FW to CCCP and convex constrained CCCP.

1We became aware of some recent discoveries on the non-asymptotic convergence of basic CCCP in
[Abbaszadehpeivasti et al., 2021, Lê-Huu and Alahari, 2021] after completing this work—see Remark 3.4.
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� Building on the above connection, we subsequently propose a new variant of FW (called FW+)
that applies to the most general form of CCCP (called CCCP+), where the constraint set D in
(1.1) is specified via several DC constraints. The variant FW+ not only allows us to syntactically
view CCCP+ as a special case, but more importantly allows us to transfer non-asymptotic
convergence guarantees that we prove for FW+ directly to CCCP+.

While the FW+ variant and its analysis are slightly more subtle than basic FW, the connection between
CCCP and FW uncovered by our work is remarkably simple. The introduction of FW+ itself is an
immediate consequence of the connection uncovered. It is also quite plausible that the connections
described in this paper will have various further consequences, including development of new variants
of CCCP and other related methods. For a more concrete discussion of potential implications, see the
discussion in §5.

Finally, we note a few additional connections of the view uncovered in this paper in the appendix. In
particular, we show that various other methods such as the proximal point method, mirror descent
and mirror prox can also be seen as special instances of the FW method. A deeper exploration of
these connections is left as future work.

1.2 Related work

FW. Frank and Wolfe [1956] proposed the FW algorithm originally for minimizing a convex quadratic
function over a polyhedron and proved O(k−1) convergence rate in this setting. Levitin and Polyak
[1966] extended the analysis and proved the same rate for minimization of an arbitrary smooth convex
function over a generic convex compact set, and Canon and Cullum [1968] showed that this rate is
optimal. The analysis is extended for a broader Hölder-smooth function class by Nesterov [2018].
Jaggi [2013] presented an affine invariant analysis for the FW algorithm by replacing smoothness
with the bounded curvature assumption, see (2.3). The analysis of FW for non-convex functions
appeared in [Lacoste-Julien, 2016]—the method finds a stationary point as the gap function converges
to zero with O(k−1/2) rate, see (2.4) for the gap function. It is easy to show that the rate improves to
O(k−1) for minimization of a concave function, see Lemma 2.1. An application of the FW algorithm
to minimization of a concave function appears in [Luss and Teboulle, 2013].

Design variants of FW with away, pairwise, or in-face steps and line-search or momentum strategies;
and extensions of FW for stochastic gradients or block-coordinate updates are extensively studied in
the literature. We refer to [Kerdreux, 2020] for an excellent overview on these recent developments.
To our knowledge, the variant FW+ introduced in this paper is new.

CCCP. The CCCP method of Yuille and Rangarajan [2003] is a special case of the more general
DC algorithm (DCA) [Tao, 1997, Le Thi and Pham Dinh, 2018]. CCCP often provides a strong
baseline method for tackling non-convex problems where a DC structure is already known or
relatively easy to obtain— see [Lipp and Boyd, 2016] for some recent variations on the CCCP method.
As already noted, asymptotic convergence of CCCP follows from the more general convergence
theory of DCA [Tao, 1997], while a simplified, more direct convergence analysis was obtained
in [Lanckriet and Sriperumbudur, 2009], who analyzed convergence of both function values and
iterates; moreover, these convergence results apply to the most general CCCP+ formulation (DC
objective with DC constraints). A more recent work [Khamaru and Wainwright, 2018] considers
gradient and subgradient based alternatives to DCA and CCCP, establishing their corresponding
non-asymptotic convergence; however, its focus is on alternatives and its guarantees do not transfer
to CCCP, and thus a fortiori not to CCCP+. Both CCCP and DCA have received a large number of
applications, in a variety of areas including statistics, machine learning, signal processing, operations
research, and many more—we refer the reader to the extensive list documented in the survey [Le Thi
and Pham Dinh, 2018] and to examples in [Yuille and Rangarajan, 2003].

We became aware of some important items of related work in the recent literature after completing
this work. [Abbaszadehpeivasti et al., 2021] proposes non-asymptotic convergence guarantees for
unconstrained DC optimization. Their analysis is based on the performance estimation technique
[Drori and Teboulle, 2014], which is a computer-assisted methodology for estimating the worst-case
complexity of an algorithm by solving semidefinite programs. They conjecture the convergence
guarantees through systematic numerical experimentation and then analytically verify them. Their
proof provides limited insight and does not extend to the more general constrained settings.
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The closest in relevance to our work is [Lê-Huu and Alahari, 2021]. The authors therein recognize
the connection between CCCP and FW from a conceptually different viewpoint and show that
the unconstrained CCCP is a special instance of the generalized FW studied in [Bredies et al.,
2009]. Generalized FW is an extension of FW for solving composite optimization problems through
partial linearization leading to a modified FW subproblem. Although not identified explicitly before,
generalized FW is algebraically equivalent to the original FW applied to an epigraph reformulation in
the context of CCCP. We independently discovered the connection between CCCP and FW through
the lens of this epigraph reformulation.

We emphasize the value of our conceptual perspective: the epigraph reformulation allows us to
transfer existing guarantees of FW to CCCP without having to perform new convergence analysis
for the unconstrained and convex constrained CCCP case. We further expound this connection
and develop it to the DC constrained setting for CCCP+, leading to the discovery of FW+ as a
natural extension of the FW method for functional constraints. Our FW+ analysis gives the first
non-asymptotic convergence guarantees for the CCCP+. We further observe that the proximal point
method (PPM), mirror descent, and mirror prox are also special cases of FW applied to a suitable
epigraph reformulation, see Appendices A and B. Since we reduce PPM to FW, and many other
optimization methods reduce to PPM, all these methods are inherently special instances of FW.

2 Background on Frank-Wolfe and CCCP
2.1 Frank-Wolfe Algorithm
We begin by recalling the basic Frank-Wolfe method (FW) and some of its key properties. We focus
in particular on the nonconvex case, as it is key to the rest of our theory. Consider therefore the
prototypical constrained optimization template:

min
ω

φ(ω) s. t. ω ∈ D, (2.1)

whereD is a closed and convex set in Rn and φ is a continuously differentiable (potentially nonconvex)
function over the domain D. FW applied to (2.1) performs the following steps for k = 1, . . .

ω∗k ∈ argmin
ω∈D

φ(ωk) + 〈∇φ(ωk), ω − ωk〉,

ωk+1 = (1− ηk)ωk + ηkω
∗
k,

(FW)

where ηk ∈ [0, 1] is a step-size. There are multiple design choices for the step-size. A common
choice is the greedy step-size

ηk = argmin
η∈[0,1]

φ
(
(1− η)ωk + ηω∗k

)
. (2.2)

The standard convergence theory of FW crucially depends on the boundedness of curvature constant
of φ over D, defined as follows:

Cφ := sup
ω,ω̂∈D; η∈[0,1]

ω̄=(1−η)ω+ηω̂

2

η2

(
φ(ω̄)− φ(ω)− 〈∇φ(ω), ω̄ − ω〉

)
. (2.3)

The bounded curvature assumption is closely related to the Lipschitz smoothness assumption. If
∇φ is L-Lipschitz continuous and the domain D has a bounded diameter D, then Cφ ≤ LD2.
However, the former is more general. For instance, it is easy to see that Cφ = 0 if φ is concave. This
becomes useful in our analysis later in this paper, and allows us to derive guarantees without any
Lipschitz smoothness assumption on the functions involved and without an explicit assumption on
the boundedness of the domain.

If φ is convex and Cφ is bounded, then the sequence {ωk}k≥0 generated by (FW) converges to a
solution in objective value (see e.g., [Jaggi, 2013, Theorem 1]); where the convergence rate is

φ(ωk)− φ? ≤ 2Cφ
k + 1

, where φ? := min
ω∈D

φ(ω).

When φ is non-convex, (FW) can be shown to find a stationary point [Lacoste-Julien, 2016, Theo-
rem 1], with the following guarantee: there exists an index τ ∈ [k], such that

〈∇φ(ωτ ), ωτ − ω〉 ≤
max{Cφ, 2(φ(ω1)− φ?)}√

k
∀ω ∈ D.
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This bound is often presented in terms of the so-called FW-gap:

gap(ωτ ) := max
ω∈D

〈∇φ(ωτ ), ωτ − ω〉 = 〈∇φ(ωτ ), ωτ − ω∗τ 〉. (2.4)

This quantity naturally arises in the FW algorithm and its analysis, and it provides a reliable stopping
criterion.

In our analysis, we particularly need to apply FW to concave objectives. In this case, (FW) exhibits
better convergence rates than general non-convex costs. More precisely, we note the following result.
Lemma 2.1. Suppose that the sequence {ωk} is generated by the FW method with greedy step-size
(2.2) applied to Problem (2.1) with a concave objective. Then, there exists τ ∈ [k], such that

〈∇φ(ωτ ), ωτ − ω〉 ≤
φ(ω1)− φ?

k
∀ω ∈ D.

Proof. First, observe that ηk = 1 in (2.2) when φ is concave. Then, (FW) becomes

ωk+1 ∈ argmin
ω

φ(ωk) + 〈∇φ(ωk), ω − ωk〉 s. t. ω ∈ D.

By concavity of φ, we have

max
ω∈D

〈∇φ(ωk), ωk − ω〉 = 〈∇φ(ωk), ωk − ωk+1〉 ≤ φ(ωk)− φ(ωk+1). (2.5)

Then, averaging (2.5) over k gives

1

k

k∑
i=1

max
ω∈D

〈∇φ(ωi), ωi − ω〉 ≤
1

k
(φ(ω1)− φ?). (2.6)

We conclude the proof by noting that the minimum over k is less than or equal to the average.

2.2 The Convex-Concave Procedure (CCCP)

The starting point for the Convex-Concave Procedure (CCCP) of Yuille and Rangarajan [2003] is the
unconstrained DC program

min
x

f(x)− g(x), (2.7)

where both f and g are C1 (once continuously differentiable) convex functions; CCCP can also
be viewed as a special case of the more general DCA algorithm [Tao, 1997] that does not require
differentiability. The key idea behind the success of CCCP is to use the convexity of g(x) to linearize
it and obtain the following global upper bound on f(x)− g(x):

Q(x; y) := f(x)− g(y)− 〈∇g(y), x− y〉. (2.8)

At each iteration, CCCP then updates its guess by solving the convex problem

xk+1 ∈ argmin
x

Q(x;xk). (2.9)

A solution to (2.9) always exists because f? − g? is finite by assumption and

min
x

Q(x;xk) ≥ min
x

f(x)− g(x) = f? − g?. (2.10)

CCCP is thus a specific Majorize-Minorize (MM) algorithm [Hunter and Lange, 2004], and owing to
the update (2.9), it generates a monotonically decreasing sequence {f(xk)− g(xk)}k≥0 of objective
values. When f is differentiable, update (2.9) is tantamount to the implicit update

∇f(xk+1) = ∇g(xk). (CCCP)

Note that the subproblem (2.9) is a convex optimization problem that does not approximate the
function f(x), and thus likely offers a tighter approximate model to the DC cost (2.7), an aspect that
might help explain its strong empirical performance [Lipp and Boyd, 2016].

The original CCCP paper [Yuille and Rangarajan, 2003] presented various important applications
that could be viewed through the CCCP lens, of which perhaps the EM algorithm [Dempster et al.,
1977] and Sinkhorn’s method for matrix scaling [Sinkhorn, 1967] two very familiar special cases.
A formal study of CCCP’s asymptotic convergence properties was undertaken in [Lanckriet and
Sriperumbudur, 2009], who studied all three variants: unconstrained CCCP, convex constrained, as
well DC constrained CCCP.
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3 Unconstrained CCCP and convex constrained CCCP via FW

Our first result shows that CCCP can be viewed as a special case of the FW method.

Proposition 3.1. CCCP is equivalent to the FW method applied to the following epigraph reformula-
tion of Problem (2.7):

min
x,t

t− g(x) s. t. f(x) ≤ t. (3.1)

Proof. If we apply FW to (3.1), the linear minimization step is

(x∗k, t
∗
k) ∈ arg min

(x,t)
t− 〈∇g(xk), x〉 s. t. f(x) ≤ t. (3.2)

KKT conditions are necessary and sufficient for optimality in Problem (3.2) since it is a convex
optimization problem and the Slater’s condition holds. The Lagrangian of this problem is

L(x, t, λ) = t− 〈∇g(xk), x〉+ λ(f(x)− t).

Lagrangian stationarity condition implies

∇xL(x, t, λ∗)
∣∣
x=x∗

k, t=t
∗
k

= −∇g(xk) + λ∗∇f(x∗k) = 0

∇tL(x, t, λ∗)
∣∣
x=x∗

k, t=t
∗
k

= 1− λ∗ = 0

 ∇f(x∗k) = ∇g(xk). (3.3)

We also get t∗k = f(x∗k) by the complementary slackness condition.

Finally, FW updates its estimate via

xk+1 = (1− ηk)xk + ηkx
∗
k, tk+1 = (1− ηk)tk + ηkt

∗
k,

where ηk ∈ [0, 1] is chosen to minimize the objective function in (3.1). Since this function is concave,
ηk = 1, and we conclude that the linear system in (3.3) is exactly the CCCP subproblem.

Proposition 3.1 recognizes a simple derivation of the CCCP update – reformulate the unconstrained
DC program as a concave minimization over a convex set and apply FW. This recognition transfers
the convergence theory of FW to CCCP as we present in the next corollary.

Corollary 3.2. Suppose that the sequence {xk} is generated by (CCCP) applied to Problem (2.7).
Then, there exists τ ∈ [k], such that

f(xτ )− f(x)− 〈∇g(xτ ), xτ − x〉 ≤
1

k

(
f(x1)− g(x1)− (f∗ − g∗)

)
for all x.

Proof. By Proposition 3.1, CCCP is equivalent to FW applied to (3.1). Observe that (3.1) is an
instance of (2.1) with ω = (x, t), φ(ω) = t− g(x), andD = {(x, t) : f(x) ≤ t}. Since φ is concave,
we can use Lemma 2.1. Hence, there exists τ ∈ [k], such that

tτ − t− 〈∇g(xτ ), xτ − x〉 ≤
(t1 − g(x1))− (t? − g?)

k
∀(x, t) : f(x) ≤ t.

t? = f? by definition, t1 = f(x1) by initialization, and tτ = f(xτ ) by complementary slackness,
see the proof of Proposition 3.1.

Corollary 3.2 establishes non-asymptotic convergence guarantees of CCCP to a stationary point of
the unconstrained DC program (2.7). Remarkably, this result does not require any assumptions on the
Lipschitz-smoothness of the functions or an explicit assumption on the boundedness of the domain.

The main result in Corollary 3.2 is based on the variational inequality characterization of first-order
stationarity. Similar measures are used in the literature for various problems [Yurtsever et al., 2021].
The next lemma clarifies the value of this stationarity condition.

Lemma 3.3. A point x∗ is a first-order stationary point of Problem (2.7) if

f(x∗)− f(x)− 〈∇g(x∗), x∗ − x〉 ≤ 0 for all x. (3.4)
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Proof. By definition, the point x∗ is first-order stationary if

〈∇f(x∗)−∇g(x∗), x∗ − x〉 ≤ 0 for all x. (3.5)

Since f is convex, f(x∗)− f(x) ≤ 〈∇f(x∗), x∗ − x〉, and (3.5) immediately implies (3.4).

Next, we show (3.5) implies (3.4) as well. Suppose (3.4) holds and consider x = x∗ + αs for an
arbitrary direction s and step-length α > 0:

f(x∗ + αs)− f(x∗)− 〈∇g(x∗), αs〉 ≥ 0.

We divide both sides by α and take the limit as α→ 0+:

lim
α→0+

f(x∗ + αs)− f(x∗)

α
− 〈∇g(x∗), s〉 = 〈∇f(x∗), s〉 − 〈∇g(x∗), s〉 ≥ 0.

Finally, we arrive at (3.5) by substituting s = α−1(x− x∗).

In conclusion, (3.4) and (3.5) are equivalent for Problem (2.7).

Remark 3.4 (Comparison with the existing results). There are two other recent works that provides
non-asymptotic convergence guarantees for CCCP in the unconstrained setting.

1. Abbaszadehpeivasti et al. [2021] present two main results:
(i) Under the assumption that at least one of the terms, f or g is smooth, they show

min
τ∈[k]

‖vτ − uτ‖ ≤ O(1/
√
k) where vτ ∈ ∂f(xτ ) and uτ ∈ ∂g(xτ ).

(ii) For the non-smooth setting, they show

min
τ∈[k]

max
x

{
f(xτ )− f(x)− 〈uτ , xτ − x〉

}
≤ O(1/k) where uτ ∈ ∂g(xτ ).

This second result matches our guarantees in Corollary 3.2. As we also note above, Corollary 3.2
does not require any assumption on the smoothness, and it holds with subgradients as well.

2. Lê-Huu and Alahari [2021] provide convergence guarantees for the generalized FW algorithm
[Bredies et al., 2009] in the non-convex settings. Moreover, they identify CCCP as a special instance
of generalized FW. As a result, the guarantees that they present for the ‘concave f ’ setting (which
corresponds to the DC template) in Theorem 1 in their paper is equivalent to our Corollary 3.2.

Intriguingly, in this setting, the generalized FW algorithm itself is algebraically equivalent to the
standard FW applied to the epigraph reformulation (3.1). This recognition, although it seems simple,
is interesting on its own right because the recent literature on FW habitually associates the algorithm
with optimization on convex, closed and bounded domains. Nevertheless, the bounded domain
assumption can be relaxed without losing the guarantees, as

∀ω̂ ∈ D, min
ω∈D
〈∇φ(ω̂), ω〉 is bounded below. (3.6)

In other words, the linear minimization subproblem is well-defined everywhere in the domain. As an
interesting fact, Frank and Wolfe [1956] use assumption (3.6) in their original work and not restrict
their algorithm for bounded domains, see Hypothesis A in their paper. Assumption (3.6) trivially
holds if D is bounded but not vice versa. It is easy to show that assumption (3.6) is satisfied in
Proposition 3.1 since

min
f(x)≤t

t− 〈∇g(x̂), x〉 ≥ min
x

f(x)− 〈∇g(x̂), x〉

≥ min
x

f(x)− g(x) + g(x̂) + 〈∇g(x̂), x̂〉

≥ f? − g? + g(x̂) + 〈∇g(x̂), x̂〉

and f? − g? is finite by the blanket assumption.
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3.1 Convex constrained CCCP via FW

Here the problem of interest is:

min
x

f(x)− g(x), s. t. x ∈ D, (3.7)

for a closed convex set D. We can equivalently write this problem as

min
x

f(x) + χD(x)− g(x), (3.8)

where χD(·) denotes the indicator function of D. Since h := f + χD is convex, we can apply the
same idea as for the unconstrained case by looking at the equivalent problem

min
x,t

t− g(x), s. t. h(x) ≤ t. (3.9)

If we apply FW to (3.9), the linear minimization step involves solving

min
x,t

t− 〈∇g(xk), x〉, s. t. f(x) + χD(x) ≤ t, (3.10)

which is clearly equivalent to solving

min
x

f(x)− 〈∇g(xk), x〉, s. t. x ∈ D. (3.11)

Subproblem (3.11) is precisely the update of convex constrained CCCP.

4 CCCP with difference of convex constraints via FW

At this point, it is natural to wonder whether the most general version of CCCP also admits a natural
FW interpretation? Consider therefore the DC programming problem with DC constraints:

min
x

f0(x)− g0(x) s. t. fi(x)− gi(x) ≤ 0, i = 1, . . . ,m. (4.1)

Motivated by the applications in Gaussian processes and support vector machines with missing
variables, the advanced CCCP for Problem (4.1) is introduced in [Smola et al., 2005, Theorem 1].
This method updates its estimation to a solution of the following subproblem:

min
x

f0(x)− g0(xk)− 〈∇g0(xk), x− xk〉

s. t. fi(x)− gi(xk)− 〈∇gi(xk), x− xk〉 ≤ 0, i = 1, . . . ,m.
(CCCP+)

A large body of DC programming literature focuses on template (4.1), or even more general versions
of it. To name a few examples, [Fardad and Jovanović, 2014] studies this template for finding optimal
feedback gains in the presence of structural constraints, and [Tao et al., 2016] uses it for solving
content-centric sparse multicast beamforming. [Lipp and Boyd, 2016] focuses on the same template
and provides a discussion on the applications, also introducing several extensions and variations of
CCCP+ (e.g., with line-search). [Shen et al., 2016] proposes a structured way to formulate and handle
problems as DC programs with DC constraints, called disciplined convex-concave programming
(DCCP). DCCP is a generic framework which covers the boolean linear program, boolean least
squares, and quadratic assignment problem as special instances. DC programming has a long history,
beyond the references we cite above, we refer to [Le Thi and Pham Dinh, 2018] for an overview.

There is a major challenge to make a natural connection between CCCP+ and FW: The feasible set
of (4.1) is non-convex, and the feasible sets for (4.1) and (CCCP+) are not the same. As a result,
it seems impossible to write CCCP+ as a special instance of the standard FW method. However,
searching for a connection between CCCP+ and FW leads us to the discovery of a more general form
of the FW method itself that we call FW+. This method is obtained by linearizing constraints along
with the objective function, and it recovers CCCP+ as a special case while remaining amenable to a
transparent FW-style convergence analysis.
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4.1 Extended FW algorithm

Here is the problem template:

min
ω∈D

φ(ω) s. t. ψi(ω) ≤ 0, i = 1, . . . ,m, (4.2)

where D is a closed and convex set in Rn and φ and ψi are continuously differentiable functions with
bounded curvature.

The FW+ steps for Problem (4.2) are as follows:

ω∗k ∈ argmin
ω∈D

φ(ωk) + 〈∇φ(ωk), ω − ωk〉,

s. t. ψi(ωk) + 〈∇ψi(ωk), ω − ωk〉 ≤ 0, i = 1, . . . ,m

ωk+1 = (1− ηk)ωk + ηkω
∗
k.

(FW+)

Here, we focus on a setting where both φ and ψ are concave. In this setting, we can choose ηk = 1.
We defer a more general discussion on FW+ for other settings to an extension of this paper.

Theorem 4.1. Suppose that the sequence {ωk} is generated by the FW+ algorithm for Problem (4.2)
with concave functions φ and ψ. Then, there exists an index τ ∈ [k], at which ψi(ωτ ) ≤ 0 for
i = 1 . . . ,m, and

〈∇φ(ωτ ), ωτ − ω〉 ≤
φ(ω1)− φ?

k
, ∀ω ∈

m⋂
i=1

{ω ∈ D : ψ′i(ω, ωτ ) ≤ 0}, (4.3)

where ψ′i(ω, ωτ ) := ψi(ωτ ) + 〈∇ψi(ωτ ), ω − ωτ 〉.

Proof. First, we focus on the constraint function ψ. By concavity, for all i,

ψi(ωk+1) ≤ ψi(ωk) + 〈∇ψi(ωk), ωk+1 − ωk〉 ≤ 0,

where the last inequality follows from the constraint in the linear minimization step of FW+.

Similarly, by concavity of φ, we have

〈∇φ(ωk), ωk − ωk+1〉 ≤ φ(ωk)− φ(ωk+1).

Averaging this inequality over k gives

1

k

k∑
i=1

〈∇φ(ωi), ωi − ωi+1〉 ≤
φ(ω1)− φ(ωk+1)

k
≤ φ(ω1)− φ?

k
,

where the second inequality holds since ωk+1 is in a restriction of the feasible set of (4.2). Then,
there exists an index τ ∈ [k], at which

〈∇φ(ωτ ), ωτ − ωτ+1〉 ≤
φ(ω1)− φ?

k
.

This inequality leads to (4.3) by definition of ωτ+1 = ω∗τ in (FW+).

Before moving on, we characterize stationary points of Problem (4.2) in the next lemma. This gives a
clear interpretation of the bounds in (4.1) as a perturbation of the stationarity condition.

Lemma 4.2. Consider Problem (4.2) and assume φ and ψ are concave. Then, ω∗ ∈ Rn is a feasible
stationary point of Problem (4.2) if

ω∗ ∈ D and ψi(ω
∗) ≤ 0, ∀i = 1, . . . ,m, (feasibility)

〈∇φ(ω∗), ω − ω∗〉 ≥ 0, ∀ω ∈
m⋂
i=1

{ω ∈ D : ψ′i(ω, ω
∗) ≤ 0}, (stationarity)

where ψ′i(ω, ω
∗) := ψi(ω

∗) + 〈∇ψi(ω∗), ω − ω∗〉.
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Proof. Let’s note that ψi(ω) ≤ ψ′i(ω, ω
∗) due to concavity, therefore the set considered for the

stationarity condition in Lemma 4.2 is a restriction of the feasible set. The lemma implies that this
restriction contains all feasible directions at ω∗. Here is a simple proof.

First, suppose that that the conditions in Lemma 4.2 are satisfied at ω∗ and the inequality constraint is
active, i.e., ψi(ω∗) = 0. Then, ψ′i is also active since ψ′i(ω

∗, ω∗) = ψi(ω
∗) = 0. Assume that there

exists a direction d ∈ Rn such that ω̄ := ω∗ + αd is feasible for small enough α > 0, and that d is a
descent direction, 〈∇φ(ω∗), d〉 < 0. By the stationarity condition in Lemma 4.2, this implies either
ω̄ /∈ D or ψ′i(ω̄, ω

∗) > 0. The former clearly contradicts our feasibility assumption. Suppose the
latter holds, then we get 〈∇ψi(ω∗), d〉 > 0, meaning that d is an ascent direction for ψi at ω∗. This
also contradicts our feasibility assumption – constraint is active and d is an ascent direction, hence d
is directed outwards from the feasible region. By contradiction, we conclude that there is no feasible
descent direction at ω∗.

Next, suppose the constraint is inactive. This means ψ′ is also inactive as ψ′i(ω
∗, ω∗) = ψi(ω

∗) < 0.
Then, we can place an open ball B(ω∗) of infinitesimal radius centered at ω∗ such that ψ′i(ω, ω

∗) ≤ 0
for all points in B(ω∗). This implies 〈∇φ(ω∗), ω − ω∗〉 ≥ 0 for all ω ∈ D∩B(ω∗) by the stationarity
condition in Lemma 4.2.

FW+ is a natural extension of FW with extensively broader applications. Theorem 4.1 and Lemma 4.2
together imply that FW+ provably finds a stationary point of Problem (4.2) under the concavity
assumptions with non-asymptotic convergence guarantees. We complement this result in Appendix E
by deriving convergence guarantees of FW+ when φ and ψ are convex. Importantly, FW+ can be used
for finding a stationary point of a QCQP (quadratically constrained quadratic program) by solving a
sequence of linear programs.

4.2 CCCP+ via FW+

We are ready to establish the connection between CCCP+ and FW+ by following similar ideas as in
Section 3.

Proposition 4.3. CCCP+ is equivalent to the FW+ method applied to the following epigraph
reformulation of Problem (4.1):

min
x,t0,...,tm

t0 − g0(x) s. t. fi(x) ≤ ti, i = 0, 1, . . . ,m

gi(x) ≥ ti, i = 1, . . . ,m.
(4.4)

Proof. Problem (4.4) is a special case of (4.2) with

ω = (x, t0, . . . , tm), φ(ω) = t0 − g0(x), ψi = ti − gi(x), and D = {ω : fi(x) ≤ ti}.

We consider FW+ for (4.4). Since φ and ψi are concave, we can use ηk = 1 and the (FW+) procedure
accounts to solving

min
x,t0,...,tm

t0 − g0(xk)− 〈∇g(xk), x− xk〉

s. t. fi(x) ≤ ti, i = 0, 1, . . . ,m

ti − gi(xk)− 〈∇gi(xk), x− xk〉 ≤ 0, i = 1, 2, . . . ,m,

which is clearly equivalent to the (CCCP+) subproblem.

This connection also transfers the convergence theory of FW+ to CCCP+.

Corollary 4.4. Suppose that the sequence {xk} is generated by (CCCP+) applied to Problem (4.1).
Then, there exists an index τ ∈ [k], such that

f0(xτ )− f0(x)− 〈∇g0(xτ ), xτ − x〉 ≤
1

k

(
(f0(x1)− g0(x1))− (f?0 − g?0)

)
,

for all x that satisfies fi(x)− gi(xτ )− 〈∇gi(xτ ), x− xτ 〉 ≤ 0, i = 1, 2, . . . ,m.
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Proof. By Proposition 4.3 and Theorem 4.1, we get

t0,τ − t0 − 〈∇g0(xτ ), xτ − x〉 ≤
1

k

(
(t0,1 − g0(x1))− (t?0 − g?0)

)
for all (x, t0, . . . , tm) that satisfies

fi(x) ≤ ti, i = 0, 1, . . . ,m

ti − gi(xτ )− 〈∇gi(xτ ), x− xτ 〉 ≤ 0, i = 1, 2, . . . ,m.

This is equivalent to the desired bounds by eliminating t0, t1, . . . , tm in these formula.

5 Implications and Discussion

Discussion. We reiterate an important aspect of the non-asymptotic convergence guarantees proved
for CCCP and CCCP+ in this paper. Owing to the special structure involving minimization of concave
functions, the convergence rates are independent of the curvature constant of FW (see (2.3)). This
property is valuable since it delivers a convergence analysis of CCCP without imposing usual L-
smoothness assumptions on either f , or g or their difference f − g, a limitation that typical first-order
methods impose. While surprising at first sight, we can reconcile with this intuitively because CCCP
requires solving an optimization subproblem (2.9), which is a stronger oracle than merely a gradient
oracle for f − g. The ensuing faster convergence (i.e., tighter bound on the rate) may offer one
explanation to the intuitive view on why CCCP can often be quite competitive [Yuille and Rangarajan,
2003, Lipp and Boyd, 2016].

Implications. Beyond generic convergence guarantees and the transfer of other progress on FW to
CCCP, we note some specific implications worth further study here. The EM algorithm is a special
case of CCCP [Yuille and Rangarajan, 2003, §4], and therefore a special case of FW. Thus, one
should be able to develop a more refined understanding of global iteration complexity of EM, as well
as sharper local convergence properties. Given the large number of settings in machine learning and
statistics where the EM algorithm, or more generally, variational methods [Blei et al., 2017] are used,
a further deepening of their relation to FW-methods should prove fruitful. Similar implications about
algorithms, convergence, and complexity apply to other instances of CCCP that have been studied,
notably for problems such as matrix scaling [Sinkhorn, 1967].

Extensions. The connection established between FW and CCCP (FW+ and CCCP+) paves the path
for numerous extensions that are worthy pursuing. We hope our work motivates others to pursue
some of these or other extensions that these connections can inspire.

The first important extension worthy of study is to obtain stochastic variants of CCCP by building
on the recent progress on non-convex stochastic FW [Reddi et al., 2016b] as well as non-convex
variance reduced versions in the case of finite-sum problems [Reddi et al., 2016a, Allen-Zhu and
Hazan, 2016, Yurtsever et al., 2019].

Another line of research worthy of closer attention is to study the case where either g is non-
differentiable, or even both f and g in (1.1) are non-differentiable. In that case, developing an
extension of the relation between FW and CCCP to a relation between nonsmooth FW [Thekumpara-
mpil et al., 2020] (although, as of now this nonsmooth FW method is limited to convex problems)
and DCA should also prove to be fruitful, given the extensive progress DCA has witnessed over the
decades [Le Thi and Pham Dinh, 2018]. The case where f(x) is an indicator function of a convex
set already fits trivially, as already discussed above. One might also speculate that progress on DCA
could be transferred back to discover and develop nonsmooth FW methods.

Finally, given that both DCA and CCCP are special instances of MM methods [Hunter and Lange,
2004], it is possible that other MM methods might be profitably viewed as instances of an optimization
procedure (not necessarily FW) whose geometric and convergence properties are better understood.
We hope our work inspires the discovery of additional such connections.
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Makan Fardad and Mihailo R Jovanović. On the design of optimal structured and sparse feedback
gains via sequential convex programming. In 2014 American Control Conference, pages 2426–
2431. IEEE, 2014.

M. Frank and P. Wolfe. An algorithm for quadratic programming. Naval Research Logistics Quarterly,
3(95, 1956.

David R Hunter and Kenneth Lange. A tutorial on MM algorithms. The American Statistician, 58(1):
30–37, 2004.

Martin Jaggi. Revisiting Frank-Wolfe: Projection-free sparse convex optimization. In International
Conference on Machine Learning (ICML), pages 427–435, 2013.

Thomas Kerdreux. Accelerating conditional gradient methods. PhD thesis, Université Paris sciences
et lettres, 2020.

Koulik Khamaru and Martin Wainwright. Convergence guarantees for a class of non-convex and
non-smooth optimization problems. In International Conference on Machine Learning, pages
2601–2610. PMLR, 2018.

Simon Lacoste-Julien. Convergence Rate of Frank-Wolfe for Non-Convex Objectives.
arXiv:1607.00345, 2016.

Gert Lanckriet and Bharath K Sriperumbudur. On the convergence of the concave-convex procedure.
Advances in Neural Information Processing Systems, 22, 2009.

Ð Khuê Lê-Huu and Karteek Alahari. Regularized frank-wolfe for dense crfs: Generalizing mean
field and beyond. Advances in Neural Information Processing Systems, 34:1453–1467, 2021.

Hoai An Le Thi and Tao Pham Dinh. Dc programming and DCA: thirty years of developments.
Mathematical Programming, 169(1):5–68, 2018.

Evgeny S Levitin and Boris T Polyak. Constrained minimization methods. USSR Computational
mathematics and mathematical physics, 6(5):1–50, 1966.

Thomas Lipp and Stephen Boyd. Variations and extension of the convex-concave procedure. Opti-
mization and Engineering, 17(2):263–287, 2016.

Ronny Luss and Marc Teboulle. Conditional gradient algorithmsfor rank-one matrix approximations
with a sparsity constraint. siam REVIEW, 55(1):65–98, 2013.

B Martinet. Regularisation, d’inequations variationelles par approximations succesives. Revue
Francaise d’Informatique et de Recherche Operationelle, 1970.

Yu Nesterov. Complexity bounds for primal-dual methods minimizing the model of objective function.
Mathematical Programming, 171(1):311–330, 2018.

Sashank J Reddi, Ahmed Hefny, Suvrit Sra, Barnabas Poczos, and Alex Smola. Stochastic variance
reduction for nonconvex optimization. In International conference on machine learning, pages
314–323. PMLR, 2016a.

11



Sashank J Reddi, Suvrit Sra, Barnabás Póczos, and Alex Smola. Stochastic Frank-Wolfe methods
for nonconvex optimization. In Communication, Control, and Computing (Allerton), 2016 54th
Annual Allerton Conference on, pages 1244–1251. IEEE, 2016b.

R Tyrrell Rockafellar. Monotone operators and the proximal point algorithm. SIAM journal on
control and optimization, 14(5):877–898, 1976.

Xinyue Shen, Steven Diamond, Yuantao Gu, and Stephen Boyd. Disciplined convex-concave
programming. In 2016 IEEE 55th Conference on Decision and Control (CDC), pages 1009–1014.
IEEE, 2016.

Richard Sinkhorn. Diagonal equivalence to matrices with prescribed row and column sums. The
American Mathematical Monthly, 74(4):402–405, 1967.

Alex J Smola, SVN Vishwanathan, and Thomas Hofmann. Kernel methods for missing variables. In
International Workshop on Artificial Intelligence and Statistics, pages 325–332. PMLR, 2005.

Meixia Tao, Erkai Chen, Hao Zhou, and Wei Yu. Content-centric sparse multicast beamforming
for cache-enabled cloud ran. IEEE Transactions on Wireless Communications, 15(9):6118–6131,
2016.

Pham Dinh Tao. Convex analysis approach to DC programming: theory, algorithms and applications.
Acta mathematica vietnamica, 22(1):289–355, 1997.

Kiran K Thekumparampil, Prateek Jain, Praneeth Netrapalli, and Sewoong Oh. Projection efficient
subgradient method and optimal nonsmooth Frank-Wolfe method. Advances in Neural Information
Processing Systems, 33:12211–12224, 2020.

Alan L Yuille and Anand Rangarajan. The concave-convex procedure. Neural computation, 15(4):
915–936, 2003.

Alp Yurtsever, Suvrit Sra, and Volkan Cevher. Conditional gradient methods via stochastic path-
integrated differential estimator. In International Conference on Machine Learning, pages 7282–
7291. PMLR, 2019.

Alp Yurtsever, Varun Mangalick, and Suvrit Sra. Three operator splitting with a nonconvex loss
function. In International Conference on Machine Learning, pages 12267–12277. PMLR, 2021.

12



Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes] The main contribution is the realization of a simple
connection between CCCP and FW, clearly described in the title and abstract.

(b) Did you describe the limitations of your work? [Yes] The limitations and some future
directions are discussed in detail in Section 5

(c) Did you discuss any potential negative societal impacts of your work? [No] The paper
is of theoretical nature and it does not have an immediate societal impact.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [Yes] We explicitly

state the full set of assumptions for all theoretical results.
(b) Did you include complete proofs of all theoretical results? [Yes] Complete proofs are

present in the paper, with some extensions and extra details in the appendix.
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [N/A]

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [N/A]

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [N/A]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [N/A]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [N/A]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

13



Appendix: Additional Implications and Connections
In this appendix we briefly comment on a few additional connections and implications. The main text
is self-contained and can be read independent of this appendix.

A Proximal Point Method and Frank-Wolfe

Consider the generic unconstrained optimization template

min
x

f(x). (A.1)

The first connection worth noting is related to the fundamental proximal point method (PPM) [Mar-
tinet, 1970, Rockafellar, 1976]:

xk+1 ← argmin
x

(
f(x) + 1

2λk
‖x− xk‖2

)
. (A.2)

Rewrite (A.1) by adding and subtracting a strongly convex function φ(x):

min
x

f(x) + φ(x)− φ(x). (A.3)

We can apply the idea of epigraph splitting:

min
x,t

t− φ(x) s. t. f(x) + φ(x) ≤ t. (A.4)

This is concave minimization over a convex set. Similar to the ideas present in Section 3, application
of FW to (A.4) leads to

xk+1 ← argmin
x

f(x) +Dφ(x, xk), k = 0, 1, . . .

which is exactly the Bregman-PPM update. If in particular φ(x) = 1
2‖x‖

2, with a suitable step-size
choice in FW, we immediately obtain the PPM iteration in (A.1). Notably, in the above discussion
f need not be smooth, and we have indeed no loss in generality due to the FW view. Since many
other methods in optimization reduce to PPM, and above we have reduced PPM to FW, many other
optimization methods also reduce to FW via this view. Exploring implications of such algorithmic
reductions is left as a topic for future study.

B Mirror Descent and Frank-Wolfe

We revisit (A.3) but this time consider the following epigraph form:

min
x,t

t+ f(x)− φ(x) s. t. φ(x) ≤ t. (B.1)

The objective is not concave in this case, but we can still use FW with a suitable step-size if the
curvature is bounded. The linear minimization step becomes (after eliminating t):

x∗k = argmin
x

φ(x) + 〈∇f(xk)− uk, x〉,

where uk ∈ ∂φ(xk) is a subgradient of φ at xk. This leads to the inclusion

uk −∇f(xk) ∈ ∂φ(x∗k).

From the convex combination step of FW, we have the relation

x∗k =
1

ηk
xk+1 + (1− 1

ηk
)xk.

By combining the last two relations, and rearranging, we get

xk+1 = ∇φ∗
(
uk − ηk∇f(xk)

)
, uk ∈ ∂φ(xk), (B.2)

where φ∗(y) is the Fenchel conjugate of φ, and φ∗ is smooth since φ is strongly convex. This is
exactly the mirror descent update. If in particular φ(x) = L

2 ‖x‖
2, the objective function in (B.1)

becomes concave and we can choose ηk = 1, which leads to the gradient descent step

xk+1 = xk −
1

L
∇f(xk). (B.3)
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B.1 Mirror Prox and Frank-Wolfe

This time, we consider a generic composite optimization problem,

min
x

f(x) + g(x). (B.4)

Suppose f is L-smooth. Then, f(x)− L
2 ‖x‖

2 is concave. Add and subtract L2 ‖x‖
2 in (B.4):

min
x

f(x)− L

2
‖x‖2 + g(x) +

L

2
‖x‖2, (B.5)

and consider the following epigraph form

min
x,t

f(x)− L

2
‖x‖2 + t s. t. g(x) +

L

2
‖x‖2 ≤ t. (B.6)

If we apply FW on this formulation, the linear minimization step becomes

x∗k = argmin
x

〈∇f(xk)− L · xk, x〉+ g(x) +
L

2
‖x‖2, (B.7)

which is exactly the proximal gradient method step

x∗k = prox 1
L g

(
xk −

1

L
∇f(xk)

)
. (B.8)

Since the objective in (B.6) is concave, we can choose unit step-size for FW and get x∗k = xk+1.

This idea trivially extends to the mirror-prox by using a Bregman divergence.

C CCCP/FW and Non-Convex Proximal-Splitting

Consider again the basic unconstrained problem minx f(x)− g(x). Add and subtract 1
2‖x‖

2, and
then consider the equivalent dual CCCP problem

(g + 1
2‖ · ‖

2)∗(x)− (f + 1
2‖ · ‖

2)∗(x). (C.1)

When applying CCCP to (C.1) we need to compute the gradient of the second term. This gradient can
be obtained by recognizing that f + 1

2‖x‖
2 is strongly convex, and hence its dual is smooth, so that

∇(f + 1
2‖ · ‖

2)∗(z) = argmax
x
〈z, x〉 − f(x)− 1

2‖x‖
2.

But the argmax above is nothing but proxf (z). Thus, to apply CCCP to (C.1) we need to solve the
subproblem

x∗k ← argmin
x

(g + 1
2‖ · ‖

2)∗(x)− 〈proxf (xk), x〉. (C.2)

To solve (C.2), we can again compute the dual. As a shorthand, write h∗ ≡ (g + 1
2‖·‖

2)∗. Thus, we
obtain that x∗k = argmax〈proxf (xk), x〉 − h∗(x), whereby it must satisfy the optimality condition

proxf (xk) = ∇h∗(x∗k).

From our previous argument (since h = g + 1
2‖·‖

2), we know that ∇h∗(x) = argmaxz〈x, z〉 −
g(z)− 1

2‖z‖
2, so that

∇h∗(x∗k) = proxg(x
∗
k) = proxf (xk). (C.3)

We state this relation only to highlight it as the prox-analog of the usual implicit update of CCCP,
namely, ∇f(x∗k) = ∇g(xk).

After computing x∗k via (C.2), or via (C.3), the update step of FW leads to

xk+1 = (1− ηk)xk + ηkx
∗
k, (C.4)

Ultimately, the dual view permits us to apply CCCP without assuming differentiability, while
obtaining convergence guarantees for it via the FW view applied to the dual problem (C.2).
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D Frank-Wolfe is a special case of CCCP

We showed in Section 3 that CCCP is a special instance of FW. Interestingly (though unsurprisingly),
this connection goes both ways and we can cast FW as an instance of CCCP.
Example D.1. Let f(x) be an indicator function of a convex set X . Then,

min
x

f(x)− g(x) ⇔ max g(x), s.t. x ∈ X .

Applying FW to this problem results in the same update, when solving the CCCP subproblem

min
x

f(x)− g(y)− 〈∇g(y), x− y〉.

Since f is an indicator, this problem translates into the linear minimization step of FW

x∗k ∈ argmin
x

〈−∇g(xk), x〉, s.t. x ∈ X .

Since the objective is concave, FW can use the unit step-size and xk+1 = x∗k.

E More details on FW+

In Section 4.1 we analyzed the FW+ method for the important setting where both φ and ψ are concave.
In this appendix, we present additional details on the convergence guarantees of FW+ when φ and ψ
are convex.
Theorem E.1. Suppose that the sequence {ωk} is generated by the FW+ algorithm with step-size
ηk = 2/(k + 1) applied to Problem (4.2). Suppose φ and ψ are convex with bounded curvature
constants Cφ and Cψ . Then, the following guarantees hold:

ωk ∈ D, φ(ωk)− φ∗ ≤ 2Cφ
k + 1

, and ψ(ωk) ≤ 2Cψ
k + 1

. (E.1)

Proof. ωk always remains in D by design of the algorithm. Next, focus on the constraint function ψ.
Since ψ has bounded curvature Cψ ,

ψ(ωk+1) ≤ ψ(ωk) + 〈∇ψ(ωk), ωk+1 − ωk〉+
1

2
η2
kCψ

= (1− ηk)ψ(ωk) + ηk(ψ(ωk) + 〈∇ψ(ωk), ω∗k − ωk〉) +
1

2
η2
kCψ

≤ (1− ηk)ψ(ωk) +
1

2
η2
kCψ,

where the last inequality follows from the constraint in the linear minimization step of FW+. Unrolling
this inequality, we obtain

ψ(ωk+1) ≤ (1− η1)ψ(ω1) +
1

2
Cψ

k∑
i=1

η2
i

k∏
j=i+1

(1− ηj).

We choose ηk = 2/(k + 1), hence

ψ(ωk+1) ≤ 2Cψ

k∑
i=1

1

(i+ 1)2

k∏
j=i+1

j − 1

j + 1
= 2Cψ

k∑
i=1

1

(i+ 1)2

i(i+ 1)

k(k + 1)
≤ 2Cψ
k + 1

.

This completes the proof for the constraint function.

The proof of convergence for the objective function follows similarly to the standard proof of the FW
method. By the bounded curvature assumption, we have

φ(ωk+1)− φ∗ ≤ φ(ωk)− φ∗ + 〈∇φ(ωk), ωk+1 − ωk〉+
1

2
η2
kCφ

= φ(ωk)− φ∗ + ηk〈∇φ(ωk), ω∗k − ωk〉+
1

2
η2
kCφ.
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By definition of w∗k,

φ(ωk+1)− φ∗ ≤ φ(ωk)− φ∗ + ηk〈∇φ(ωk), ω − ωk〉+
1

2
η2
kCφ,

∀ω ∈ {ω ∈ D : ψ(ωτ ) + 〈∇ψ(ωτ ), ω − ωτ 〉 ≤ 0}.

Since ψ is convex, this is a relaxation of the feasible set, it contains ω∗, hence the above inequality
holds also for ω = ω∗:

φ(ωk+1)− φ∗ ≤ φ(ωk)− φ∗ + ηk〈∇φ(ωk), ω∗ − ωk〉+
1

2
η2
kCφ

≤ (1− ηk)(φ(ωk)− φ∗) +
1

2
η2
kCφ.

Then, similar to the above discussion on the convergence of ψ, we get

φ(ωk+1)− φ∗ ≤ 2Cφ
k + 1

.

This completes the proof.
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