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A SYNTACTIC TEMPLATES

Syntactic templates form the essential ingredients for syntax-guided synthesis, as they significantly
reduce the number of possible programs. In practice, syntactical templates are provided by users who
operate with real-world constraints or experts who can help narrow the search space to desirable
templates. The exact criteria for selecting templates are problem-dependent. To prove our concept in
a more generalizable workflow, we bootstrap our set of syntactic templates T̂ in a data-driven way by
obtaining the syntactic templates present in the training set. We then simulate real-world constraints
by setting T̂k ← {T ∈ T̂ | T has at most k internal nodes} and optimize within the induced design
space ∂̂Pk (Section 3.3.2). We tabulate summary statistics in Table 5 for the number of unique
syntactic templates and the number of topological orders. We see that the empirical distribution
is biased towards simpler syntactic templates, which reflects real-world constraints and is a key
enabler of our amortized approach. We train the parameters (Θ,Φ,Ω)k of our policies (τ, πR, πB),
respectively, for k = 3, 4, 5, 6 on our (pre)training dataset D. For samples in D with more than k > 6

reactions, we snap it to the closest T ∈ T̂k according to the tree edit distance. We find k = 3 using
full topological decoding (illustration in Figure 3) is best for Synthesizable Analog Generation and
k = 4 with random sampling of the decoding beams is a good compromise between accuracy and
efficiency for Synthesizable Molecule Design. We also note that the number of unique templates
grows sub-exponentially, and in fact the number of templates for a fixed number of reactions starts
diminishing for k > 6. To make sure this does not cause issues, we ensured there is still sufficient
coverage to formulate a Markov Chain on T̂k, which is crucial for our bilevel algorithms. For example,
Figure 4 visualizes the empirical proposal distribution J(T1, T2),∀T1, T2 ∈ T̂4 × T̂4. Importantly,
key hyperparameters like β and nedits enable control over exploration vs exploitation.

Figure 4: We adopt the tree edit distance as the dist function. We see that T̂4 has sufficient transition
coverage for bootstrapping our space of syntactic templates.
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# Rxns |T̂k\k−1| (|Tk\k−1|) # Topo. Orders (Max, Mean, Std)T̂k\k−1

1 2 (2) 2, 1.5, 0.5
2 6 (6) 8, 4.17, 2.79
3 22 (22) 80, 19.59, 20.55
4 83 (90) 896, 152.02, 215.53
5 209 (394) 19200, 2506.25, 3705.77

(a)

# Rxns |T̂k\k−1|
6 298
7 243
8 112
9 63
10 42
11 22
12 11
13 4
14 2

(b)

# Rxns # Topo. Masks ()T̂k\k−1
# Topo. Masks ()Tk\k−1

1 5, 4, 1 5, 4, 1
2 11, 7.67, 2.56 11, 7.67, 2.56
3 26, 14.36, 5.86 26, 14.36, 5.86
4 56, 27.99, 12.47 56, 26.73, 12.78
5 131, 65.07, 26.36 131, 49.74, 27.09
6 287, 165.12, 61.43 287, 92.67, 56.29

(c)

Figure 5: (a) Summary statistics of the number of syntactic templates (both empirical and theoretically
possible) and possible topological decoding node orders for k = 1, 2, . . . , 5; (b) Summary statistics
for only the number of syntactic templates since enumerating all topological sorts becomes intractable;
(c) Summary statistics for the number of topological masks (subset of nodes closed under parent(.))

B EXTRAPOLATION TO UNSEEN TEMPLATES

B.1 DATA PREPARATION

In this section, we investigate whether SynthesisNet can extrapolate to unseen templates, and
effectively incorporate them for synthesizable analog generation and molecular design. We setup an
ablation study as follows:

1. Reverse sort the templates by frequency using our dataset D0.

2. Collect every fourth template into a hold-out set Ttest for k = 4.

3. ConstructD′
0 := {(P,B) ∈ D0 | TP,B ∈ T4 \Ttest} where TP,B ∈ T is the syntactical template

of (P,B).

4. Run Algo. 1 on D′
0 to obtain D′.

5. Train ablation policy networks {π′
B, π

′
R} using D′.

6. Evaluate task performances with same τ as before.

We select hold-out templates in a frequency-stratified manner, ensuring the frequency distribution of
T̂test is similar to that of T̂ . Since smaller templates appear more frequently, the sizes of of templates
are also indirectly stratified this way. Since we choose the least frequent from each consecutive group
of 4 (Step 2), we note on average templates in T̂test tend to be slightly larger than T̂ , so results for test
templates may be lower in Table 5.

B.2 RESULTS ON SYNTHESIZABLE ANALOG GENERATION

We evaluate the synthesizable analog task performances using ablation networks. We want to test
whether the ablation networks integrate effectively with templates outside its structural support. Thus,
we use the same τ as before for the τ experiments in Table 5, allowing access to the full template set
but forcing {π′

B, π
′
R} to extrapolate when performing inference over T̂test.
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Table 5: Apart from swapping out the policy networks, we use the same experimental setup as Table
1. For fair comparison, we also retrained Ours with k = 4 templates (whereas Table 1 used k = 3).

Avg. Sim. ↑ SA ↓ Diversity ↑
Dataset Method RR ↑ Top-1 Top-3 Top-5 Top-1 Top-3 Top-5 Top-3 Top-5

Test Set Ours:EP (τ ) 52% 0.815 0.616 0.548 3.140 2.964 2.892 0.585 0.646
Ours (τ ) 56% 0.827 0.633 0.555 3.100 3.019 2.918 0.543 0.628
Ours:EP Ttest (τ ) 20% 0.636 0.539 0.473 2.844 3.023 2.987 0.564 0.675
Ours Ttest (τ ) 20% 0.626 0.552 0.493 3.360 3.135 3.070 0.542 0.634

ChEMBL Ours (τ ) 7.6% 0.531 0.443 0.396 2.544 2.510 2.460 0.675 0.727
Ours (MCMC) 9.2% 0.532 0.486 0.432 2.364 2.310 2.263 0.765 0.759
Ours:EP (MCMC) 8.5% 0.519 0.421 0.367 2.644 2.420 2.382 0.618 0.640

The performance takes only a minor dip on the Test Set, compensating for slightly lower Avg. Sim.
with higher Diversity and comparable SA. We further zoom in on the subset of D0 with structure
among the held-out template classes. We emphasize this is very difficult for {π′

B, π
′
R} to do, which

has not seen any examples from those structural classes. It actually appears Ours:EP has the slight
edge over Ours on the held-out template set, with slightly better SA and greater diversity. We
attribute this to a regularization effect induced by removing (slightly, due to Step 2.) more complex
program structures. There are still enough complex templates left that this does not harm performance,
highlighting the robustness of our model in this setting. We believe the fact the ablation model can
maintain comparable performance implies the following:

• Structural Extrapolation: It is capable of inference of programs outside the structural support
of its training distribution in this case.

• Template Set Robustness: Our model is not very sensitive to the default size of the template
set, since using only 75% of it already brings it close to diminishing returns.

The dip in performance is more noticeable for the predominantly unsynthesizable dataset ChEMBL,
with lower metrics across the board. We suspect the reason is due to ChEMBL containing more
complex molecules that require longer synthetic routes. This is also apparent from the lower analog
diversity, suggesting training on more template variety helps.

We believe the difficulty of the task (ratio of synthesizable vs unsynthesizable molecules) can inform
whether the method is sensitive to the template set it sees during training. Similar ablation studies to
this one can highlight when additional resources should be allocated to expanding the training set and
when it is sufficient to simply incorporate more templates at test time.

B.3 RESULTS ON SYNTHESIZABLE MOLECULAR DESIGN

Figure 6: We select the first Oracle from each Table in App. H to compare Ours with Ours (EP).
Aside from the ablation networks, we use the same experimental settings as Table 2.

(a)

GSK3β Median 1

Top 1 Top 10 Top 100 Top 1 Top 10 Top 100
category Oracle Calls Score SA AUC Score SA AUC Score SA AUC Oracle Calls Score SA AUC Score SA AUC Score SA AUC

Ours (EP) synthesis 6921 0.99 1.975 0.872 0.965 2.321 0.818 0.94 2.237 0.744 9050 0.4 4.12 0.358 0.344 4.434 0.305 0.301 4.394 0.257
Ours synthesis 4886 0.98 2.045 0.891 0.967 2.302 0.848 0.944 2.27 0.778 8303 0.4 3.353 0.371 0.342 4.161 0.305 0.298 4.256 0.252

(b)

Osimertinib MPO Perindopril MPO

Top 1 Top 10 Top 100 Top 1 Top 10 Top 100
category Oracle Calls Score SA AUC Score SA AUC Score SA AUC Oracle Calls Score SA AUC Score SA AUC Score SA AUC

Ours (EP) synthesis 10000 0.852 2.322 0.831 0.849 2.475 0.823 0.839 2.484 0.802 10000 0.626 3.382 0.562 0.598 3.375 0.54 0.56 3.349 0.509
Ours synthesis 10000 0.859 2.263 0.826 0.847 2.21 0.81 0.832 2.249 0.769 10000 0.622 3.338 0.547 0.591 3.378 0.524 0.558 3.137 0.485

We also evaluate the synthesizable molecular design performances using ablation networks. We
want to evaluate whether the ablation models can guide the optimization trajectory as a surrogate
generator of synthesizable analogs. We see comparable performances across all four Oracles in
Table 14, and for each Ours (EP) having the edge on some metrics while Ours having the edge on
other metrics. This suggests both are capable enough to serve as the inner subroutine of our bilevel
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genetic framework, although the models may have different biases on the kind of analogs it generates
which affects the optimization trajectories. Since Ours (EP) may generate less structurally diverse
analogs, it can converge in fewer Oracle calls, resulting in less Oracle calls and slightly higher AUCs.
Meanwhile, Ours produce more diverse analogs, which enables the acquisition of higher confidence
analogs. We see Ours to have the edge on SA across Median 1 (Top 1) and the MPO (Top 100)
Oracles. This may be because higher confidence regions tend to be where the simpler molecules are,
resulting in simpler analogs hence lower SA. Overall, the results show the robustness of our model.

C SYNTAX TREE RECOGNITION

In this section, we answer key questions like: (1) How does the relationship change with the addition
of T ? (2) How strong is the correlation between X and T ? (3) How justified are the most confident
predictions made by τ? We investigate the relationship betweenM and T . We seek to understand
the extent to which the true mappingM→ T is well-defined. The first part is quantitative analysis,
and the second part is a qualitative study.

C.1 T-SNE AND MDS PLOTS

We use the t-distributed stochastic neighbor embedding (t-SNE) on the final layer hidden represen-
tations of our MLP τ to visualize how our recognition model discriminates between molecules of
different syntax tree classes. From Figure 7, we see the MLP is able to discriminate amongst the top
3 or 4 most popular skeleton classes, visually partitioning the representation space. However, beyond
that the representations on the validation set begin to coalesce, i.e., the model begins overfitting.

Figure 7: t-SNE on molecules in top (3,4,5,6) skeleton classes

(a) Top 3 (sample 30 each) (b) Top 4 (sample 30 each)

(c) Top 5 (sample 30 each) (d) Top 6 (sample 30 each)

Since gradient descent is stochastic, we also use multi-dimensional scaling (MDS) using the Morgan
Fingerprint Manhattan distance on a subset of our dataset to visualize the relative positioning between
molecules of different syntax tree classes (sorted based on popularity). From the plots in Figure 9,
we observe some interesting trends:

• Similarly positioned points tend to have similar colors.
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Figure 8: MDS on molecules in top (10,20,100) skeleton classes

(a) Top 10 (sample 30 each) (b) Top 20 (sample 30 each) (c) Top 100 (sample 30 each)

• The darker end of the spectrum corresponding to the most popular classes generally cluster
together in the middle.

• The classes do not form disjoint partitions in space. As the ranked popularity increases, the
points tend to disperse outwards. There are exception classes, e.g., the yellow set of points in
Figure 8b that cluster in the center.

Based on these findings, it’s reasonable to conclude a recognition classifier by itself is overly naive.
However, the useful inductive bias that similar molecules are more likely to share the same syntactic
template indicates the localness property still holds. Our method is designed with this property in
mind: we encourage iterative refinement of the syntactic template when doing analog generation.

Figure 9: We visualize the structure-property relationship as a scatterplot of 2D structures vs property
values. (Top) Structure is X × T . We use MDS with the dissimilarity dX×T ((x1, T1), (x2, T2)) =
||x1 − x2||1 + Tree-Edit-Distance(T1, T2). (Bottom) Structure is only X .

We also use MDS to investigate the structure-property relationship to understand the joint effect T
and X has on different properties of interest. As shown in Figure 9, we see overall, the functional
landscape varies significantly from property to property, but the general trend is that decoupling
T from X does not change the structure-property relationship much. Whereas analog generation
requires a more granular understanding of the synergy betweenX and T , molecular optimization does
not. Instead, the evolutionary strategy should be kept fairly consistent between the original design
space (X ) and (X ×T ). However, the top row exhibits lower entropy, with the empirical distribution
looking “less Gaussian". To capture this nuance, the evolutionary algorithm should combine both
global and local optimization steps. We meet this observation with a bilevel optimization strategy
that combines semantic crossover with syntactic mutation.

C.2 EXPERT CASE STUDY

In this section, we enter the perspective of the recognition model learning the mapping from
molecules to syntax tree skeletons. The core difference between this exercise and a common organic
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chemistry exam question (Flynn, 2014) is the option to abstract out the specific chemistry. Since the
syntax only determines the skeletal nature of the molecule, the specific low-level dynamics don’t
matter. As long as the model can pick up on skeletal similarities between molecules, it will be
confident in its prediction. We did the following exercise to understand if cases where the recognition
model is most confident on unseen molecules can be attributed to training examples. We took the
following steps:

For each true skeleton class T

1. Inference the recognition model on 10 random validation set molecules belonging to T .
2. Pick the top 2 molecules the model was most confident belongs to T .
3. For each molecule M .

1. Find the 2 nearest neighbors to M belonging to T in the training set.

Shown in Figures Figure 10 and Figure 11 is the output of these steps for a common skeleton class
which requires two reaction steps.

Figure 10: COc1ncnc(N2C(=O)c3cc([N+](=O)[O-])c(O)cc3N=C2C2NC(=O)OC23CCC3)c1C which
recognition model predicts is in its true class with 87.5% probability

(a) Query molecule (b) Nearest neighbor in training set

In Figure 10, we see that the query molecule’s nearest neighbor is an output from the same program
but different building blocks. Both feature the same core fused ring system involving a nitrogen.
Given that the model has seen Figure 10b (and other similar instances), it should associate this core
feature with a ring formation reaction step. Taking a step deeper, the respective precursors also share
the commonality of having an amide linkage in the middle. Amides are key structural elements that
the recognition model can identify. Both precursors underwent the same amide linkage formation
step, despite the building blocks being different. Thus, the model’s high confidence on the query
molecule can be attributed directly to Figure 10b.

In Figure 11, there is more “depth" to the matter. We see a skeletal similarity across all three
molecules: a nitrogen in the center with three substituents. Although it’s noteworthy that the nitrogen
participates in a sulfonamide group in all three cases, using this fact to inform the syntax tree would
be a mistake. This is because in Figure 11a and Figure 11b, the sulfonamide group is the result of an
explicit sulfonamide formation reaction, where a sulfonyl chloride reacts with an amine. However,
in Figure 11c the sulfonamide group is already present in a building block. Thus, we see where the
recognition model taking as input the circular fingerprint of this molecule could overfit. Nonetheless,
the nitrogen with three substituents necessitates at least one reaction is required. The necessity for a
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Figure 11: COC(Cc1ccccc1)CN(C1CCCOc2ccccc21)S(=O)(=O)Cc1ccon1 which recognition model
predicts is in its true class with 86.2% probability

(a) Query molecule (b) Nearest neighbor in training set (c) 2nd Nearest neighbor

second reaction can be attributed to the ether linkage present in both Figure 11a and Figure 11c. The
recognizer would be able to justify an additional reaction after it has seen the bicyclic ring structure
joined with the sulfonamide group sufficiently many times before. In summary, the model will often
be presented multiple complex motifs, but only a subset of them may be responsible for reaction
steps. The exact number of reactions needed can only be determined via actually doing the search,
but high-level indicators (such as the nitrogen with three substituents) allow the recognition model to
abstract out the semantic details and construe a “first guess" of what the syntax tree is.

D EXPANDED RELATED WORKS

D.1 BACKGROUND ON PROGRAM SYNTHESIS

Program synthesis is the problem of synthesizing a function f from a set of primitives and operators
to meet some correctness specification. For example, if we want to synthesize a program to find the
max of two numbers, the correctness specification ϕmax := f(x, y) ≥ x ∧ f(x, y) ≥ y ∧ (f(x, y) =
x ∨ f(x, y) = y). As our approach is inspired from ideas in program synthesis, we briefly cover
some basic background. A program synthesis problem entails three things:

1. Background theory T which is the vocabulary for constructing formulas, a typical example
being linear integer arithmetic: which has boolean and integer variables, boolean and integer
constants, connectives (∧, ∨, ¬,→), operators (+), comparisons (≤), conditional (If-Then-Else)

2. Correctness specification: a logical formula involving the output of f and T
3. Set of expressions L that f can take on described by a context-free grammar GL.

Program synthesis is often formulated as deducing a constructive proof to the statement: for all inputs,
there exists an output such that ϕ holds. The constructive proof itself is then the program. At the
low-level, program synthesis methods repeatedly calls a SAT solver with the logical formula ¬ϕ. If
UNSAT is returned, this means f is valid. Syntax-guided synthesis (Alur et al., 2013; Schkufza et al.,
2013) (SyGuS) is a framework for meeting the correctness specification with a syntactic template.
Syntactic templates explicitly constrains GL, significantly reducing the number of implementations
f can take on. Sketching is an example application where programmers can sketch the skeletal
outline of a program for synthesizers to fill in the rest (Solar-Lezama et al., 2005). More directly
related to our problem’s formulation is inductive synthesis, which seeks to generate f to match
input/output examples. The problem of synthesis planning for a molecule M is a special case of the
programming-by-example paradigm, where we seek to synthesize a program consistent with a single
input/output pair: ({B}, M ). Inductive synthesis search algorithms have been developed to search
through the combinatorial space of derivations of GL. In particular, stochastic inductive synthesis
use techniques like MCMC to tackle complex synthesis problems where enumerative methods do not
scale to. MCMC has been used to optimize for the opcodes in a program (Schkufza et al., 2013) or
for the abstract syntax tree directly (Alur et al., 2013). In our case, the space of possible program
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semantics is so large that we decouple the syntax from the semantics, performing stochastic synthesis
over only the syntax trees. We also borrow ideas from functional program synthesis, where top-down
strategies are preferred over bottom-up ones to better leverage the connection between a high-level
specification and a concrete implementation (Polikarpova et al., 2016). Similar to how top-down
synthesis enables aggressive pruning of the search space via type checking, retrosynthesis algorithms
leverages the target molecule M to prune the search space via template compatability checks.

D.2 EXECUTION-GUIDED PROGRAM SYNTHESIS

We would like to note the distinction between our program synthesis formulation and other formula-
tions. Retrosynthesis is essentially already guided by the execution state at every step. Each expansion
in the search tree executes a deterministic reaction template to obtain the new intermediate molecule.
Planners based on single-step models (Chen et al., 2020), for example, assume the Markov Property
by training models to directly predict a template given only the intermediate (Torren-Peraire et al.,
2024; Tu et al., 2022). In program synthesis, meanwhile, the state space is a set of partial programs
with actions corresponding to growing the program. The execution of the program (or verification
against the specification) does not happen until a complete program is obtained. In recent years,
neural program synthesis methods found using auxiliary information in the form of the execution
state of a program can help indirectly inform the search (Bunel et al., 2018; Chen et al., 2018; Ellis
et al., 2019) since it gives a sense on what the program can compute so far. This insight does not
apply to retrosynthesis, since retrosynthesis already executes on the fly. It also does not apply for the
methods introduced in Section 2.2 that construct a synthetic tree in a bottom-up manner, for the same
reason (the only difference is they use forward reaction templates, with a much smaller set of robust
reaction templates) to obtain the execution state each step. However, as described in Section 3.3.1,
our approach combines the computational advantages of restricting to a small set of forward reaction
templates with the inductive bias of retrosynthetic analysis. Our policy is to predict forward reaction
templates in a top-down manner. This formulation is common in top-down program synthesis, where
an action corresponds to selecting a hole in the program. Similarly, our execution of the program
does not happen until the tree is filled in. However, we leverage the insight that the execution state
helps in an innovative way, as discussed in F.3.

D.3 INSPIRATIONS FROM RETROSYNTHESIS AND ALTERNATE FORMULATIONS

We begin by elaborating the distinctions between retrosynthesis methods and methods for synthe-
sizable molecular design. Then, we identify a few recent works from retrosynthesis that can inspire
cross-pollination of ideas. Finally, we end with alternate formulations of the problem that are also
valuable to consider for future cross-examination.

Intended Use Case

Retrosynthesis aims to find a synthetic route for a given target molecule, without reference to how
the target molecule is obtained or further optimizations on the target molecule. The target molecule is
a compound that may serve any application or use case that we will not get into here, but importantly
it is the problem to solve. We refer readers to Gao & Coley (2020) for further descriptions.

Synthesizable molecular design aims to be a standalone molecular optimization workflow that
explicitly constrains the design space to be synthetically accessible building blocks and reactions
Vinkers et al. (2003). This is often coupled with property oracles that evaluate the designs, which
guides the optimization towards parts of the design space with higher fitness Gao et al. (2022).

MDP Formulation

Retrosynthesis can be formulated as a tree-shaped MDP, where each state is a molecule (initial state
being the target, terminal states being building blocks) and each action is a reversed (“retro") reaction.
The tree shape of the MDP is due to the fact the retro reaction (action) produces a set of reactants
(states) Liu et al. (2023). Retrosynthetic planners often tackle the MDP by combining a single-step
model (predicting retro reactions) and a multi-step planner (e.g. A* search Liu et al. (2018), MCTS
Segler & Waller (2017), depth-first search Kishimoto et al. (2019)). A solution to the MDP is a tree
of actions, i.e. a synthetic tree, where all sequences of actions in this tree lead to terminal states.
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Synthesizable molecular design feature a broader set of methods but can be defined as a discrete
optimization problem over synthetic trees directly: argmaxx f(F (x)) where x is a synthetic tree, F
the root molecule of x and f is the fitness function. As the design space is intractably large, prior
approaches discussed in 2.3 formulate the problem as a serial MDP, where each state is a synthetic
tree and each action an edit operation (add, merge, etc.) to the synthetic tree. Though simple, we
argue such a formulation is ill-advised, for reasons we discussed and demonstrated in the main text.
We use an alternate formulation, inspired by program synthesis, that considers each state as a partially
sketched program and each action as completing a hole of the program.

Learning Goal

Retrosynthesis methods aim to learn a policy π(a|s), where s is a molecule and a a retro reaction,
which can be template-based or template-free (we won’t go into that here). Traditional works learn
the policy from public datasets of synthetic routes (e.g. USPTO), but recent works have explored
novel strategies for learning π by combining offline and online training. The offline training is usually
done on a reaction dataset to initialize a policy network and/or reaction model. The online training
iteratively adapts the policy network by acquiring more data using a planning algorithm, possibly
guided by the current policy network. More specifically, Guo et al. (2024) uses MCTS to acquire
data, inferring policy and value targets based on the node visit counts. Kim et al. (2021) uses a
self-improvement strategy, reminiscent of AlphaGo Zero Silver et al. (2017), that trains independent
reference forward and backward reaction models to control the quality and diversity of new reaction
pathways acquired by the planner. Liu et al. (2023) follows a similar strategy, but decouples the
synthesizability and cost of the value function. They also architect a two-branch policy network
that uses a trainable single-step network to optimize the probabilities over reactions from the frozen
reference network to better model real-world synthesis considerations. Like Guo et al. (2024), they
use MCTS guided by the current policy network to acquire more data, creating a synergistic feedback
loop that results in a holistic, trained policy network which can be plugged into multi-step planners.

Synthesizable molecular design methods, meanwhile, are relatively more spread out, with research
going into problem formulation and algorithmic frameworks for tackling this more open-ended
problem. In SynthesisNet, the policy learning is done entirely offline (as described in Sections 3.3.1
and 4.1.1) to amortize for the cost of searching during the actual online phases (MCMC and GA), but
above techniques from retrosynthesis can also facilitate self-improving the surrogate network. One
potential idea for generating more experiences is to take partial program examples from the existing
data, use guided planning to complete those examples, then retrain the surrogate network with the
augmented dataset. We leave the details for exciting future extensions of our work.

Alternate Formulations

Towards synthesizable molecular design, alternate formulations from recent developments can also
be considered. Decision Transformer Chen et al. (2021) is a recent work that re-imagines offline RL
as a conditional sequence modeling task. Notably, the model conditions on reward-to-go and the
history for generating the next action. The Transformer architecture enables long-term modeling
of the environment’s dynamics, enabling credit assignment and relational modeling of its history.
The offline setting tackled by Decision Transformer naturally aligns with our method, where we do
(self-)supervised policy training from programs generated offline. Although the program structure
carries important hierarchical information about the relations of building blocks and reactions to one
another, it’s worth considering whether the synthesis tree construction serialization protocol used by
prior works Bradshaw et al. (2020); Gao et al. (2021); Luo et al. (2024); Gao et al. (2024) can be used
to formulate a conditional sequence modeling problem. GFlowNet Bengio et al. (2021; 2023) is also a
recent work that formulates a flow network over a tree-based MDP, where the incoming and outgoing
flow are proportional the probability of subsequent actions and learned using flow matching objectives.
The goal of this model is to learn amortized samplers for reward functions, producing both diverse
and high-quality samples constructed in a step-by-step manner following an MDP environment. The
learning occurs on offline trajectories with observed rewards. The formulation using reward functions
can be a direction of future work for our framework, which currently only considers rewards in the
online phases. However, if we had considered rewards to be provided upfront along with the data
generation procedure, we can adopt GFlowNet to amortize the expensive work done by MCMC, and
directly sample programs. We leave this study for future works. We believe cross-examining alternate
formulations and recent methodologies to be essential for finding future inspirations for extending
the innovation horizon of methods used to tackle synthesizable molecular design.
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E DERIVATION OF GRAMMAR

We now define the grammar GP describing the set of implementations our program can take on. A
context-free grammar is a tuple GP := (N ,Σ,P,X ) that contains a set N of non-terminal symbols,
a set Σ of terminal symbols, a starting node X , and a set of production rules which define how to
expand non-terminal symbols. Recall we are given a set of reaction templatesR and building blocks
B. Templates are either uni-molecular (:= R1) or bi-molecular (:= R2), such thatR = R1 ∪R2. In
the original grammar, these take on the following:

1. Starting symbol: T
2. Non-terminal symbols: R1, R2, B

3. Terminal symbols:

• {R ∈ R1}: Uni-molecular templates
• {R ∈ R2}: Bi-molecular templates
• {BB ∈ B}: Building blocks

4. Production rules:

1. T → R1

2. T → R2

3. R1 → R(B) (∀R ∈ R1)
4. R1 → R(R1) (∀R ∈ R1)
5. R1 → R(R2) (∀R ∈ R1)
6. ∀(X1, X2) ∈ {“R1”, “R2”, “B”} × {“R1”, “R2”, “B”}

• R2 → R(X1, X2) (∀R ∈ R2)
7. B → BB (∀BB ∈ B)

Example expressions derived from this grammar are “R3(R3(B1,B2),R2(B3))" and “R4(R1(B2,B1))"
for the programs in Figure 1.

Identifying a retrosynthetic pathway can be formulated as the problem of searching through the
derivations of this grammar conditioned on a target molecule. This unconstrained approach is
extremely costly, since the number of possible derivations can explode.

In our syntax-guided grammar, we are interested in a finite set of syntax trees. The syntax tree of a
program depicts how the resulting expression is derived by the grammar. These are either provided
by an expert who has to meet experimental constraints, or specified via heuristics (e.g., maximum of
x reactions, limiting the tree depth to y). For example, the syntax-guided grammar for the set of trees
with at most 2 reactions is specified as follows:

1. Starting symbol: T
2. Non-terminal symbols: R1, R2, B

3. Terminal symbols:

• {R ∈ R1}: Uni-molecular templates
• {R ∈ R2}: Bi-molecular templates
• {BB ∈ B}: Building blocks

4. Production rules:

1. T → R2(B,B)

2. T → R1(B)

3. T → R1(R2(B,B))

4. T → R1(R1(B))

5. T → R2(B,R1(B))

6. T → R2(B,R2(B,B))

7. T → R2(R1(B), B)

8. T → R2(R2(B,B), B)
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9. R1 → R (∀R ∈ R1)
10. R2 → R (∀R ∈ R2)
11. B → BB (∀BB ∈ B)

This significantly reduces the number of possible derivations, but two challenges remain:

• How can when pick the initial production rule when the number of syntax trees grow large? We
use an iterative refinement strategy, governed by a Markov Chain Process over the space of
syntax trees. The simulation is initialized at the structure predicted from our recognition model
Appendix C.

• How can we use the inductive bias of retrosynthetic analysis when applying rules 9, 10, 11?
We formulate a finite horizon MDP over the space of partial programs, where the actions are
restricted to decoding only frontier nodes. This topological order to decoding is consistent with
the top-down problem solving done in retrosynthetic analysis. Furthermore, our pretraining
and decoding algorithm enumerates all sequences consistent with topological order.

These two questions are addressed by the design choices in Section 3.3.

F POLICY NETWORK

F.1 FEATURIZATION

Our dataset D comprises partial programs T ∈ ∂P producing molecules M .Then, we compute node
features H and labels Y as:

hn := [FP2048(M),BB2048(n),RXN(n)], yn :=

{
RXN(n), if i is a reaction node,
BB256(n), otherwise,

where FPd(·) computes the d-bit radius 2 Morgan fingerprints, BBd(n) = FPd(nSMILES) if n is
attributed with a building block from B or 0d otherwise and RXN(n) = one_hot91(nRXN_ID) if n is
attributed with a reaction fromR or 091 otherwise.

If N (T ) and E(T ) denote the node and edge set of T ∈ ∂P , then we define, for convenience:

RXN(T ) := {r ∈ N (T ) | ∃c, p ∈ N (T ) s.t. (r, c) ∈ E(T ) ∩ (p, r) ∈ E(T )} (1)
BB(T ) = {b ∈ N (T ) | ∄c s.t. (b, c) ∈ E(T )}.} (2)

F.2 LOSS FUNCTION

Let the superscript (i) indicate the i-th sample in the dataset. The loss function is:

LD(Φ) :=
1

|D|

|D|∑
i=1

∑
n∈RXN(T (i))

CE(πR(T (i),H(i))n,y
(i)
n ),

LD(Ω) :=
1

|D|

|D|∑
i=1

∑
n∈BB(T (i))

MSE(πB(T
(i),H(i))n,y

(i)
n ).

CE and MSE denote the standard cross entropy loss and mean squared error loss, respectively. For
our evaluation metric, we consider accuracy, where the output of πB is interpreted as the nearest
building block with respect to cosine distance.

F.3 AUXILIARY TRAINING TASK

In Section 3.3.1, we defined the representation T to be the parse tree of a partial program. However,
we omitted an extra step that was used to preprocess T for training. The motivation for this extra step
is discussed deeply in D.2. We add an additional step when preprocessing D: For each T in D, for
each node r corresponding to a reaction, we add a new node or corresponding to the intermediate
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Figure 12: Examples of T ′ where prediction targets are the frontier reactions (yellow circles),
frontier building blocks (numbered yellow squares) and auxiliary intermediates (un-numbered yellow
squares).

outcome of the reaction. If RXN(T ) is the reaction nodes of T , we can construct T ′ from T as
follows:

N (T ′)← N (T ) ∪ RXN(T ) (3)

E(T ′)← E(T ) ∪ {(parent(r), or), (or, r)∀r ∈ RXN(T )} (4)

Lastly, we attribute each or with the intermediate obtained from the original synthetic tree, i.e.
executing the output of the program rooted at r. We featurize {yo := FP256(oSMILES)} and add them
as additional prediction targets to D. Examples of T ′ are given in Figure 12.

F.4 ABLATION STUDY: AUXILIARY TASK

To understand whether the two key design choices for ∂P ′ are justified, we did two ablations:

1. We use the original description of ∂P in Section 3.3.1, i.e. without the auxiliary task.
2. We use ∂P ′, but without attributing the intermediate nodes (so the set of targets is the same as

Ablation 1.)

(a) Examples from ∂P ′
(b) NN accuracy loss over
top example Figure 15a

(c) NN accuracy over bot-
tom example Figure 15a

(d) NN accuracy over the
validation set

Figure 13: We compare the proposed ablations on the NN accuracy metric over the whole dataset as
well as on two specific syntactic classes.

As shown in Figure 13d, using ∂P ′ (Ours) achieves higher NN accuracy. This shows the benefit
of learning the auxiliary training task. Meanwhile, ablating the auxiliary task (-aux) and ablating
the intermediate node (-interm) does not have meaningful difference, indicating our architecture is
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robust to graph edits which are semantically equivalent. To understand the comparative advantage
vs disadvantage of the auxiliary training task, consider the two examples in Figure 15a. The first
example is equivalent to learning a single-step backward reaction prediction on forward templates3.
Our model clearly benefits from the auxiliary training task, which provides additional examples for
learning the backward reaction steps. However, our model fares worse on predicting the first reactant
of the top reaction. This may be due to competing resources. Despite the task being the same (and the
set of forward templates are fixed), the model has to allocate sufficient capacity for the auxiliary task,
whose output domain is much higher dimensional than B. Ensuring positive transfer from learning
the auxiliary task is an interesting extension for future work.

F.5 ABLATION STUDY: LINEAR TRAINING

Table 6: We follow the same setup as Table 1, but retrain Ours using a dataset constructed with
parameter k = 4 (whereas we used k = 3 in Table 1) to match the linear sampling strategy models,
which we refer to as Ours:MC. We evaluate models trained using sampling constants 1 and 10, as
described in 4.1.3.

Avg. Sim. ↑ SA ↓ Diversity ↑
Dataset Method RR ↑ Top-1 Top-3 Top-5 Top-1 Top-3 Top-5 Top-3 Top-5

Test Set Ours (τ ) 56% 0.827 0.633 0.555 3.100 3.019 2.918 0.543 0.628
Ours:MC1 (τ ) 36% 0.732 0.564 0.513 3.048 2.913 2.844 0.609 0.665
Ours:MC10 (τ ) 65% 0.869 0.658 0.609 3.163 3.000 2.928 0.558 0.610

ChEMBL Ours (τ ) 7.6% 0.531 0.443 0.396 2.544 2.510 2.460 0.675 0.727
Ours (MCMC) 9.2% 0.532 0.486 0.432 2.364 2.310 2.263 0.765 0.759
Ours:MC1 (MCMC) 2.0% 0.406 0.337 0.289 2.604 2.563 2.439 0.756 0.767
Ours:MC10 (MCMC) 8.5% 0.519 0.421 0.367 2.644 2.420 2.331 0.618 0.640

F.5.1 RESULTS ON SYNTHESIZABLE ANALOG GENERATION

We study whether the efficiency of a sampling-based training strategy comes at a cost of performance.
We make two observations from the results in Table 6.

Constant factor matters. The constant multiplier C from D0 to D not only determines how much
data the model sees each pass for the sake of efficiency. It is also be a parameter controlling the
tradeoff between over-representing larger vs smaller templates. If it is larger than the largest number
of masks (Table 5), the Linear strategy is essentially deactivated, since all masks will be used. At
a lower value, only small programs with at most the number of masks as C are fully represented.
Medium-to-larger programs in D0 are under-represented, at the rate of the fraction of total masks that
C constitutes for its template class.

Performance boost in-distribution. We find that for C = 10, the performance is better across
reconstruction, similarity and diversity with comparable SA to the standard training. Meanwhile for
C = 1, the performance declines sharply. It is likely that standard training is overfitting to masks
from larger programs, resulting in poorer generalization. Meanwhile, C = 10 downsamples those
programs, and its sampling can be viewed as data-level regularization against overfitting.

Slight performance drop out-of-distribution. We find both C = 1 and C = 10 underperform
compared to standard training. For C = 10, reconstruction and Top-1 similarity are actually
comparable, but its similarity, SA and diversity are noticeably worse than standard training. Since
ChEMBL feature predominantly unsynthesizable molecules, it is likely that the distribution of
molecular fingerprints better reflect those outputs of the more complex programs in D0, which are
downweighted by higher values of C.

F.5.2 RESULTS ON SYNTHESIZABLE MOLECULAR DESIGN

Depends on the task. We also include preliminary results on synthesizable molecular design. We
find the results hold up for the MC models. Encouragingly, for the difficult task of Osimertinib MPO,

3For some templates, the forward template is one-to-one. For others, applying the backward template results
in an ill-defined precursor, due to the many-to-one characteristic of these templates.
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Figure 14: We select the first Oracle from each Table in App. H to compare Ours with Ours (EP).
Aside from the ablation networks, we use the same experimental settings as Table 2.

(a)

GSK3β Median 1

Top 1 Top 10 Top 100 Top 1 Top 10 Top 100
category Oracle Calls Score SA AUC Score SA AUC Score SA AUC Oracle Calls Score SA AUC Score SA AUC Score SA AUC

Ours (MC) synthesis 5056 0.98 2.045 0.923 0.97 2.294 0.893 0.942 2.294 0.814 7949 0.4 4.12 0.356 0.342 3.902 0.304 0.295 4.013 0.256
Ours (MC10) synthesis 8045 0.4 3.353 0.357 0.344 4.593 0.297 0.302 4.44 0.247
Ours synthesis 4886 0.98 2.045 0.891 0.967 2.302 0.848 0.944 2.27 0.778 8303 0.4 3.353 0.371 0.342 4.161 0.305 0.298 4.256 0.252

(b)

Osimertinib MPO Perindopril MPO

Top 1 Top 10 Top 100 Top 1 Top 10 Top 100
category Oracle Calls Score SA AUC Score SA AUC Score SA AUC Oracle Calls Score SA AUC Score SA AUC Score SA AUC

Ours (MC) synthesis 9402 0.865 2.282 0.830 0.853 2.187 0.813 0.841 2.189 0.771 10000 0.572 3.101 0.541 0.567 3.072 0.521 0.555 3.077 0.486
Ours (MC10) synthesis 5056 0.98 2.045 0.923 0.97 2.294 0.893 0.942 2.294 0.814 10000 0.596 3.263 0.542 0.574 3.147 0.523 0.556 3.058 0.489
Ours synthesis 10000 0.859 2.263 0.826 0.847 2.21 0.81 0.832 2.249 0.769 10000 0.622 3.338 0.547 0.591 3.378 0.524 0.558 3.137 0.485

we see for C = 10, the results are substantially better. At the same time, Ours remain better for
Perindopril MPO, which suggests each training strategy may suit different tasks. We also see for
easier tasks like GSK and Median 1, the C = 1 model and Ours are essentially interchangeable. This
suggests even a low reconstruction accuracy suffices for these Oracles.

Implications. The stratified sampling is designed to enhance supervised policy learning on larger
programs while preventing the combinatorial explosion in Algo. 1 and to some extent, overfitting.
However, this may benefit easier tasks (e.g. distributions of synthesizable molecules) while dis-
advantaging harder tasks. Thus, C should be tuned for optimal trade-off between efficiency and
downstream synthesizable analog generation performance.

F.6 MODEL ARCHITECTURE

We opt for two Graph Neural Networks (for Φ,Ω), each with 5 modules. Each module uses a
TransformerConv layer (Shi et al., 2020) (we use 8 attention heads), a ReLU activation, and a Dropout
layer. We adopt sinusoidal positional embeddings via numbering nodes using the postorder traversal
(to preserve the pairwise node relationships for the same skeleton). Then, we pretrain Φ,Ω with D.

F.7 TRAINING & CONVERGENCE ANALYSIS

(a) Legend (b) NN training step vs NN accuracy (c) RXN training step vs accuracy

Figure 15: We plot the number of training steps needed to converge our models under the standard
and linear (-MC) training strategies for C = 1.

We elaborate on 4.1.3 further with a quantitative comparison of training costs with SynNet Gao et al.
(2022). The key difference is Dsynnet batches by the size of a synthetic tree, whereas we batch by the
synthetic trees (in program form).

SynNet Training Complexity: SynNet serializes the construction of a synthetic tree, so a
training epoch does O(

∑
D0
|T |) passes, where |T | is the number of nodes (or number of edges,

as they are different by one). The cost of a MLP forward and backward pass for SynNet is
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O(L ·H2 + F ·H). The total complexity per epoch is O((
∑
|T |)(L ·H2 + F ·H)).

SynthesisNet Linear Training Complexity: As discussed in 4.1.3, a training epoch does
O(D0) passes, where the constant factor can be adjusted. The cost of a GNN forward and backward
pass on a tree T is O(L · |T | · (F · H + H2)), where L, F , H are number of layers, feature and
hidden dimension, respectively. The total complexity per epoch is O(L · (

∑
|T |) · (F ·H +H2))

since we train on the forest of trees over D0. This is equivalent to O((
∑
|T |)(L ·H2 + F ·H)).

We can conclude the per-epoch complexity following the linear training strategy is equivalent to
that of SynNet’s. However, what matters in practice is the convergence rate, so we also include
a quantitative comparison between convergence plots. We find that even SynthesisNet’s standard
training strategy is practically equivalent to SynNet in the number of passes needed to converge the
model. As a disclaimer, we only include SynthesisNet’s numbers using the default setting of k = 4,
where |D0| ≈ 135k and |D| ≈ 818k. We also show results of linear training with constant factor of 1
(i.e. |D| = |D0|).
Convergence Comparison: Both SynNet and SynthesisNet uses a batch size of 64. We see from
Figure 15 that SynthesisNet requires ≈ 170k training steps (batches) to converge (combining both
BB and RXN networks) following standard training. Meanwhile, we refer readers to Figure 13 of
Gao et al. (2021), where the convergence plots show at least (with the most generous interpretation)
1M steps needed to converge each of the action, reactant1, reaction and reactant2 networks. Pooling
the training of all networks, we give a very generous estimate of 1M batches for SynNet to converge.
What’s left is to figure the average scaling size factor from a batch of trees (ours) to a batch of tree
nodes (SynNet), which computes as 818k/135k ≈ 6, which implies ≈ 6 · 170k ≈ 1M steps. We can
conclude the SynthesisNet with standard training is comparable if not more efficient in the number
of training steps to converge the model. Should efficiency be of further concern, we suggest using the
Linear Training strategy, and adjusting the sample constant factor accordingly.

Training and Inference Time: Converging the RXN and BB networks took us ≈ 1 and 5 hours on a
single NVIDIA RTX A6000. A single inference call to the surrogate takes a few seconds.

F.8 ATTENTION VISUALIZATION

We elucidate how our policy network leverages the full horizon of the MDP to dynamically adjust the
propagation of information throughout the decoding process. Since our decoding algorithm decodes
once for every topological order of the nodes, the actual attention dynamics can vary significantly.
Thus, we show a prototypical decoding order where:

1. All reactions are decoded before building blocks.

2. If decoding a reaction, the reaction node which πR predicts with the highest probability is
decoded.

3. If decoding a building block, the node where the embedding from πB has minimal distance to a
building block is decoded.

In (Shi et al., 2020), each TransformerConv layer l produces an attention weight for each edge, [α(l)
i,j ]

where
∑

j α
(l)
i,j = 1. We average over all layers to obtain the mean attention weight for each directed

edge, i.e., we set the thickness of each edge (i, j) in each subfigure of Figure 16 to be proportional∑
l α

(l)
i,j .

We make some generation observations:

• The information flow along child-parent edges indicate usage of the full horizon. This is the
main feature of our approach compared to traditional search methods like retrosynthesis.

• Our positional embeddings enables asymmetric modeling. SMIRKS templates specify the order
of reactants and is usually not arbitrary. We observe that more often than not, the parent attends
to its left child more than the right child. This may be a consequence of template definition
conventions, where the first reactant is the major precursor. The subtree under the node more
likely to be the major precursor is more important for predicting the reaction.
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(a) Legend (b) Step 1, decoding candidates: 8

(c) Step 2, decoding candidates: 2, 6 (d) Step 3, decoding candidates: 2

(e) Step 4, decoding candidates: 0, 1, 4, 5 (f) Step 5, decoding candidates: 0, 1, 4

(g) Step 6, decoding candidates: 0, 1 (h) Step 7, decoding candidates: 0

Figure 16: Case Study of Attention Flow
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Now, we do a detailed walkthrough the 7-step decoding process to understand the evolution of the
information flow. Each subfigure corresponds to the state of the MDP after a number of decoding
steps, with the candidates of decoding colored in yellow. The attention scores are computed during
the inference of Φ or Ω and averaged.

1. In Figure 16b, we see that 8 attends significantly to the target, unsurprisingly. 8 also attends to
both its children, and attends more to its left child, which is a prior consistent with our general
observation.

2. In Figure 16c, we see that after a specific reaction is instantiated at 8, the attention dynamics
somewhat change. The edge from 8 to its left child thickens, while the edge from the left child
to 8 thins. This is likely because now that the identity of 8 is known, it no longer needs to attend
to its left child. The reciprocal relationship now intensifies, as the first reactant of 8 now attends
to 8.

3. In Figure 16d, after the reaction at 6 is decoded, we see the information propagate back up the
tree and to the other subtree to inform 2. We see the edge along the path from 6− 8 thickens,
indicating the representation of 8 is informed with new information, and in turn propagates it to
2.

4. In Figure 16e, after the reaction at 2 is decoded, we see the same phenomenon happen, where
the information flow again propagates back up and to the other subtree. However, we see this
comes with a tradeoff, as 6 attends to its parent less, and instead reverts to its original attention
strength to its children. We hypothesize the identity of 2 has a strong effect on the posterior
of 6. This is an example where branching out to try more possible orders of decoding would
facilitate a more complete algorithm.

5. In Figure 16f, we see how determining 5 causes 6 to attend more to 5 than it does to its parent.
Knowledge of 5 allows the explaining away of 4.

6. In Figure 16g, we note instances of a general phenomenon: the second reactant is decoded
followed by the first. Empirically, the distribution of the second reactant has lower entropy than
the first. 4 was inferred after 5 as the knowledge of its parent reaction and sibling reactant likely
constrains its posterior significantly.

7. In Figure 16h, we see a similar phenomenon where the representation of 2 attends slightly more
to 1 after it is decoded.

In summary, the syntax structure of the full horizon is crucial during the decoding process. The atten-
tion scores allow us to visualize the dynamic propagation of information as nodes are decoded. Our
observations highlights the flexibility of this approach compared to an infinite horizon formulation.

Table 7: Hyperparameters of our GA.

Parameter Value

General

Max. generations 200
Population size 128
Offspring size 512
Seed initialization random
Fingerprint size 2048
Early stopping warmup 30
Early stopping patience 10
Early stopping ∆ 0.01

Semantic evolution

Parent selection prob. of i ∝ (rank(i) + 10)
Num. crossover bits ncross N (1024, 205)
Num. mutate bits nflip 12
Prob. mutate bits pflip 0.5

Syntactic mutation Num. tree edits nedit U{1, 2, 3}

Surrogate Max. topological orders 5
Sampling strategy greedy
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G GENETIC ALGORITHM

Our genetic algorithm (GA) is designed to mimic SynNet’s (Gao et al., 2021), and settings are given
in Table 7. We fix the same number of offspring fitness evaluations per generation to ensure a fair
comparison, strategically allocating the evaluations between offspring generated using semantic
evolution and those generated using syntactic mutation.

G.1 SEMANTIC EVOLUTION

Given two parents x1 and x2, semantic evolution samples a child x∗ as follows. We combine ncross
random bits from x1 and the other 2048− ncross bits from x2 and then, with probability pflip, flipping
nflip random bits of the crossover result.

G.2 SYNTACTIC MUTATION

Given a child x∗ from Appendix G.1, syntactic mutation performs nedit edits on T = τ(x∗) to obtain
a syntactic analog T . With equal probability, each edit either adds or removes a random leaf. To do
so, we enumerate all possible additions and removals, and ignore the ones that produce an empty tree
or a tree with more than 4 reaction nodes. The edit is uniformly sampled from all such choices, or
no operation is performed if no viable choices exist. Using the surrogate, the siblings (x∗, T ) and
(x∗, T ) are then turned into two fingerprints, and one of with the higher expected improvement under
a Gaussian process (GP) is selected. Our GP uses a radial basis function kernel with length scale 1
and is fitted using the population and offspring from the preceding generation.

G.3 SURROGATE CHECKPOINT

The surrogate checkpoint was trained as described in Appendix F. To lower the runtime of the GA,
we only reconstruct using a random subset of the input skeleton’s possible topological orders. For
each topological order, we follow a greedy decoding scheme where reactions are decoded before
building blocks, as described in Appendix F.8.

H FULL RESULTS ON TDC ORACLES

Table 8: Guacamol structural target-directed benchmarks: Median 1 & 2 (average similarity to
multiple molecules) and Celecoxib Rediscovery (hit expansion around Celecoxib).

Median 1 Median 2 Celecoxib
Top 1 Top 10 Top 100 Top 1 Top 10 Top 100 Top 1 Top 10 Top 100

category Oracle Calls Score SA AUC Score SA AUC Score SA AUC Oracle Calls Score SA AUC Score SA AUC Score SA AUC Oracle Calls Score SA AUC Score SA AUC Score SA AUC
synnet synthesis 5245 0.245 (15|3) 4.066 (17|4) 0.237 (15|3) 0.228 (13|3) 3.807 (11|3) 0.219 (12|2) 0.198 (14|3) 3.687 (6|3) 0.188 (12|2) 4350.6 0.259 (11|3) 2.364 (5|3) 0.253 (8|2) 0.244 (10|3) 2.473 2|1 0.237 (8|2) 0.214 (11|3) 2.459 (1|1) 0.206 (8|2) 7377.4 0.526 (9|3) 2.234 (14|4) 0.487 (9|3) 0.479 (9|3) 2.262 (7|3) 0.443 (8|3) 0.411 (9|3) 2.466 (12|4) 0.376 (8|3)
pasithea string 3876.8 0.216 (22|9) 5.432 (26|10) 0.213 (21|8) 0.183 (24|10) 4.486 (23|8) 0.179 (24|10) 0.138 (26|10) 4.319 (18|6) 0.134 (25|10) 2010.8 0.195 (21|9) 2.882 (13|6) 0.194 (21|9) 0.182 (22|9) 2.747 (9|4) 0.181 (20|9) 0.156 (23|9) 2.813 (11|5) 0.154 (23|9) 3901.6 0.355 (22|9) 2.383 (18|7) 0.353 (21|8) 0.317 (21|9) 2.319 (14|4) 0.314 (21|9) 0.247 (23|10) 2.512 (14|5) 0.243 (21|9)
dog_ae synthesis 1448.4 0.204 (25|4) 3.285 5|1 0.201 (25|4) 0.174 (25|4) 3.192 4|1 0.172 (25|4) 0.139 (24|4) 2.984 (1|1) 0.135 (24|4) 1119.2 0.201 (19|4) 2.347 3|1 0.199 (17|4) 0.185 (20|4) 2.495 (3|2) 0.183 (18|4) 0.16 (22|4) 2.591 (4|3) 0.157 (21|4) 1097.4 0.406 (17|4) 2.23 (13|3) 0.403 (15|4) 0.361 (17|4) 2.278 (10|4) 0.357 (15|4) 0.289 (20|4) 2.395 (7|3) 0.283 (18|4)
smiles_vae_bo string 10000 0.267 (14|6) 4.307 (20|7) 0.253 (12|6) 0.223 (14|6) 4.244 (20|6) 0.203 (16|6) 0.181 (17|7) 4.252 (14|5) 0.161 (18|7) 10000 0.223 (14|6) 2.759 (10|4) 0.213 (14|6) 0.207 (15|7) 2.608 (5|2) 0.196 (15|7) 0.182 (15|7) 2.626 (6|2) 0.17 (15|7) 10000 0.425 (14|5) 2.225 (12|4) 0.409 (14|5) 0.382 (15|6) 2.312 (13|3) 0.355 (16|6) 0.325 (16|7) 2.374 (6|2) 0.293 (16|7)
jt_vae_bo graph 4706.6 0.212 (23|9) 5.21 (25|10) 0.21 (22|9) 0.184 (23|9) 4.187 (17|9) 0.18 (22|9) 0.151 (23|9) 4.052 (10|4) 0.145 (22|8) 5246.8 0.193 (22|7) 3.013 (14|3) 0.192 (22|7) 0.183 (21|7) 3.125 (17|4) 0.181 (20|6) 0.165 (21|8) 3.196 (16|3) 0.16 (18|6) 4538 0.39 (20|7) 2.408 (20|7) 0.387 (19|6) 0.306 (22|7) 2.496 (18|6) 0.3 (22|7) 0.25 (22|7) 2.744 (19|6) 0.241 (22|7)
moldqn graph 10000 0.188 (26|10) 4.654 (23|9) 0.144 (26|10) 0.169 (26|10) 4.972 (25|10) 0.123 (26|10) 0.139 (24|10) 5.387 (25|10) 0.094 (26|10) 10000 0.109 (26|10) 5.837 (26|10) 0.095 (26|10) 0.1 (26|10) 5.666 (26|10) 0.089 (26|10) 0.085 (26|10) 5.554 (26|10) 0.072 (26|10) 10000 0.128 (26|10) 4.708 (26|10) 0.115 (26|10) 0.112 (26|10) 4.951 (26|10) 0.1 (26|10) 0.094 (26|10) 5.255 (26|10) 0.08 (26|10)
mars graph 3698.6 0.233 (18|7) 3.823 (15|7) 0.228 (17|6) 0.217 (16|5) 4.063 (14|7) 0.208 (14|5) 0.181 (17|6) 4.13 (11|5) 0.17 (15|5) 4298.2 0.204 (17|4) 3.036 (15|4) 0.197 (18|4) 0.19 (18|5) 3.446 (22|9) 0.182 (19|5) 0.17 (18|6) 3.774 (23|9) 0.16 (18|6) 7404.6 0.487 (11|3) 2.16 (8|4) 0.429 (10|3) 0.448 (10|3) 2.3 (11|4) 0.38 (14|5) 0.394 (11|4) 2.468 (13|3) 0.318 (15|5)
selfies_lstm_hc string 10000 0.363 (5|4) 3.533 (13|4) 0.269 (10|5) 0.339 (5|4) 3.669 (10|4) 0.24 (10|5) 0.286 (7|4) 3.833 (8|2) 0.201 (10|5) 10000 0.274 (8|4) 2.184 (2|1) 0.229 (12|5) 0.262 (9|5) 2.402 (1|1) 0.207 (12|5) 0.24 (9|5) 2.564 (3|1) 0.179 (13|6) 10000 0.586 (8|4) 2.205 (10|2) 0.427 (11|4) 0.535 (8|4) 2.193 (3|1) 0.387 (11|4) 0.474 (8|4) 2.239 (2|1) 0.326 (14|6)
gp_bo graph 10000 0.345 (7|2) 4.111 (18|8) 0.317 (5|2) 0.333 (6|1) 3.992 (13|6) 0.302 (4|1) 0.317 (3|1) 4.452 (22|9) 0.276 (3|1) 10000 0.337 (2|1) 3.4 (22|8) 0.31 (1|1) 0.33 (1|1) 3.358 (21|8) 0.298 (1|1) 0.313 (1|1) 3.303 (18|5) 0.276 (1|1) 10000 0.946 (2|1) 2.179 (9|5) 0.809 (1|1) 0.859 (2|1) 2.274 (8|2) 0.725 (1|1) 0.803 (2|1) 2.648 (16|5) 0.638 (2|1)
smiles_ga string 3093 0.208 (24|10) 4.708 (24|9) 0.205 (23|9) 0.2 (21|8) 5.686 (26|10) 0.192 (20|8) 0.199 (13|6) 5.93 (26|10) 0.186 (13|6) 6634.6 0.211 (15|7) 3.352 (20|8) 0.204 (15|7) 0.208 (14|6) 3.453 (23|8) 0.199 (14|6) 0.204 (12|6) 3.751 (22|8) 0.192 (10|5) 3104.6 0.358 (21|8) 3.378 (24|9) 0.352 (22|9) 0.356 (19|7) 3.801 (24|9) 0.345 (18|7) 0.35 (15|6) 3.999 (24|9) 0.332 (13|5)
mimosa graph 10000 0.296 (10|3) 3.481 (11|4) 0.271 (9|3) 0.276 (10|3) 3.928 (12|5) 0.244 (9|3) 0.251 (10|3) 4.263 (16|7) 0.213 (8|3) 10000 0.238 (13|3) 2.739 (9|1) 0.228 (13|3) 0.229 (12|3) 2.826 (10|1) 0.215 (10|3) 0.216 (10|3) 3.08 (15|2) 0.196 (9|3) 9260 0.438 (13|5) 3.064 (22|9) 0.422 (13|5) 0.428 (11|4) 3.081 (21|8) 0.395 (10|3) 0.406 (10|3) 3.322 (22|9) 0.355 (10|3)
reinvent string 6022 0.4 (1|1) 3.353 (6|2) 0.368 (2|1) 0.399 (1|1) 3.415 (6|2) 0.357 (1|1) 0.383 (1|1) 4.032 (9|3) 0.325 (1|1) 10000 0.333 (3|2) 2.475 (7|3) 0.29 (2|1) 0.326 (2|1) 2.661 (7|3) 0.278 (2|1) 0.313 (1|1) 2.737 (10|4) 0.259 (2|1) 6641.8 0.96 (1|1) 2.157 (7|1) 0.803 (2|1) 0.862 (1|1) 2.355 (16|6) 0.715 (2|1) 0.821 (1|1) 2.724 (17|6) 0.647 (1|1)
smiles_lstm_hc string 10000 0.389 (4|3) 4.199 (19|6) 0.299 (7|3) 0.351 (3|3) 4.299 (21|7) 0.256 (7|4) 0.315 (4|3) 4.243 (13|4) 0.214 (7|4) 10000 0.34 (1|1) 3.266 (18|7) 0.277 (4|2) 0.318 (3|2) 3.026 (15|7) 0.249 (6|3) 0.291 (5|3) 2.682 (8|3) 0.218 (7|4) 10000 0.851 (3|2) 2.22 (11|3) 0.621 (5|2) 0.786 (3|2) 2.311 (12|2) 0.54 (6|3) 0.695 (3|2) 2.403 (9|3) 0.45 (6|3)
selfies_vae_bo string 10000 0.232 (19|7) 4.539 (22|8) 0.226 (18|7) 0.212 (18|7) 4.612 (24|9) 0.202 (17|7) 0.175 (19|8) 4.45 (21|8) 0.16 (19|8) 10000 0.206 (16|8) 2.45 (6|2) 0.202 (16|8) 0.192 (17|8) 2.896 (13|6) 0.186 (16|8) 0.169 (19|8) 3.065 (14|7) 0.16 (18|8) 10000 0.391 (19|7) 2.366 (17|6) 0.389 (17|6) 0.353 (20|8) 2.323 (15|5) 0.327 (20|8) 0.29 (19|8) 2.446 (10|4) 0.262 (20|8)
dog_gen synthesis 8862.6 0.323 (8|2) 3.459 (10|3) 0.244 (14|2) 0.296 (8|2) 3.419 (7|2) 0.218 (13|3) 0.261 (9|2) 3.483 (4|2) 0.182 (14|3) 10000 0.297 6|1 2.708 (8|4) 0.23 (11|3) 0.287 6|1 2.571 (4|3) 0.213 (11|3) 0.263 (7|2) 2.511 (2|2) 0.189 (12|3) 9319 0.76 5|1 2.09 (6|2) 0.526 (7|2) 0.682 6|1 2.189 2|1 0.466 (7|2) 0.584 6|1 2.243 (3|2) 0.389 (7|2)
stoned string 4140.8 0.295 (11|5) 3.911 (16|5) 0.282 (8|4) 0.283 (9|5) 4.236 (19|5) 0.267 (6|3) 0.264 (8|5) 4.782 (24|9) 0.245 (6|3) 9341.8 0.266 (10|5) 3.785 (24|9) 0.25 (9|4) 0.264 (8|4) 3.913 (24|9) 0.246 (7|4) 0.26 (8|4) 4.097 (24|9) 0.237 (5|2) 6255 0.401 (18|6) 3.129 (23|8) 0.389 (17|6) 0.398 (14|5) 3.477 (23|8) 0.383 (12|5) 0.393 (12|5) 3.657 (23|8) 0.368 (9|4)
gflownet graph 10000 0.237 (17|6) 2.83 (3|3) 0.225 (19|7) 0.217 (16|5) 3.026 (3|3) 0.202 (17|6) 0.187 (15|5) 3.332 (3|2) 0.166 (16|6) 10000 0.198 (20|6) 3.513 (23|9) 0.195 (19|5) 0.189 (19|6) 3.351 (20|7) 0.181 (20|6) 0.175 (17|5) 3.63 (20|7) 0.165 (17|5) 10000 0.409 (16|6) 2.864 (21|8) 0.375 (20|7) 0.36 (18|6) 3.12 (22|9) 0.328 (19|6) 0.308 (18|6) 3.237 (21|8) 0.276 (19|6)
reinvent_selfies string 4209.2 0.4 (1|1) 3.353 (6|2) 0.368 (2|1) 0.396 (2|2) 3.399 (5|1) 0.356 (2|2) 0.34 (2|2) 3.779 (7|1) 0.3 (2|2) 9729.8 0.313 (5|3) 2.766 (11|5) 0.27 (5|3) 0.31 (5|3) 2.841 (12|5) 0.256 (5|2) 0.301 (3|2) 2.988 (12|6) 0.233 (6|3) 7480.2 0.751 (7|3) 2.283 (15|5) 0.618 (6|3) 0.722 (5|3) 2.568 (19|7) 0.574 (5|2) 0.685 (5|3) 2.725 (18|7) 0.516 (4|2)
graph_mcts graph 10000 0.243 (16|5) 2.692 (2|2) 0.235 (16|5) 0.212 (18|7) 2.898 (1|1) 0.196 (19|7) 0.164 (21|7) 3.545 (5|3) 0.144 (23|9) 10000 0.149 (25|9) 3.203 (16|5) 0.142 (24|9) 0.14 (25|9) 3.123 (16|3) 0.133 (24|9) 0.128 (25|9) 3.252 (17|4) 0.118 (24|9) 10000 0.329 (24|9) 2.047 (3|1) 0.297 (23|8) 0.296 (23|8) 2.256 (6|1) 0.265 (23|8) 0.233 (25|9) 2.4 (8|1) 0.205 (24|9)
dst graph 10000 0.281 (12|4) 3.754 (14|6) 0.257 (11|4) 0.263 (11|4) 3.651 (9|4) 0.233 (11|4) 0.231 (11|4) 4.153 (12|6) 0.194 (11|4) 10000 0.202 (18|5) 2.778 (12|2) 0.195 (19|5) 0.195 (16|4) 2.835 (11|2) 0.186 (16|4) 0.178 (16|4) 3.039 (13|1) 0.167 (16|4) 9723.8 0.459 (12|4) 2.082 (5|3) 0.424 (12|4) 0.422 (13|5) 2.277 (9|3) 0.381 (13|4) 0.381 (13|5) 2.446 (10|2) 0.335 (12|4)
selfies_ga string 8900.6 0.219 (21|8) 2.877 (4|1) 0.202 (24|10) 0.199 (22|9) 3.467 (8|3) 0.18 (22|9) 0.172 (20|9) 4.445 (20|7) 0.153 (20|9) 10000 0.161 (24|10) 5.071 (25|10) 0.129 (25|10) 0.157 (24|10) 5.005 (25|10) 0.122 (25|10) 0.149 (24|10) 4.988 (25|10) 0.111 (25|10) 10000 0.289 (25|10) 3.961 (25|10) 0.242 (25|10) 0.27 (25|10) 4.122 (25|10) 0.224 (25|10) 0.252 (21|9) 4.547 (25|10) 0.2 (25|10)
gflownet_al graph 10000 0.229 (20|8) 1.877 (1|1) 0.224 (20|8) 0.203 (20|8) 2.933 (2|2) 0.191 (21|8) 0.164 (21|7) 3.262 (2|1) 0.146 (21|7) 10000 0.191 (23|8) 3.269 (19|6) 0.183 (23|8) 0.182 (22|8) 3.338 (18|5) 0.174 (23|8) 0.167 (20|7) 3.717 (21|8) 0.157 (21|8) 10000 0.333 (23|8) 2.4 (19|6) 0.29 (24|9) 0.286 (24|9) 2.686 (20|7) 0.258 (24|9) 0.24 (24|8) 3.018 (20|7) 0.214 (23|8)
screening N/A 10000 0.272 (13|2) 4.361 (21|2) 0.25 (13|2) 0.223 (14|2) 4.37 (22|2) 0.206 (15|2) 0.182 (16|2) 4.386 (19|1) 0.162 (17|2) 10000 0.245 (12|2) 3.223 (17|2) 0.233 (10|2) 0.213 (13|2) 2.732 (8|1) 0.201 (13|2) 0.184 (14|2) 2.671 (7|2) 0.171 (14|2) 10000 0.419 (15|2) 2.344 (16|2) 0.396 (16|2) 0.373 (16|2) 2.232 (5|2) 0.353 (17|2) 0.317 (17|2) 2.332 (5|2) 0.29 (17|2)
mol_pal N/A 10000 0.31 (9|1) 3.385 (9|1) 0.302 (6|1) 0.257 (12|1) 4.21 (18|1) 0.25 (8|1) 0.211 (12|1) 4.645 (23|2) 0.203 (9|1) 10000 0.273 (9|1) 2.12 (1|1) 0.267 (7|1) 0.237 (11|1) 2.897 (14|2) 0.232 (9|1) 0.198 (13|1) 2.593 (5|1) 0.192 (10|1) 10000 0.511 (10|1) 1.908 (1|1) 0.498 (8|1) 0.427 (12|1) 2.097 (1|1) 0.416 (9|1) 0.364 (14|1) 2.245 (4|1) 0.351 (11|1)
graph_ga graph 10000 0.351 (6|1) 3.492 (12|5) 0.32 (4|1) 0.331 (7|2) 4.137 (15|8) 0.295 (5|2) 0.31 (5|2) 4.304 (17|8) 0.265 (4|2) 10000 0.324 (4|2) 3.383 (21|7) 0.289 (3|2) 0.316 (4|2) 3.346 (19|6) 0.274 (3|2) 0.3 (4|2) 3.335 (19|6) 0.252 (3|2) 9685.4 0.811 (4|2) 2.067 (4|2) 0.684 (3|2) 0.757 (4|2) 2.406 (17|5) 0.631 (3|2) 0.693 (4|2) 2.622 (15|4) 0.559 (3|2)
Ours synthesis 8303 0.4 (1|1) 3.353 (6|2) 0.371 (1|1) 0.342 4|1 4.161 (16|4) 0.305 (3|1) 0.298 6|1 4.256 (15|4) 0.252 (5|1) 9117 0.292 (7|2) 2.353 (4|2) 0.269 (6|1) 0.285 (7|2) 2.649 (6|4) 0.257 (4|1) 0.272 6|1 2.682 (8|4) 0.238 (4|1) 7042 0.753 (6|2) 1.959 2|1 0.662 (4|1) 0.668 (7|2) 2.195 (4|2) 0.582 (4|1) 0.572 (7|2) 2.211 (1|1) 0.503 (5|1)

Table 9: Bioactivity Oracles for GSK3B, JNK3, and DRD2
GSK3β JNK3 DRD2

Top 1 Top 10 Top 100 Top 1 Top 10 Top 100 Top 1 Top 10 Top 100
category Oracle Calls Score SA AUC Score SA AUC Score SA AUC Oracle Calls Score SA AUC Score SA AUC Score SA AUC Oracle Calls Score SA AUC Score SA AUC Score SA AUC

synnet synthesis 9059.4 0.932 (8|3) 2.576 (5|2) 0.855 (6|3) 0.901 (8|3) 2.747 (6|3) 0.79 (6|3) 0.797 (9|3) 2.897 (6|4) 0.656 (7|2) 6240 0.798 (7|3) 2.116 (3|2) 0.723 (3|1) 0.715 (8|3) 2.172 (1|1) 0.631 (5|2) 0.563 (10|3) 2.244 (2|2) 0.466 (9|2) 6472.6 1.0 (1|1) 2.58 (7|3) 0.985 (4|3) 0.998 (9|3) 2.806 (8|4) 0.969 (1|1) 0.986 (12|3) 2.845 (7|4) 0.898 (4|2)
pasithea string 2531.2 0.414 (24|10) 3.34 (14|5) 0.402 (23|9) 0.294 (25|10) 3.277 (11|3) 0.282 (24|10) 0.151 (26|10) 3.782 (13|4) 0.141 (26|10) 2707.4 0.21 (24|10) 2.804 (9|4) 0.207 (24|10) 0.158 (24|10) 2.669 (9|3) 0.155 (24|10) 0.081 (26|10) 3.433 (13|5) 0.076 (24|10) 2983.2 0.592 (24|10) 4.057 (22|7) 0.559 (23|9) 0.275 (25|10) 3.894 (22|7) 0.256 (25|10) 0.065 (25|10) 3.858 (19|7) 0.06 (25|10)
dog_ae synthesis 1319 0.778 (12|4) 2.727 (8|4) 0.756 (10|4) 0.624 (14|4) 2.86 (7|4) 0.602 (13|4) 0.378 (18|4) 2.874 (5|3) 0.356 (16|4) 1219.8 0.554 (13|4) 2.38 (6|4) 0.54 (12|4) 0.493 (13|4) 2.625 (7|4) 0.47 (12|4) 0.263 (17|4) 2.734 (8|4) 0.246 (16|4) 1337 0.999 (11|4) 2.444 (5|2) 0.986 (3|2) 0.979 (15|4) 2.495 (4|2) 0.944 (6|4) 0.589 (16|4) 2.641 (5|3) 0.543 (14|4)
smiles_vae_bo string 10000 0.606 (20|7) 3.005 (10|2) 0.537 (20|7) 0.473 (21|8) 2.901 (8|2) 0.386 (20|7) 0.284 (21|8) 2.948 (7|2) 0.215 (21|8) 10000 0.432 (18|5) 2.696 (8|3) 0.376 (17|5) 0.302 (21|8) 2.495 (6|2) 0.242 (18|6) 0.162 (21|8) 2.67 (6|2) 0.124 (21|8) 10000 0.899 (20|8) 2.282 (3|2) 0.82 (17|7) 0.774 (18|7) 2.948 (9|3) 0.555 (19|8) 0.319 (19|8) 3.388 (12|5) 0.187 (19|8)
jt_vae_bo graph 4972.4 0.512 (23|8) 3.546 (16|4) 0.483 (22|8) 0.38 (23|8) 3.403 (14|3) 0.351 (21|8) 0.223 (24|9) 3.581 (11|3) 0.202 (23|8) 5853.2 0.404 (22|8) 2.884 (10|1) 0.354 (19|8) 0.257 (23|8) 2.894 (11|1) 0.223 (20|8) 0.139 (23|8) 3.208 (10|1) 0.12 (22|8) 4099.2 0.778 (23|8) 3.226 (14|4) 0.742 (21|7) 0.558 (23|8) 3.585 (18|6) 0.507 (21|7) 0.197 (23|8) 3.84 (18|6) 0.17 (22|7)
moldqn graph 10000 0.344 (26|10) 5.731 (23|10) 0.287 (26|10) 0.286 (26|10) 5.871 (23|10) 0.242 (26|10) 0.218 (25|10) 6.215 (24|10) 0.177 (25|10) 10000 0.152 (26|10) 6.144 (24|9) 0.135 (26|10) 0.13 (26|10) 6.043 (23|9) 0.111 (25|9) 0.093 (24|9) 6.014 (23|9) 0.075 (25|9) 10000 0.049 (26|10) 4.346 (23|10) 0.03 (26|10) 0.033 (26|10) 5.489 (24|10) 0.025 (26|10) 0.024 (26|10) 6.036 (25|10) 0.019 (26|10)
mars graph 4285.4 0.684 (17|6) 3.277 (12|3) 0.63 (18|7) 0.607 (17|7) 4.148 (17|5) 0.553 (17|7) 0.536 (15|7) 4.598 (19|6) 0.464 (15|7) 5520.6 0.646 (10|4) 3.6 (15|3) 0.549 (10|4) 0.587 (11|4) 3.652 (15|3) 0.489 (11|4) 0.497 (11|4) 3.941 (16|4) 0.387 (11|4) 7840.6 0.995 (13|4) 4.019 (21|9) 0.939 (10|3) 0.989 (13|5) 3.778 (21|9) 0.892 (12|3) 0.96 (14|5) 3.859 (20|7) 0.753 (10|3)
selfies_lstm_hc string 10000 0.65 (19|6) 3.854 (18|7) 0.54 (19|6) 0.602 (18|6) 4.311 (18|7) 0.424 (19|6) 0.503 (16|6) 4.422 (17|7) 0.293 (19|7) 10000 0.428 (19|6) 2.668 (7|2) 0.305 (22|8) 0.303 (20|7) 3.402 (14|6) 0.207 (23|9) 0.216 (19|7) 3.529 (14|6) 0.137 (19|7) 10000 1.0 (1|1) 3.351 (16|5) 0.848 (16|6) 1.0 (1|1) 3.262 (13|5) 0.729 (16|6) 0.993 (10|5) 3.335 (9|4) 0.51 (15|6)
gp_bo graph 10000 0.986 (3|1) 2.74 (9|2) 0.879 (5|1) 0.975 (3|1) 3.057 (10|2) 0.852 (2|1) 0.957 (3|1) 3.133 (10|2) 0.809 (2|1) 10000 0.698 (9|3) 3.753 (17|4) 0.593 (9|3) 0.69 (9|3) 3.744 (16|4) 0.566 (7|1) 0.676 (8|3) 3.867 (15|3) 0.525 (4|1) 10000 1.0 (1|1) 2.992 (11|2) 0.958 (8|2) 0.999 (8|2) 3.201 (11|3) 0.924 (8|2) 0.998 (7|2) 3.372 (11|3) 0.871 (8|2)
smiles_ga string 6214.6 0.722 (15|5) 6.22 (24|8) 0.669 (14|5) 0.709 (11|5) 6.321 (24|8) 0.63 (12|5) 0.687 (11|5) 6.214 (23|8) 0.587 (11|5) 8293.6 0.414 (20|7) 5.871 (23|9) 0.34 (21|7) 0.393 (17|5) 6.37 (24|9) 0.317 (17|5) 0.375 (14|5) 6.55 (24|9) 0.289 (14|5) 4286.4 0.987 (15|6) 6.56 (26|10) 0.931 (12|5) 0.987 (14|6) 6.737 (26|10) 0.908 (11|5) 0.987 (11|6) 6.751 (26|10) 0.876 (7|4)
mimosa graph 10000 0.718 (16|5) 5.328 (21|8) 0.641 (17|6) 0.701 (12|4) 4.942 (21|8) 0.555 (16|6) 0.672 (12|4) 4.903 (21|8) 0.475 (14|6) 10000 0.498 (15|6) 4.579 (20|7) 0.403 (16|7) 0.484 (14|6) 4.482 (20|7) 0.361 (15|7) 0.457 (12|5) 4.337 (19|6) 0.302 (13|6) 9879.4 0.994 (14|5) 3.315 (15|5) 0.88 (15|5) 0.991 (12|4) 3.54 (17|5) 0.8 (14|5) 0.981 (13|4) 3.66 (17|5) 0.71 (13|5)
reinvent string 6530.4 0.972 (5|2) 3.106 (11|3) 0.894 (3|2) 0.969 (4|2) 3.401 (13|5) 0.866 (1|1) 0.965 (1|1) 3.735 (12|3) 0.824 (1|1) 8382.2 0.954 (2|2) 3.242 (14|6) 0.814 (1|1) 0.949 (1|1) 3.322 (12|5) 0.784 (1|1) 0.943 (1|1) 3.412 (12|4) 0.743 (1|1) 6760.2 1.0 (1|1) 2.408 (4|3) 0.968 (7|2) 1.0 (1|1) 2.419 (3|2) 0.946 (5|1) 1.0 (1|1) 2.551 (3|2) 0.909 (2|1)
smiles_lstm_hc string 10000 1.0 (1|1) 2.406 (3|1) 0.938 (2|1) 0.984 (2|1) 2.44 (2|1) 0.84 (4|2) 0.943 (5|2) 2.414 (2|1) 0.671 (6|3) 10000 0.968 (1|1) 2.22 (4|1) 0.788 (2|2) 0.935 (2|2) 2.307 (3|1) 0.661 (2|2) 0.851 (2|2) 2.442 (3|1) 0.49 (5|3) 10000 1.0 (1|1) 2.24 (1|1) 0.957 (9|3) 1.0 (1|1) 2.295 (2|1) 0.919 (9|3) 1.0 (1|1) 2.308 (1|1) 0.788 (9|5)
selfies_vae_bo string 10000 0.564 (21|8) 3.525 (15|6) 0.507 (21|8) 0.421 (22|9) 3.382 (12|4) 0.351 (21|8) 0.262 (22|9) 3.786 (14|5) 0.207 (22|9) 10000 0.414 (20|7) 3.041 (12|5) 0.342 (20|6) 0.263 (22|9) 2.756 (10|4) 0.209 (22|8) 0.147 (22|9) 3.133 (9|3) 0.113 (23|9) 10000 0.941 (19|7) 2.63 (8|4) 0.808 (18|8) 0.772 (20|9) 3.251 (12|4) 0.569 (18|7) 0.293 (21|9) 3.658 (16|6) 0.175 (21|9)
dog_gen synthesis 10000 1.0 (1|1) 2.592 (7|3) 0.961 (1|1) 0.989 (1|1) 2.586 (3|2) 0.832 (5|2) 0.96 (2|1) 2.601 (3|2) 0.629 (8|3) 9832.2 0.948 3|1 2.342 (5|3) 0.709 (4|2) 0.887 3|1 2.482 (5|3) 0.596 (6|3) 0.803 3|1 2.492 (5|3) 0.437 (10|3) 10000 1.0 (1|1) 2.244 2|1 0.995 (1|1) 1.0 (1|1) 2.271 (1|1) 0.949 (4|3) 1.0 (1|1) 2.31 2|1 0.74 (11|3)
stoned string 8132.4 0.766 (13|4) 6.235 (25|9) 0.704 (12|4) 0.757 (10|4) 6.33 (25|9) 0.67 (10|4) 0.734 (10|4) 6.341 (25|9) 0.622 (9|4) 8115.8 0.62 (11|4) 5.611 (22|8) 0.543 (11|4) 0.613 (10|4) 5.6 (22|8) 0.524 (10|4) 0.588 (9|4) 5.499 (22|8) 0.482 (8|4) 8182.4 0.997 (12|5) 4.973 (24|8) 0.935 (11|4) 0.997 (11|5) 5.369 (23|8) 0.914 (10|4) 0.997 (8|4) 5.614 (23|8) 0.881 (6|3)
gflownet graph 10000 0.726 (14|4) 4.19 (19|6) 0.693 (13|4) 0.692 (13|5) 4.437 (19|6) 0.652 (11|4) 0.638 (13|5) 4.545 (18|5) 0.586 (12|4) 10000 0.54 (14|5) 5.025 (21|8) 0.493 (13|5) 0.499 (12|5) 4.638 (21|8) 0.44 (13|5) 0.438 (13|6) 4.808 (21|8) 0.367 (12|5) 10000 0.951 (17|6) 3.664 (20|8) 0.792 (20|6) 0.836 (17|6) 3.485 (16|4) 0.591 (17|6) 0.493 (17|6) 4.032 (21|8) 0.279 (18|6)
reinvent_selfies string 7079.2 0.964 (6|3) 3.337 (13|4) 0.824 (8|3) 0.957 (6|3) 3.87 (16|6) 0.781 (8|3) 0.935 (6|3) 3.997 (16|6) 0.712 (5|2) 6067.4 0.838 (5|3) 3.75 (16|7) 0.671 (6|3) 0.821 (4|3) 3.921 (17|7) 0.632 (4|3) 0.782 (5|3) 3.974 (17|7) 0.567 (2|2) 5523.8 1.0 (1|1) 3.485 (19|6) 0.979 (6|1) 1.0 (1|1) 3.358 (15|6) 0.943 (7|2) 1.0 (1|1) 3.307 (8|3) 0.898 (4|2)
graph_mcts graph 10000 0.405 (25|9) 3.69 (17|5) 0.355 (25|9) 0.334 (24|9) 3.568 (15|4) 0.282 (24|9) 0.232 (23|8) 3.848 (15|4) 0.184 (24|9) 10000 0.178 (25|9) 4.237 (18|5) 0.145 (25|9) 0.134 (25|9) 3.956 (18|5) 0.111 (25|9) 0.084 (25|10) 4.006 (18|5) 0.066 (26|10) 10000 0.587 (25|9) 3.458 (18|7) 0.477 (24|9) 0.402 (24|9) 3.707 (20|8) 0.3 (24|9) 0.18 (24|9) 3.51 (15|4) 0.121 (24|9)
dst graph 9058.2 0.862 (9|3) 5.478 (22|9) 0.739 (11|3) 0.844 (9|3) 5.423 (22|9) 0.672 (9|3) 0.822 (8|3) 5.708 (22|9) 0.599 (10|3) 10000 0.79 (8|2) 6.876 (25|10) 0.601 (7|1) 0.781 (7|2) 7.002 (25|10) 0.557 (8|2) 0.749 (7|2) 6.672 (25|10) 0.49 (5|2) 8121 1.0 (1|1) 3.024 (12|3) 0.887 (14|4) 0.998 (9|3) 3.12 (10|2) 0.821 (13|4) 0.994 (9|3) 3.351 (10|2) 0.739 (12|4)
selfies_ga string 10000 0.534 (22|9) 7.408 (26|10) 0.363 (24|10) 0.512 (20|7) 7.348 (26|10) 0.343 (23|9) 0.483 (17|7) 7.19 (26|10) 0.309 (18|6) 10000 0.392 (23|9) 7.372 (26|10) 0.235 (23|9) 0.378 (18|6) 7.357 (26|10) 0.22 (21|7) 0.357 (15|6) 7.302 (26|10) 0.195 (18|6) 10000 0.837 (22|9) 5.477 (25|9) 0.426 (25|10) 0.773 (19|8) 5.561 (25|9) 0.383 (23|9) 0.679 (15|7) 5.736 (24|9) 0.314 (17|7)
gflownet_al graph 10000 0.676 (18|7) 4.197 (20|7) 0.643 (16|5) 0.623 (15|6) 4.487 (20|7) 0.59 (14|5) 0.555 (14|6) 4.74 (20|7) 0.505 (13|5) 10000 0.464 (16|7) 4.31 (19|6) 0.433 (15|6) 0.403 (16|7) 4.34 (19|6) 0.363 (14|6) 0.324 (16|7) 4.527 (20|7) 0.272 (15|7) 10000 0.864 (21|7) 3.368 (17|6) 0.717 (22|8) 0.637 (22|7) 3.631 (19|7) 0.469 (22|8) 0.254 (22|7) 4.268 (22|9) 0.166 (23|8)
screening N/A 10000 0.836 (10|1) 2.305 (2|1) 0.658 (15|2) 0.561 (19|2) 2.739 (5|2) 0.439 (18|2) 0.312 (20|2) 2.959 (8|2) 0.236 (20|2) 10000 0.456 (17|2) 2.99 (11|2) 0.363 (18|2) 0.309 (19|2) 2.637 (8|2) 0.239 (19|2) 0.168 (20|2) 2.678 (7|2) 0.127 (20|2) 10000 0.95 (18|2) 3.047 (13|2) 0.798 (19|2) 0.741 (21|2) 3.289 (14|2) 0.545 (20|2) 0.308 (20|2) 3.397 (13|1) 0.187 (19|2)
mol_pal N/A 10000 0.82 (11|2) 2.589 (6|2) 0.776 (9|1) 0.62 (16|1) 2.723 (4|1) 0.556 (15|1) 0.369 (19|1) 2.788 (4|1) 0.319 (17|1) 10000 0.608 (12|1) 2.114 (2|1) 0.458 (14|1) 0.405 (15|1) 2.477 (4|1) 0.339 (16|1) 0.234 (18|1) 2.463 (4|1) 0.2 (17|1) 10000 0.965 (16|1) 2.462 (6|1) 0.903 (13|1) 0.873 (16|1) 2.734 (6|1) 0.783 (15|1) 0.477 (18|1) 3.473 (14|2) 0.403 (16|1)
graph_ga graph 9529 0.946 (7|2) 2.452 (4|1) 0.829 (7|2) 0.937 (7|2) 2.906 (9|1) 0.789 (7|2) 0.919 (7|2) 3.079 (9|1) 0.738 (4|2) 10000 0.818 (6|1) 3.172 (13|2) 0.598 (8|2) 0.813 (6|1) 3.323 (13|2) 0.554 (9|3) 0.797 (4|1) 3.351 (11|2) 0.489 (7|3) 8326.4 1.0 (1|1) 2.758 (10|1) 0.991 (2|1) 1.0 (1|1) 2.786 (7|1) 0.964 (2|1) 1.0 (1|1) 2.815 (6|1) 0.924 (1|1)
Ours synthesis 4886 0.98 (4|2) 2.045 (1|1) 0.891 (4|2) 0.967 (5|2) 2.302 (1|1) 0.848 (3|1) 0.944 (4|2) 2.27 (1|1) 0.778 (3|1) 10000 0.85 (4|2) 1.771 (1|1) 0.698 (5|3) 0.818 (5|2) 2.234 (2|2) 0.639 (3|1) 0.755 (6|2) 2.156 (1|1) 0.536 (3|1) 9068 1.0 (1|1) 2.663 (9|4) 0.981 (5|4) 1.0 (1|1) 2.565 (5|3) 0.96 (3|2) 1.0 (1|1) 2.578 (4|2) 0.901 (3|1)

Tables 8, 9, 10 and 11 are comprehensive results against baselines taxonomized in (Gao et al., 2022).
We evaluate the average score of the Top K molecules, their average synthetic accessibility (Ertl &
Schuffenhauer, 2009) and top K AUC (AUC of no. oracle calls vs score plot), for K=1,10,100. Like

33



Published as a conference paper at ICLR 2025

Table 10: Guacamol multi-objective Oracles for properties of known drugs: Osimertinib, Fexofena-
dine, Ranolazine.

Osimertinib MPO Fexofenadine MPO Ranolazine MPO
Top 1 Top 10 Top 100 Top 1 Top 10 Top 100 Top 1 Top 10 Top 100

category Oracle Calls Score SA AUC Score SA AUC Score SA AUC Oracle Calls Score SA AUC Score SA AUC Score SA AUC Oracle Calls Score SA AUC Score SA AUC Score SA AUC
synnet synthesis 6329.4 0.821 (12|3) 3.122 (9|4) 0.814 (8|2) 0.811 (13|3) 3.005 (8|4) 0.797 (8|2) 0.789 (13|3) 3.036 (8|4) 0.761 (7|2) 6763.2 0.798 (9|3) 3.423 (9|4) 0.782 (4|2) 0.786 (8|2) 3.337 (8|4) 0.764 (4|2) 0.749 (10|2) 3.29 (8|4) 0.722 (5|2) 7443.8 0.783 (10|3) 3.355 (10|3) 0.765 (6|2) 0.771 (10|3) 3.628 (12|4) 0.743 (4|1) 0.745 (12|3) 3.772 (13|4) 0.691 (5|1)
pasithea string 1715.2 0.793 (22|9) 2.815 (7|3) 0.791 (21|9) 0.757 (24|10) 3.01 (9|3) 0.752 (22|9) 0.662 (25|10) 3.347 (11|5) 0.645 (24|9) 5605.6 0.708 (21|9) 2.707 (2|1) 0.705 (19|7) 0.666 (24|10) 3.385 (9|3) 0.662 (23|9) 0.597 (24|10) 3.865 (9|3) 0.585 (23|9) 1002.8 0.443 (24|10) 2.897 (3|2) 0.438 (24|10) 0.354 (24|10) 2.945 (2|2) 0.348 (24|10) 0.219 (24|10) 2.67 (1|1) 0.212 (24|10)
dog_ae synthesis 1257.8 0.793 (22|4) 2.819 (8|3) 0.79 (22|4) 0.759 (23|4) 2.824 (6|3) 0.751 (23|4) 0.688 (24|4) 2.882 (4|3) 0.662 (22|4) 1247.6 0.724 (18|4) 3.085 (5|2) 0.719 (14|4) 0.687 (20|4) 2.922 (3|2) 0.681 (18|4) 0.634 (22|4) 2.977 (3|2) 0.619 (19|4) 1163.4 0.745 (16|4) 3.725 (12|4) 0.737 (11|4) 0.701 (16|4) 3.505 (9|3) 0.69 (12|4) 0.589 (18|4) 3.307 (8|3) 0.567 (15|4)
smiles_vae_bo string 10000 0.802 (20|8) 2.811 (6|2) 0.795 (19|7) 0.784 (18|7) 2.812 (5|2) 0.773 (19|7) 0.753 (19|8) 2.958 (5|2) 0.714 (18|7) 10000 0.72 (19|8) 3.633 (10|3) 0.702 (20|8) 0.692 (19|8) 3.034 (4|1) 0.673 (19|7) 0.65 (19|8) 2.998 (4|1) 0.618 (20|8) 10000 0.599 (19|8) 3.144 (5|4) 0.564 (20|8) 0.524 (20|8) 2.998 (5|3) 0.458 (20|8) 0.393 (20|8) 2.734 (2|2) 0.319 (21|8)
jt_vae_bo graph 5121 0.803 (18|8) 3.854 (16|4) 0.799 (18|8) 0.784 (18|8) 3.285 (12|1) 0.776 (17|8) 0.752 (20|8) 3.457 (12|1) 0.728 (17|8) 4385.2 0.703 (24|8) 3.314 (6|1) 0.699 (22|8) 0.675 (23|8) 3.892 (10|1) 0.67 (21|8) 0.633 (23|8) 3.903 (10|1) 0.618 (20|8) 4350.6 0.588 (20|8) 3.948 (14|2) 0.583 (18|8) 0.525 (19|8) 3.671 (13|1) 0.509 (19|8) 0.363 (21|8) 3.439 (10|1) 0.337 (20|8)
moldqn graph 10000 0.7 (26|10) 5.762 (25|10) 0.692 (25|10) 0.686 (26|10) 5.752 (24|10) 0.677 (25|10) 0.651 (26|10) 5.55 (24|10) 0.638 (26|10) 10000 0.533 (26|10) 5.844 (23|9) 0.5 (26|10) 0.516 (26|10) 5.717 (23|9) 0.479 (26|10) 0.482 (26|10) 5.524 (22|8) 0.432 (26|10) 10000 0.171 (26|10) 4.846 (22|9) 0.084 (26|10) 0.104 (26|10) 5.138 (23|10) 0.052 (26|10) 0.036 (26|10) 5.221 (23|10) 0.018 (26|10)
mars graph 4046.6 0.809 (17|7) 4.871 (22|9) 0.8 (17|7) 0.797 (16|7) 4.932 (22|9) 0.779 (16|7) 0.776 (16|7) 5.264 (22|9) 0.732 (16|7) 6559 0.756 (13|4) 5.337 (20|8) 0.732 (12|4) 0.741 (13|4) 5.319 (19|7) 0.713 (11|4) 0.717 (14|5) 5.698 (23|9) 0.671 (12|5) 2681.4 0.776 (12|3) 4.661 (21|8) 0.766 (5|1) 0.76 (14|4) 4.661 (21|8) 0.742 (5|1) 0.72 (15|5) 4.776 (22|9) 0.685 (7|2)
selfies_lstm_hc string 10000 0.832 (10|6) 3.366 (10|4) 0.805 (12|6) 0.822 (10|6) 3.151 (11|5) 0.783 (14|6) 0.804 (11|6) 3.206 (9|3) 0.733 (15|6) 10000 0.769 (12|6) 5.692 (21|7) 0.719 (14|6) 0.754 (12|6) 5.322 (20|7) 0.696 (14|6) 0.727 (12|6) 5.226 (20|8) 0.652 (14|6) 10000 0.795 (9|5) 4.12 (16|7) 0.679 (15|6) 0.77 (12|7) 4.545 (19|7) 0.615 (17|6) 0.725 (14|7) 4.601 (19|7) 0.502 (18|7)
gp_bo graph 10000 0.838 (8|2) 4.296 (20|7) 0.806 (11|3) 0.828 (9|2) 4.137 (17|4) 0.789 (11|4) 0.813 (9|2) 4.273 (18|5) 0.751 (11|5) 10000 0.805 (8|2) 6.402 (25|10) 0.743 (9|3) 0.794 (6|2) 6.051 (24|10) 0.724 (9|3) 0.774 (6|2) 5.89 (24|10) 0.687 (9|3) 10000 0.818 (6|1) 4.142 (17|4) 0.763 (7|2) 0.807 (5|1) 4.414 (18|6) 0.736 (7|2) 0.79 (5|1) 4.453 (17|5) 0.695 (4|1)
smiles_ga string 4815.2 0.835 (9|5) 6.086 (26|10) 0.827 (5|4) 0.835 (8|5) 6.01 (26|10) 0.82 (5|4) 0.834 (5|4) 6.265 (26|10) 0.8 (4|3) 8784.8 0.771 (11|5) 4.631 (15|6) 0.733 (10|5) 0.765 (11|5) 4.909 (17|6) 0.723 (10|5) 0.757 (8|5) 5.141 (18|6) 0.703 (7|4) 10000 0.78 (11|6) 5.895 (24|8) 0.721 (12|5) 0.775 (9|5) 5.904 (24|8) 0.699 (11|5) 0.766 (9|5) 5.997 (24|8) 0.671 (8|4)
mimosa graph 10000 0.817 (13|4) 4.09 (18|5) 0.804 (14|5) 0.814 (12|4) 4.223 (19|6) 0.791 (9|2) 0.805 (10|3) 4.104 (16|3) 0.752 (10|4) 10000 0.744 (14|5) 4.257 (13|2) 0.724 (13|5) 0.738 (14|5) 4.452 (13|2) 0.709 (12|5) 0.724 (13|4) 4.39 (13|2) 0.674 (11|4) 10000 0.773 (14|4) 3.982 (15|3) 0.674 (16|6) 0.768 (13|3) 3.994 (15|3) 0.641 (14|5) 0.758 (11|3) 4.162 (15|3) 0.588 (13|5)
reinvent string 10000 0.909 (1|1) 3.552 (11|5) 0.852 (1|1) 0.905 (1|1) 3.494 (13|6) 0.839 (1|1) 0.897 (1|1) 3.486 (13|6) 0.808 (1|1) 10000 0.91 (1|1) 4.234 (11|4) 0.804 (3|2) 0.903 (1|1) 4.271 (11|4) 0.787 (3|2) 0.892 (1|1) 4.261 (12|5) 0.754 (2|2) 10000 0.865 (1|1) 2.815 (2|1) 0.789 (1|1) 0.858 (2|2) 2.87 (1|1) 0.761 (2|2) 0.849 (2|2) 2.885 (5|3) 0.72 (2|2)
smiles_lstm_hc string 10000 0.859 (4|3) 2.712 (4|1) 0.819 (7|5) 0.848 (4|3) 2.773 (4|1) 0.799 (7|5) 0.829 (7|5) 2.785 (3|1) 0.751 (11|5) 10000 0.818 (6|4) 2.896 (4|2) 0.757 (7|4) 0.794 (6|4) 3.1 (5|2) 0.727 (7|4) 0.764 (7|4) 3.166 (6|2) 0.682 (10|5) 10000 0.824 (4|4) 2.938 (4|3) 0.758 (10|4) 0.807 (5|4) 3.195 (7|4) 0.715 (9|4) 0.784 (6|4) 3.323 (9|4) 0.631 (10|5)
selfies_vae_bo string 10000 0.803 (18|7) 3.715 (13|6) 0.794 (20|8) 0.781 (21|8) 3.05 (10|4) 0.768 (20|8) 0.75 (22|9) 3.333 (10|4) 0.713 (19|8) 10000 0.707 (22|10) 4.239 (12|5) 0.701 (21|9) 0.683 (22|9) 4.347 (12|5) 0.672 (20|8) 0.644 (21|9) 3.977 (11|4) 0.621 (18|7) 10000 0.565 (21|9) 3.154 (6|5) 0.535 (21|9) 0.489 (22|9) 3.584 (10|5) 0.453 (22|9) 0.363 (21|9) 3.527 (11|5) 0.314 (22|9)
dog_gen synthesis 10000 0.851 (6|2) 2.728 (5|2) 0.804 (14|3) 0.843 (7|2) 2.658 (3|2) 0.776 (17|3) 0.827 (8|2) 2.714 (2|2) 0.707 (20|3) 10000 0.809 (7|2) 2.707 2|1 0.733 (10|3) 0.769 (9|3) 2.687 (1|1) 0.697 (13|3) 0.736 (11|3) 2.669 (1|1) 0.642 (16|3) 10000 0.824 (4|1) 3.183 (7|1) 0.761 (8|3) 0.808 (4|1) 3.072 (6|1) 0.712 (10|3) 0.782 (7|2) 3.17 (6|1) 0.602 (12|3)
stoned string 9326.2 0.848 (7|4) 5.619 (24|9) 0.831 (4|3) 0.848 (4|3) 5.871 (25|9) 0.824 (3|2) 0.847 (4|3) 6.093 (25|9) 0.801 (2|2) 9898.2 0.851 (2|2) 7.051 (26|10) 0.806 (2|1) 0.851 (2|2) 7.171 (26|10) 0.8 (1|1) 0.848 (2|2) 7.17 (26|10) 0.779 (1|1) 10000 0.863 (2|2) 6.895 (26|10) 0.785 (2|2) 0.86 (1|1) 6.892 (26|10) 0.766 (1|1) 0.855 (1|1) 6.93 (26|10) 0.739 (1|1)
gflownet graph 10000 0.817 (13|4) 3.819 (15|3) 0.805 (12|4) 0.798 (15|6) 4.221 (18|5) 0.787 (12|5) 0.779 (15|6) 4.441 (19|6) 0.76 (9|3) 10000 0.727 (17|7) 4.349 (14|3) 0.717 (16|6) 0.712 (16|6) 4.464 (14|3) 0.696 (14|6) 0.678 (16|6) 4.637 (15|4) 0.656 (13|6) 9429.6 0.702 (18|7) 4.881 (23|10) 0.681 (13|4) 0.675 (17|6) 4.773 (22|9) 0.653 (13|4) 0.649 (16|6) 4.734 (21|8) 0.615 (11|4)
reinvent_selfies string 9951.4 0.879 (3|2) 3.938 (17|7) 0.835 (3|2) 0.874 (2|2) 3.926 (16|7) 0.822 (4|3) 0.866 (2|2) 3.98 (15|7) 0.792 (5|4) 10000 0.843 (5|3) 5.721 (22|8) 0.765 (6|3) 0.835 (3|3) 5.437 (22|8) 0.743 (6|3) 0.819 (3|3) 5.186 (19|7) 0.706 (6|3) 10000 0.851 (3|3) 3.786 (13|6) 0.779 (3|3) 0.846 (3|3) 3.586 (11|6) 0.748 (3|3) 0.836 (3|3) 3.641 (12|6) 0.696 (3|3)
graph_mcts graph 10000 0.738 (25|9) 3.622 (12|1) 0.721 (24|9) 0.723 (25|9) 3.656 (14|2) 0.702 (24|9) 0.691 (23|9) 4.116 (17|4) 0.656 (23|9) 10000 0.612 (25|9) 4.672 (16|4) 0.597 (25|9) 0.594 (25|9) 4.523 (15|4) 0.575 (25|9) 0.562 (25|9) 4.42 (14|3) 0.523 (25|9) 10000 0.37 (25|9) 3.629 (11|1) 0.317 (25|9) 0.304 (25|9) 3.804 (14|2) 0.239 (25|9) 0.176 (25|9) 3.904 (14|2) 0.122 (25|9)
dst graph 9173.2 0.827 (11|3) 4.338 (21|8) 0.803 (16|6) 0.818 (11|3) 4.336 (20|7) 0.787 (12|5) 0.803 (12|4) 4.513 (20|7) 0.744 (13|6) 10000 0.778 (10|3) 5.056 (19|7) 0.745 (8|2) 0.767 (10|3) 5.349 (21|8) 0.727 (7|2) 0.753 (9|3) 5.458 (21|7) 0.692 (8|2) 9505.8 0.752 (15|5) 4.318 (19|6) 0.659 (17|7) 0.746 (15|5) 4.379 (17|5) 0.633 (15|6) 0.73 (13|4) 4.653 (20|7) 0.58 (14|6)
selfies_ga string 10000 0.785 (24|10) 5.515 (23|8) 0.689 (26|10) 0.778 (22|9) 5.401 (23|8) 0.672 (26|10) 0.769 (18|7) 5.531 (23|8) 0.645 (24|9) 10000 0.737 (15|7) 6.111 (24|9) 0.608 (24|10) 0.73 (15|7) 6.359 (25|9) 0.587 (24|10) 0.717 (14|7) 6.455 (25|9) 0.554 (24|10) 10000 0.776 (12|7) 6.278 (25|9) 0.576 (19|7) 0.771 (10|6) 6.103 (25|9) 0.556 (18|7) 0.763 (10|6) 6.197 (25|9) 0.525 (17|6)
gflownet_al graph 10000 0.812 (16|6) 4.109 (19|6) 0.807 (9|2) 0.8 (14|5) 4.501 (21|8) 0.79 (10|3) 0.78 (14|5) 4.54 (21|8) 0.761 (7|2) 10000 0.733 (16|6) 4.721 (17|5) 0.717 (16|6) 0.706 (17|7) 4.681 (16|5) 0.691 (16|7) 0.673 (17|7) 4.717 (16|5) 0.647 (15|7) 10000 0.705 (17|6) 4.471 (20|7) 0.681 (13|4) 0.666 (18|7) 4.594 (20|7) 0.633 (15|6) 0.617 (17|7) 4.597 (18|6) 0.543 (16|7)
screening N/A 10000 0.802 (20|2) 2.421 (3|2) 0.788 (23|2) 0.783 (20|2) 2.9 (7|2) 0.766 (21|2) 0.751 (21|2) 2.988 (7|2) 0.705 (21|2) 10000 0.707 (22|2) 3.331 (7|2) 0.693 (23|2) 0.686 (21|2) 3.147 (6|2) 0.668 (22|2) 0.649 (20|2) 3.026 (5|2) 0.615 (22|2) 10000 0.533 (23|2) 2.744 (1|1) 0.486 (23|2) 0.456 (23|2) 2.987 (3|1) 0.412 (23|2) 0.358 (23|2) 2.778 (3|1) 0.302 (23|2)
mol_pal N/A 10000 0.816 (15|1) 2.134 (1|1) 0.807 (9|1) 0.794 (17|1) 2.551 (2|1) 0.78 (15|1) 0.77 (17|1) 2.981 (6|1) 0.737 (14|1) 10000 0.71 (20|1) 2.08 (1|1) 0.706 (18|1) 0.696 (18|1) 2.806 (2|1) 0.686 (17|1) 0.665 (18|1) 2.973 (2|1) 0.64 (17|1) 10000 0.556 (22|1) 3.287 (9|2) 0.517 (22|1) 0.495 (21|1) 2.991 (4|2) 0.458 (20|1) 0.397 (19|1) 2.88 (4|2) 0.357 (19|1)
graph_ga graph 10000 0.881 (2|1) 3.78 (14|2) 0.849 (2|1) 0.873 (3|1) 3.88 (15|3) 0.834 (2|1) 0.861 (3|1) 3.931 (14|2) 0.801 (2|1) 10000 0.846 (4|1) 4.852 (18|6) 0.777 (5|1) 0.831 (4|1) 4.926 (18|6) 0.763 (5|1) 0.818 (4|1) 4.896 (17|6) 0.733 (4|1) 10000 0.811 (7|2) 4.242 (18|5) 0.76 (9|3) 0.801 (8|2) 4.278 (16|4) 0.729 (8|3) 0.782 (7|2) 4.401 (16|4) 0.671 (8|3)
Ours synthesis 10000 0.859 (4|1) 2.263 (2|1) 0.826 (6|1) 0.847 (6|1) 2.21 (1|1) 0.81 (6|1) 0.832 (6|1) 2.249 (1|1) 0.769 (6|1) 8914 0.849 (3|1) 3.417 (8|3) 0.816 (1|1) 0.827 (5|1) 3.291 (7|3) 0.791 (2|1) 0.806 (5|1) 3.188 (7|3) 0.75 (3|1) 10000 0.808 (8|2) 3.201 (8|2) 0.774 (4|1) 0.805 (7|2) 3.205 (8|2) 0.741 (6|2) 0.794 (4|1) 3.254 (7|2) 0.686 (6|2)

Table 11: Guacamol multi-objective Oracles for properties of known drugs: Perindopril, Amlodipine,
Sitagliptin, and Zaleplon. Disclaimer: We used version 1.0.0. PMO Gao et al. (2022), where we
adopted the numbers from, used 0.3.6. We’d like to mention there were changes since 0.3.6 that may
affect the Sitagliptin and Zaleplon evaluations.

Perindopril MPO Amlodipine MPO Sitagliptin MPO Zaleplon MPO
Top 1 Top 10 Top 100 Top 1 Top 10 Top 100 Top 1 Top 10 Top 100 Top 1 Top 10 Top 100

category Oracle Calls Score SA AUC Score SA AUC Score SA AUC Oracle Calls Score SA AUC Score SA AUC Score SA AUC Oracle Calls Score SA AUC Score SA AUC Score SA AUC Oracle Calls Score SA AUC Score SA AUC Score SA AUC
synnet synthesis 8018.6 0.61 (4|2) 3.775 (14|4) 0.582 (1|1) 0.589 (5|2) 3.717 (13|4) 0.559 (1|1) 0.547 (5|2) 3.749 (13|4) 0.514 (1|1) 7665 0.597 (13|3) 2.877 (7|4) 0.583 (13|2) 0.585 (10|3) 2.864 (6|4) 0.567 (9|2) 0.559 (9|3) 2.808 (7|4) 0.535 (8|2) 3347.4 0.067 (22|3) 3.629 (6|4) 0.06 (20|3) 0.03 (22|3) 3.245 (3|3) 0.026 (18|3) 0.009 (22|3) 2.985 (3|3) 0.007 (18|3) 8349 0.403 (6|2) 3.85 (7|4) 0.377 (3|2) 0.381 (7|2) 3.911 (7|4) 0.341 (4|2) 0.28 (9|2) 3.982 (8|4) 0.224 (7|2)
pasithea string 1001 0.448 (23|9) 3.382 (8|3) 0.447 (23|9) 0.425 (23|9) 3.023 (6|2) 0.423 (22|9) 0.37 (23|9) 3.077 (6|2) 0.365 (23|9) 2345.6 0.585 (16|8) 2.852 (5|2) 0.585 (11|6) 0.509 (22|10) 2.569 (3|1) 0.507 (20|9) 0.45 (22|10) 2.655 (4|1) 0.444 (21|9) 9766 0.231 (12|8) 7.041 (24|8) 0.176 (9|6) 0.138 (13|8) 6.79 (24|8) 0.089 (10|6) 0.049 (12|7) 6.772 (24|8) 0.027 (10|6) 10000 0.243 (20|9) 6.586 (24|8) 0.186 (19|9) 0.14 (19|9) 6.461 (24|8) 0.092 (19|9) 0.05 (18|9) 6.76 (24|8) 0.028 (18|9)
dog_ae synthesis 1339 0.464 (20|4) 3.073 (3|1) 0.461 (17|4) 0.438 (21|4) 2.986 (3|1) 0.433 (18|4) 0.385 (22|4) 2.781 (1|1) 0.375 (22|4) 1319.4 0.539 (21|4) 2.716 (3|3) 0.536 (20|4) 0.513 (21|4) 2.579 (4|3) 0.509 (19|4) 0.469 (21|4) 2.547 (3|3) 0.458 (20|4) 1940 0.04 (24|4) 3.011 (3|2) 0.037 (23|4) 0.01 (24|4) 3.049 (2|2) 0.01 (23|4) 0.002 (24|4) 2.694 (2|2) 0.002 (23|4) 1478.6 0.157 (22|4) 3.148 (3|2) 0.145 (21|4) 0.055 (24|4) 3.33 (2|2) 0.05 (22|4) 0.007 (24|4) 3.111 (2|2) 0.006 (24|4)
smiles_vae_bo string 10000 0.484 (16|6) 2.888 (2|1) 0.472 (16|6) 0.459 (16|6) 2.971 (1|1) 0.444 (17|7) 0.423 (18|7) 2.967 (4|1) 0.399 (16|7) 10000 0.612 (11|5) 2.928 (10|3) 0.604 (9|5) 0.559 (15|7) 2.927 (9|3) 0.536 (14|6) 0.502 (16|8) 2.745 (6|2) 0.477 (15|7) 10000 0.114 (19|9) 4.594 (11|4) 0.088 (18|9) 0.034 (20|10) 3.764 (7|2) 0.024 (19|9) 0.01 (20|10) 3.293 (5|1) 0.007 (18|9) 10000 0.14 (23|10) 4.068 (8|2) 0.094 (23|10) 0.072 (22|10) 4.077 (8|2) 0.04 (23|10) 0.013 (23|10) 3.757 (6|2) 0.007 (23|10)
jt_vae_bo graph 5224.4 0.463 (21|8) 3.547 (11|2) 0.456 (20|7) 0.439 (20|7) 3.325 (10|2) 0.432 (19|6) 0.404 (21|8) 3.361 (12|2) 0.391 (18|6) 5053.6 0.585 (16|4) 2.852 (5|1) 0.585 (11|4) 0.526 (17|4) 3.005 (11|2) 0.521 (16|4) 0.484 (19|5) 3.202 (14|3) 0.47 (16|4) 5491.6 0.17 (16|6) 4.398 (9|1) 0.135 (14|6) 0.063 (16|6) 4.277 (10|1) 0.046 (16|6) 0.015 (17|6) 3.908 (9|1) 0.01 (17|6) 5540.8 0.303 (14|3) 4.223 (13|1) 0.267 (12|3) 0.161 (18|6) 4.354 (12|2) 0.126 (17|6) 0.035 (19|6) 4.374 (11|1) 0.024 (19|6)
moldqn graph 10000 0.283 (26|10) 4.468 (21|7) 0.248 (25|10) 0.254 (26|10) 5.334 (25|10) 0.214 (25|10) 0.162 (26|10) 5.355 (25|10) 0.125 (26|10) 10000 0.384 (26|10) 5.915 (26|10) 0.344 (26|10) 0.355 (26|10) 6.004 (26|10) 0.312 (26|10) 0.316 (26|10) 6.292 (26|10) 0.23 (26|10) 10000 0.016 (26|10) 5.94 (21|9) 0.01 (26|10) 0.006 (26|10) 5.641 (20|8) 0.003 (26|10) 0.001 (26|10) 5.318 (20|8) 0.001 (25|9) 10000 0.043 (26|10) 6.008 (21|9) 0.026 (26|10) 0.018 (26|10) 6.274 (23|10) 0.011 (25|9) 0.005 (25|9) 6.245 (23|10) 0.003 (25|9)
mars graph 6346.8 0.489 (15|5) 4.906 (24|9) 0.478 (14|5) 0.48 (13|5) 5.016 (24|9) 0.464 (12|4) 0.463 (12|4) 5.271 (24|9) 0.433 (11|4) 5914.8 0.546 (20|6) 4.172 (24|9) 0.525 (21|6) 0.526 (17|4) 3.821 (21|8) 0.506 (21|6) 0.496 (17|4) 4.096 (21|8) 0.466 (18|6) 10000 0.083 (20|7) 5.257 (19|7) 0.04 (22|7) 0.034 (20|7) 4.418 (12|3) 0.016 (22|7) 0.01 (20|7) 4.088 (12|3) 0.005 (22|7) 2442.4 0.297 (15|4) 4.809 (16|4) 0.293 (10|2) 0.213 (16|5) 5.468 (20|8) 0.187 (13|3) 0.101 (15|5) 5.709 (20|8) 0.083 (14|5)
selfies_lstm_hc string 10000 0.522 (10|4) 3.542 (10|4) 0.474 (15|5) 0.502 (11|5) 3.206 (9|4) 0.45 (14|5) 0.469 (11|5) 3.161 (9|4) 0.401 (15|6) 10000 0.6 (12|6) 3.141 (13|5) 0.572 (17|8) 0.58 (11|5) 2.894 (8|2) 0.534 (15|7) 0.554 (12|6) 2.865 (8|3) 0.487 (13|6) 10000 0.35 (7|5) 5.232 (18|6) 0.203 (8|5) 0.23 (8|5) 5.096 (19|6) 0.117 (8|5) 0.102 (8|5) 5.146 (19|6) 0.041 (9|5) 10000 0.361 (10|7) 4.136 (9|3) 0.304 (9|6) 0.31 (11|7) 5.199 (18|6) 0.218 (10|6) 0.214 (13|7) 5.529 (19|6) 0.103 (12|7)
gp_bo graph 10000 0.562 (8|2) 4.354 (19|6) 0.514 (7|2) 0.549 (8|2) 3.993 (16|4) 0.495 (6|2) 0.524 (9|3) 3.916 (14|3) 0.462 (7|2) 10000 0.682 (5|2) 3.498 (20|6) 0.609 (8|2) 0.664 (5|2) 3.449 (17|5) 0.585 (7|2) 0.639 (5|2) 3.523 (18|5) 0.54 (6|2) 10000 0.318 (8|2) 4.906 (15|4) 0.238 (7|2) 0.267 (7|2) 4.84 (16|6) 0.187 (7|2) 0.196 (7|2) 4.808 (16|6) 0.117 (7|2) 10000 0.269 (19|6) 4.975 (18|6) 0.252 (16|5) 0.253 (15|4) 4.898 (15|4) 0.222 (9|2) 0.217 (12|3) 5.065 (17|6) 0.166 (9|2)
smiles_ga string 3487.2 0.459 (22|8) 3.586 (12|5) 0.455 (21|8) 0.457 (18|7) 4.267 (19|7) 0.449 (15|6) 0.454 (13|6) 4.462 (19|7) 0.438 (10|5) 4340.4 0.57 (19|9) 3.165 (14|6) 0.567 (18|9) 0.564 (12|6) 4.331 (25|10) 0.551 (10|5) 0.559 (9|5) 4.548 (25|10) 0.536 (7|4) 8642.2 0.505 (3|2) 6.764 (23|7) 0.397 (3|2) 0.481 (3|2) 6.554 (23|7) 0.364 (3|2) 0.437 (3|2) 6.675 (23|7) 0.307 (3|2) 5972.4 0.397 (7|4) 6.173 (23|7) 0.35 (6|3) 0.389 (6|4) 6.146 (22|7) 0.334 (5|2) 0.378 (5|3) 6.226 (22|7) 0.311 (3|2)
mimosa graph 10000 0.558 (9|3) 4.917 (25|10) 0.509 (8|3) 0.549 (8|2) 4.942 (23|8) 0.492 (7|3) 0.53 (8|2) 4.879 (23|8) 0.46 (8|3) 10000 0.594 (14|3) 2.893 (8|2) 0.593 (10|3) 0.564 (12|3) 3.785 (20|7) 0.545 (11|3) 0.55 (13|3) 4.101 (22|9) 0.511 (11|3) 10000 0.21 (14|4) 5.511 (20|8) 0.136 (13|5) 0.179 (11|3) 5.705 (21|9) 0.103 (9|3) 0.101 (9|3) 5.522 (21|9) 0.053 (8|3) 9892.6 0.288 (16|5) 6.052 (22|10) 0.205 (18|6) 0.274 (13|2) 6.003 (21|9) 0.172 (15|5) 0.239 (11|2) 6.194 (21|9) 0.133 (10|3)
reinvent string 9435.8 0.644 (1|1) 4.533 (22|9) 0.555 (3|1) 0.642 (1|1) 4.468 (20|8) 0.539 (3|1) 0.636 (1|1) 4.467 (20|8) 0.513 (2|1) 9258.2 0.736 (3|2) 3.544 (21|9) 0.655 (2|1) 0.734 (2|1) 3.612 (18|7) 0.637 (2|1) 0.729 (2|1) 3.448 (17|7) 0.609 (2|1) 9966.8 0.08 (21|10) 4.017 (8|2) 0.055 (21|10) 0.035 (19|9) 3.926 (8|3) 0.022 (21|10) 0.011 (18|9) 3.424 (7|2) 0.007 (18|9) 6099.6 0.478 (2|1) 4.146 (10|4) 0.383 (2|1) 0.476 (2|1) 4.188 (10|3) 0.358 (2|1) 0.464 (2|1) 4.073 (9|3) 0.325 (2|1)
smiles_lstm_hc string 10000 0.569 (7|3) 3.778 (15|6) 0.516 (6|3) 0.554 (7|3) 3.449 (12|5) 0.491 (8|3) 0.533 (7|3) 3.347 (11|5) 0.448 (9|4) 10000 0.739 (2|1) 2.937 (11|4) 0.639 (3|2) 0.714 (3|2) 2.941 (10|4) 0.596 (6|4) 0.669 (4|3) 2.979 (10|4) 0.535 (8|5) 10000 0.263 (9|6) 3.777 (7|1) 0.129 (15|8) 0.187 (9|6) 3.724 (6|1) 0.066 (13|8) 0.088 (10|6) 3.913 (10|3) 0.021 (11|7) 10000 0.414 (5|3) 3.621 (6|1) 0.287 (11|7) 0.39 (5|3) 3.615 (5|1) 0.207 (11|7) 0.331 (8|6) 3.707 (5|1) 0.111 (11|6)
selfies_vae_bo string 10000 0.482 (17|7) 3.352 (7|2) 0.46 (18|7) 0.445 (19|8) 3.039 (7|3) 0.431 (20|8) 0.407 (19|8) 3.09 (7|3) 0.384 (20|8) 10000 0.593 (15|7) 2.806 (4|1) 0.583 (13|7) 0.532 (16|8) 3.058 (12|5) 0.518 (18|8) 0.49 (18|9) 3.093 (12|5) 0.466 (18|8) 10000 0.244 (11|7) 4.466 (10|3) 0.173 (10|7) 0.14 (12|7) 4.946 (17|5) 0.084 (11|7) 0.039 (13|8) 4.701 (15|4) 0.021 (11|7) 10000 0.38 (8|5) 4.217 (12|6) 0.323 (8|5) 0.28 (12|8) 4.541 (13|5) 0.207 (11|7) 0.1 (16|8) 4.905 (14|5) 0.059 (16|8)
dog_gen synthesis 10000 0.588 (6|3) 3.249 (5|2) 0.507 (9|3) 0.576 (6|3) 3.001 (4|2) 0.475 (10|3) 0.547 (5|2) 2.949 (3|2) 0.423 (14|3) 10000 0.621 (9|2) 2.245 (1|1) 0.557 (19|3) 0.606 (9|2) 2.36 (1|1) 0.537 (12|3) 0.583 (8|2) 2.348 (1|1) 0.49 (12|3) 10000 0.253 (10|2) 3.178 (4|3) 0.103 (16|2) 0.182 (10|2) 3.572 (5|4) 0.048 (15|2) 0.085 (11|2) 3.403 (6|4) 0.016 (14|2) 9331.8 0.344 (12|3) 3.238 (4|3) 0.171 (20|3) 0.314 (10|3) 3.445 (3|3) 0.123 (18|3) 0.253 (10|3) 3.549 (3|3) 0.073 (15|3)
stoned string 10000 0.522 (10|4) 4.395 (20|8) 0.495 (11|4) 0.521 (10|4) 4.723 (22|9) 0.49 (9|4) 0.514 (10|4) 4.811 (22|9) 0.474 (6|3) 7362.8 0.639 (8|4) 3.494 (19|8) 0.618 (7|4) 0.636 (6|4) 3.956 (23|8) 0.611 (3|2) 0.631 (6|4) 4.371 (23|8) 0.595 (3|2) 8761.4 0.527 (2|1) 7.651 (26|10) 0.407 (2|1) 0.518 (2|1) 7.587 (26|10) 0.393 (2|1) 0.483 (2|1) 7.243 (26|10) 0.352 (1|1) 9305 0.374 (9|6) 6.982 (26|10) 0.334 (7|4) 0.374 (8|5) 7.02 (26|10) 0.326 (7|4) 0.369 (6|4) 7.065 (26|10) 0.308 (4|3)
gflownet graph 10000 0.478 (18|6) 4.195 (18|5) 0.457 (19|6) 0.458 (17|6) 4.211 (17|5) 0.431 (20|7) 0.424 (17|6) 4.278 (18|6) 0.385 (19|7) 10000 0.483 (24|8) 3.166 (15|4) 0.469 (23|8) 0.466 (23|7) 3.192 (13|3) 0.445 (23|8) 0.44 (23|7) 3.201 (13|2) 0.399 (22|7) 10000 0.045 (23|8) 5.019 (16|5) 0.028 (24|8) 0.017 (23|8) 4.622 (13|4) 0.009 (24|8) 0.004 (23|8) 4.415 (14|5) 0.002 (23|8) 9043.6 0.118 (24|8) 5.376 (19|7) 0.067 (24|8) 0.07 (23|8) 5.114 (17|6) 0.036 (24|8) 0.029 (20|7) 4.926 (15|4) 0.011 (21|8)
reinvent_selfies string 9077.4 0.61 (4|2) 3.811 (16|7) 0.536 (5|2) 0.61 (3|2) 3.906 (14|6) 0.518 (5|2) 0.609 (2|2) 3.921 (15|6) 0.489 (4|2) 8645.4 0.706 (4|3) 3.39 (17|7) 0.628 (4|3) 0.7 (4|3) 3.365 (16|6) 0.608 (4|3) 0.684 (3|2) 3.399 (16|6) 0.575 (5|3) 8262.8 0.41 (5|4) 4.718 (12|5) 0.257 (6|4) 0.363 (5|4) 4.756 (15|4) 0.194 (6|4) 0.269 (6|4) 4.897 (17|5) 0.118 (6|4) 4660.6 0.441 (3|2) 4.155 (11|5) 0.37 (4|2) 0.434 (3|2) 4.345 (11|4) 0.333 (6|3) 0.384 (4|2) 4.338 (10|4) 0.258 (6|4)
graph_mcts graph 10000 0.335 (25|9) 3.147 (4|1) 0.311 (24|9) 0.311 (25|9) 3.187 (8|1) 0.278 (24|9) 0.263 (25|9) 3.175 (10|1) 0.219 (24|9) 10000 0.484 (23|7) 4.171 (23|8) 0.474 (22|7) 0.463 (24|8) 3.87 (22|9) 0.448 (22|7) 0.425 (24|8) 3.845 (20|7) 0.386 (23|8) 10000 0.211 (13|3) 5.225 (17|6) 0.139 (12|4) 0.106 (15|5) 4.963 (18|7) 0.056 (14|5) 0.026 (15|5) 4.953 (18|7) 0.013 (16|5) 10000 0.167 (21|7) 4.887 (17|5) 0.113 (22|7) 0.097 (21|7) 5.002 (16|5) 0.059 (21|7) 0.029 (20|7) 5.064 (16|5) 0.015 (20|7)
dst graph 10000 0.503 (13|4) 3.765 (13|3) 0.49 (12|4) 0.481 (12|4) 3.944 (15|3) 0.464 (12|4) 0.453 (14|5) 4.262 (17|5) 0.427 (12|5) 5753 0.583 (18|5) 3.051 (12|3) 0.576 (16|5) 0.525 (19|6) 2.797 (5|1) 0.519 (17|5) 0.483 (20|6) 2.88 (9|1) 0.47 (16|4) 9999.8 0.205 (15|5) 4.745 (13|2) 0.159 (11|3) 0.111 (14|4) 4.679 (14|5) 0.076 (12|4) 0.027 (14|4) 4.18 (13|4) 0.018 (13|4) 10000 0.344 (12|2) 4.355 (15|3) 0.258 (15|4) 0.259 (14|3) 4.102 (9|1) 0.177 (14|4) 0.156 (14|4) 4.451 (12|2) 0.09 (13|4)
selfies_ga string 10000 0.338 (24|10) 5.876 (26|10) 0.187 (26|10) 0.325 (24|10) 5.53 (26|10) 0.173 (26|10) 0.294 (24|10) 5.433 (26|10) 0.155 (25|10) 10000 0.528 (22|10) 4.189 (25|10) 0.421 (25|10) 0.525 (19|9) 4.228 (24|9) 0.401 (25|10) 0.513 (14|7) 4.52 (24|9) 0.366 (25|10) 10000 0.483 (4|3) 7.286 (25|9) 0.311 (5|3) 0.469 (4|3) 7.044 (25|9) 0.281 (5|3) 0.436 (4|3) 7.072 (25|9) 0.233 (5|3) 10000 0.36 (11|8) 6.586 (24|8) 0.263 (13|8) 0.354 (9|6) 6.698 (25|9) 0.244 (8|5) 0.337 (7|5) 6.783 (25|9) 0.214 (8|5)
gflownet_al graph 10000 0.465 (19|7) 4.599 (23|8) 0.45 (22|8) 0.438 (21|8) 4.514 (21|7) 0.422 (23|8) 0.405 (20|7) 4.564 (21|7) 0.376 (21|8) 10000 0.467 (25|9) 3.402 (18|5) 0.45 (24|9) 0.443 (25|9) 3.326 (15|4) 0.429 (24|9) 0.412 (25|9) 3.28 (15|4) 0.375 (24|9) 10000 0.028 (25|9) 4.777 (14|3) 0.02 (25|9) 0.009 (25|9) 4.33 (11|2) 0.006 (25|9) 0.002 (24|9) 4.026 (11|2) 0.001 (25|9) 10000 0.048 (25|9) 4.276 (14|2) 0.029 (25|9) 0.02 (25|9) 4.706 (14|3) 0.01 (26|10) 0.005 (25|9) 4.725 (13|3) 0.002 (26|10)
screening N/A 10000 0.501 (14|2) 2.853 (1|1) 0.48 (13|2) 0.465 (15|2) 2.984 (2|1) 0.447 (16|2) 0.426 (16|2) 2.971 (5|2) 0.399 (16|2) 10000 0.613 (10|2) 2.9 (9|1) 0.582 (15|2) 0.563 (14|2) 2.879 (7|1) 0.537 (12|2) 0.505 (15|2) 2.712 (5|1) 0.479 (14|2) 10000 0.143 (17|1) 3.414 (5|2) 0.077 (19|2) 0.04 (18|2) 3.545 (4|1) 0.023 (20|2) 0.011 (18|2) 3.241 (4|1) 0.006 (21|2) 10000 0.281 (18|2) 3.612 (5|2) 0.223 (17|2) 0.124 (20|2) 3.819 (6|2) 0.073 (20|2) 0.02 (22|2) 3.688 (4|1) 0.011 (21|2)
mol_pal N/A 10000 0.504 (12|1) 3.433 (9|2) 0.497 (10|1) 0.48 (13|1) 3.018 (5|2) 0.469 (11|1) 0.44 (15|1) 2.898 (2|1) 0.424 (13|1) 10000 0.652 (6|1) 3.279 (16|2) 0.623 (6|1) 0.614 (8|1) 3.205 (14|2) 0.584 (8|1) 0.555 (11|1) 3.043 (11|2) 0.515 (10|1) 10000 0.118 (18|2) 2.764 (2|1) 0.1 (17|1) 0.051 (17|1) 4.024 (9|2) 0.044 (17|1) 0.018 (16|1) 3.563 (8|2) 0.015 (15|1) 10000 0.287 (17|1) 2.764 (2|1) 0.262 (14|1) 0.191 (17|1) 3.495 (4|1) 0.169 (16|1) 0.055 (17|1) 3.816 (7|2) 0.046 (17|1)
graph_ga graph 10000 0.625 (2|1) 4.169 (17|4) 0.561 (2|1) 0.614 (2|1) 4.23 (18|6) 0.54 (2|1) 0.592 (3|1) 4.187 (16|4) 0.504 (3|1) 10000 0.784 (1|1) 3.656 (22|7) 0.688 (1|1) 0.769 (1|1) 3.721 (19|6) 0.663 (1|1) 0.744 (1|1) 3.757 (19|6) 0.624 (1|1) 10000 0.689 (1|1) 6.426 (22|10) 0.492 (1|1) 0.658 (1|1) 6.37 (22|10) 0.433 (1|1) 0.578 (1|1) 6.249 (22|10) 0.33 (2|1) 10000 0.421 (4|1) 5.4 (20|8) 0.367 (5|1) 0.412 (4|1) 5.458 (19|7) 0.347 (3|1) 0.39 (3|1) 5.306 (18|7) 0.305 (5|1)
Ours synthesis 10000 0.622 (3|1) 3.338 (6|3) 0.547 (4|2) 0.591 (4|1) 3.378 (11|3) 0.524 (4|2) 0.558 (4|1) 3.137 (8|3) 0.485 (5|2) 7235 0.648 (7|1) 2.634 (2|2) 0.627 (5|1) 0.632 (7|1) 2.489 (2|2) 0.608 (4|1) 0.617 (7|1) 2.377 (2|2) 0.58 (4|1) 10000 0.388 (6|1) 2.309 (1|1) 0.344 (4|1) 0.358 (6|1) 2.517 (1|1) 0.313 (4|1) 0.323 (5|1) 2.549 (1|1) 0.248 (4|1) 10000 0.577 (1|1) 2.503 (1|1) 0.547 (1|1) 0.573 (1|1) 2.412 (1|1) 0.528 (1|1) 0.545 (1|1) 2.365 (1|1) 0.472 (1|1)

(Gao et al., 2022), we limit to 10000 Oracle calls, truncating and padding to 10000 if convergence
occurs before 10000 calls. For each cell, numbers are followed by rankings. X(R1|R2) means score
X is ranked R1-best amongst all methods for that column and R2-best amongst in-category methods.
We visualize the rankings in Figure 17 to facilitate easier interpretation of the results.

Figure 17: Ranking of our method against baselines on Top k Average Scores (top), SA Scores
(middle) and AUC (bottom), for k = 1, 10, 100 (left, middle, right).
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SynNet MPro Top Binders (5000 calls)
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Ours MPro Top Binders (5000 calls)
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(a) Top 3 molecules with lowest binding energy against DRD3 and Mpro from Ours vs SynNet

(b) Top binders against Mpro from literature, based on consensus docking scores (Ghahremanpour et al., 2020)

We structurally analyze the top molecules discovered by our method, visualized in Figure 18a.

For our optimized binders against DRD3, the chlorine substituent and polycyclic aromatic structure
suggest good potential for binding through π − π interactions and halogen bonding. The bromine
and carboxyl groups can enhance binding affinity through halogen bonding and hydrogen bonding,
respectively. The polycyclic structure further supports π − π stacking interactions. In general, they
have a comparable binding capability to the baseline molecules, but with simpler structures, so the
ease of synthesis for the predicted molecules are higher than the baseline molecules.

For our optimized binders against Mpro, the three predicted molecules contain multiple aromatic
rings in conjugation with halide groups. The conformation structures of the multiple aligned aromatic
rings play a significant role in docking and achieve ideal molecular pose and binding affinity to
Mpro, compared to the baseline molecules shown in Figure 18b. The predicted structures indicate
stronger π − π interaction and halogen bonding compared with the baselines. In terms of ease of
synthesis, Bromination reactions are typically straightforward, but multiple fused aromatic rings can
take several steps to achieve. In general, the second and third can be easier to synthesize than the top
binder due to less aromatic rings performed. However, the literature molecules appeared to be even
harder to synthesize due to their high complexity structures. So the predicted molecules obtained
a general higher ease of synthesis than the baseline molecules. Compared with the other baseline
molecules, e.g. Manidipine, Lercanidipine, Efonidipine (Dihydropyridines), known for their calcium
channel blocking activity, but not specifically protease inhibitors, Azelastine, Cinnoxicam, Idarubicin
vary widely in their primary activities, not specifically designed for protease inhibition. Talampicillin
and Lapatinib are also primarily designed for other mechanisms of action. Boceprevir, Nelfinavir,
Indinavir, on the other hand, are known protease inhibitors with structures optimized for binding to
protease active sites, so can serve as strong benchmarks. Overall, the binding effectiveness of the
predicted molecules are quite comparable to the baseline molecules.
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