
Multimodal AutoML on
Structured Tables with Text Fields

8th ICML Workshop on Automated Machine Learning (2021)

Multimodal AutoML on Structured Tables with Text Fields

Xingjian Shi⇤ xjshi@amazon.com

Jonas Mueller⇤ jonasmue@amazon.com

Nick Erickson neerick@amazon.com

Mu Li mli@amazon.com

Alexander J. Smola alex@smola.org

Amazon Web Services, CA, USA

Abstract

We design automated supervised learning systems for data tables that not only contain
numeric/categorical columns, but text fields as well. Here we assemble 15 multimodal
data tables that each contain some text fields and stem from a real business application.
Over this benchmark1, we evaluate numerous multimodal AutoML strategies, including a
standard two-stage approach where NLP is used to featurize the text such that AutoML for
tabular data can then be applied. We propose various practically superior strategies based
on multimodal adaptations of Transformer networks and stack ensembling of these networks
with classical tabular models. Beyond performing the best in our benchmark, our proposed
(fully automated) methodology2 manages to rank 1st place (against human data scientists)
when fit to the raw tabular/text data in two MachineHack prediction competitions and
2nd place (out of 2380 teams) in Kaggle’s Mercari Price Suggestion Challenge.

1. Introduction

Automatic Machine Learning (AutoML) aims produce end-to-end pipelines that can ingest
raw (messy) data, train models, and output accurate predictions, all without human in-
tervention (Hutter et al., 2018). Given their immense potential, many AutoML systems
exist for data structured in tables, which are ubiquitous across science/industry (He et al.,
2019; Truong et al., 2019; Gijsbers et al., 2019). Many data tables contain not only numeric
and categorical fields (together referred to as tabular here), but also fields with free-form
text. For example, Table 1 depicts actual data from the website Kickstarter. Despite their
commercial value, there exist few automated ML solutions for such multimodal data.

In this paper, we consider design choices for automated supervised learning with mul-
timodal datasets that jointly contain text, numeric, and categorical features. Even though
text is extremely common in enterprise data tables, how to automatically analyze such
multimodal data has not been well studied. This likely stems from a lack of available
benchmarks, as well as existing beliefs that basic featurization of the text (Eisenstein, 2018;
H2O.ai) should su�ce for tabular models to exhibit strong performance. By introducing
a new benchmark of 15 multimodal text/tabular datasets from real business applications,
we provide the first comprehensive evaluation of di↵erent strategies for supervised learning
with data of this form.

∗. Equal contribution.
1. Available at: https://github.com/submission001/anonymoussubmission_automl
2. Available at: https://github.com/awslabs/autogluon

©2021 Xingjian Shi, Jonas Mueller, Nick Erickson, Mu Li, and Alexander J. Smola.

Code: https://github.com/awslabs/autogluon

Tutorial: https://auto.gluon.ai/stable/tutorials/tabular_prediction/tabular-multimodal-text-others.html

Multimodal Data (Numeric & Categorical & Text)

Modeling Multimodal Data with Text Fields

• Fit Text Neural Network on text features (Transformer)

• Fit classical Tabular Models on numeric+categorical features
(GBDT, random forest, etc.)

• Option 1: Ensemble Tabular & Text Models

• Option 2: Fit Tabular Models after featurizing text into vector form
(N-gram, word2vec, or Transformer embedding)

• Option 3: Adapt Text Network to additionally operate on
numeric + categorical features

Multi-Modal Transformer Network

• Handling multiple text columns

• Multi-tower Network Architecture

• Easy to fit/deploy

Multi-Modal Network: Options
Multimodal AutoML on Structured Data Tables with Text Fields

Transformer

Text FormatterText1 TextM

Cat1 CatN Num1 NumP

…

… …

(a) All-Text. Convert numeric and categori-
cal values into additional text tokens.

Transformer

EmbedText1 TextM

Cat1 CatN

Num1 NumP…

…

…

Transformer (without tokenizer)

Embed

MLPMLP MLP

(b) Fuse-Early. Transformer operates on
learned embeddings for each feature.

Transformer

EmbedText1 TextM

Cat1 CatN

Num1 NumP…

…

…

Aggregator

MLPMLP

Model

X1 X2

Y
Concat X1 and
X2 as the input
to the model to

obtain Y

Model

X1 X2

Y1 Y2
Input X1 to the

model to obtain
Y1, then input X2

to obtain Y2

(c) Fuse-Late. Separate branches encode each
modality, aggregate via mean/max/concat.

Transformer

EmbedText1 TextM

Cat1 CatN

Num1 NumP…

…

…

Aggregator

MLPMLP

Model

X1 X2

Y
Concat X1 and
X2 as the input
to the model to

obtain Y

Model

X1 X2

Y1 Y2
Input X1 to the

model to obtain
Y1, then input X2

to obtain Y2

(d) Notation used in these figures.

Figure 1: Fusion strategies in Multimodal-Net, dense output layers on top are not shown.

map categorical values into the same Rd vector representation encoded by the pretrained
NLP model for text tokens (with di↵erent embedding layers used for di↵erent categorical
columns in the table). All numeric features are encoded via a single-hidden-layer Multi-
layer Perceptron (MLP) to obtain a unified Rd vector representation. These vectors are fed
into a 6-layer Transformer encoder whose self-attention operations can model interactions
between the embeddings of text tokens, categorical values, and numeric values.

Fuse-Late Rather than aggregating information across modalities early on in the network,
we can perform separate neural operations on each data type and only aggregate near
the output layer (see Figure 1d). This design allows each branch to extract higher-level
representations of the values from each modality, before the network needs to consider how
modalities should be fused. Here we use a multi-tower architecture in which numeric and
categorical features are fed into separate MLPs for each modality. The text features are fed
into a pretrained Transformer network. Subsequently, the topmost vector representations
of all three networks are pooled (via either: mean/max pooling or concatenation) into a
single vector from which predictions are output via two additional dense layers.

3. Aggregating Text & Tabular Models

Despite their success for modeling text, the application of Transformer architectures to
tabular data remains limited (Huang et al., 2020; Fakoor et al., 2020a,b). The use of tabular
models together with Transformer-like text architectures has also received little attention
(Wan et al., 2020; Ke et al., 2019). Note that ‘tabular models’ throughout are trained on
only numeric/categorical features, e.g., various tree ensembles used in AutoGluon-Tabular.

3.1 Embedding Text as Tabular Features

In our first class of aggregation methods, a Transformer is used to map the text fields into
a vector representation. Subsequently, the text fields are replaced in the data table by
additional columns corresponding to each dimension of the embedding vector (Embedding-
as-Feature in Figure 2a). We consider three ways to featurize text using a Transformer.

3

Aggregating Text & Tabular Models: Options

Tabular 1, 2, … = Tabular Models (eg. Boosted Tree, Random Forest, etc.)

Shi, Mueller, Erickson, Li, and Smola

Multimodel-Net

Input

Tabular Model

Remove text fields

(a) Embedding-as-Feature

Multimodel-Net

Input

Tabular1 Tabular2

Weighting

(b) Weighted-Ensemble

Multimodel-Net

Input

Tabular1 Tabular2

Concat

Tabular1 Tabular2

Weighting

(c) Stack-Ensemble

Figure 2: Methods to combine Multimodal-Net and classical tabular models.

Pre-Embedding The most straightforward strategy is to use a pretrained Transformer
that is not fine-tuned on our labeled data. Subsequently we can train tabular models (or
tabular AutoML systems) over the featurized data table (Blohm et al., 2020).

Text-Embedding The Pre-Embedding strategy is not informed about our particular
prediction problem and the domain of the text data. In Text-Embedding, we further fine-
tune the pretrained Transformer to predict our labels from only the text fields. By adapting
to the domain of the problem, Text-Embedding is able to extract more valuable features
that can improve the performance of tabular models. This is particularly true in settings
where the target only depends on one out of many text fields, since the fine-tuning process
can produce representations that vary more based on the relevant field vs. irrelevant text.

Multimodal-Embedding Our text representations may improve when self-attention is
informed by context regarding numeric/categorical features. Thus we alternatively consider
embedding text via our previous multimodal networks. These models are again fine-tuned
using the labeled data and now produce a single vector representation for all columns in
the dataset, regardless of their type. However, since Transformers are better suited for
modeling text than tabular features, we only replace the text fields with the learned vector,
all other non-text features are kept and used for subsequent tabular learning.

3.2 Ensembling Text/Tabular Predictions

Utilized by most AutoML frameworks (LeDell and Poirier, 2020; Feurer et al., 2015; Er-
ickson et al., 2020), model ensembling is a straightforward technique to boost predictive
accuracy. Ensembling is particularly suited for multimodal data, where di↵erent models
may be trained with di↵erent modalities. However, the resulting ensemble may then be
unable to exploit nonlinear predictive interactions between features from di↵erent modal-
ities. To remedy this, we advocate for the use of our multimodal Transformers that fuse
information from text and tabular inputs. Furthermore, we propose stack ensembling with
nonlinear aggregation of model predictions that can exploit inter-modality interactions be-
tween di↵erent base models’ predictions, even when base models do not overlap in modality.

Weighted-Ensemble We first consider a straightforward aggregation strategy that sim-
ply takes a weighted average of the predictions from our Transformer model and various
tabular models like those trained by AutoGluon-Tabular. Here, our Transformer and other
models are independently trained using a common training/validation split. Subsequently,
we apply ensemble selection, a greedy forward-selection strategy to fit aggregation weights
over all models’ predictions on the held-out validation data (Caruana et al., 2004).

4

Multimodal Benchmark Results

Interesting Findings

• Neural embedding of text followed by tabular modeling is often
outperformed by: N-gram featurization or leveraging text neural nets for
their predictions (stack ensembling) not representations (embeddings)

• In multimodal networks, fusing modalities in early layers (Transformers
with cross-modality attention) is not necessarily superior to older multi-
tower architectures that fuse representations in late layers

• End-to-end multimodal neural net is improved by stack ensembling this
network with tabular models trained in separate stages (not end-to-end)

Rank in Tabular+Text ML Competition Leaderboards

• 1st in “MachineHack: Predict The Data Scientists Salary In India”

• 1st in “MachineHack: Product Sentiment Classification”

• 2nd in “MachineHack: Predict The Price Of Books”

• 2nd in “Kaggle: California House Prices”

• 2nd in “Kaggle: Mercari Price Suggestion”
• 2380 teams with $100,000 prize money

