

### Multi-Modal Transformer Network



## Multimodal Data (Numeric & Categorical & Text)

| name                                                 | desc                                                | goal    | country | currency | created_at | final_status |
|------------------------------------------------------|-----------------------------------------------------|---------|---------|----------|------------|--------------|
| The Secret Order -<br>The Game that gives<br>back Gl | Can you trust your<br>friends? Solve the<br>puzzle? | 5000.0  | GB      | GBP      | 1424101105 | 0            |
| Booker Family<br>Foods. Home made,<br>the way food s | Community based,<br>home-made-foods<br>producer, to | 2500.0  | US      | USD      | 1404617242 | 0            |
| J.A.E.S.A : Next<br>Generation Artificial            | A true next<br>generation AI with                   | 30000.0 | CA      | CAD      | 1399078600 | 1            |

Table 1: Example of data in our multimodal benchmark with text (*name, desc*), numeric (*goal, created\_at*), and categorical (*country, currency*) columns. From these features, we predict if a Kickstarter project will be funded (*final status*).

# Modeling Multimodal Data with Text Fields

- Fit Text Neural Network on text features (Transformer)
- Fit classical Tabular Models on numeric+categorical features (GBDT, random forest, etc.)
- Option 1: Ensemble Tabular & Text Models
- Option 2: Fit Tabular Models after featurizing text into vector form (N-gram, word2vec, or Transformer embedding)
- Option 3: Adapt Text Network to additionally operate on numeric + categorical features

## Multi-Modal Network: Options



(a) All-Text. Convert numeric and categorical values into additional text tokens.



Cat, --- Cat,
 (c) Fuse-Late. Separate branches encode each modality, aggregate via mean/max/concat.

Figure 1: Fusion strategies in Multimodal-Net, dense output layers on top are not shown.

(b) Fuse-Early. Transformer operates on

(d) Notation used in these figures.

odel to obtain , then input X<sub>2</sub>

learned embeddings for each feature

#### Multimodal Benchmark Results

| Method                      | prod                                | qaq    | qaa    | cloth   | airbnb  | 82      | mercari     | jigsaw    | imdb      | fake   | kick  | jc     | wine  | news   | channel  | avg. †   | mrr † |
|-----------------------------|-------------------------------------|--------|--------|---------|---------|---------|-------------|-----------|-----------|--------|-------|--------|-------|--------|----------|----------|-------|
|                             | NLP Backbones and Finetuning Tricks |        |        |         |         |         |             |           |           |        |       |        |       |        |          |          |       |
| RoBERTa                     | 0.588                               | 0.412  | 0.268  | 0.700   | 0.344   | 0.953   | 0.561       | 0.960     | 0.731     | 0.929  | 0.751 | 0.615  | 0.811 | -0.000 | 0.301    | 0.595    | 0.07  |
| ELECTRA                     | 0.705                               | 0.410  | 0.356  | 0.718   | 0.349   | 0.955   | 0.586       | 0.965     | 0.750     | 0.824  | 0.754 | 0.606  | 0.813 | 0.003  | 0.315    | 0.607    | 0.17  |
| + Exponential Decay τ = 0.8 | 0.728                               | 0.436  | 0.431  | 0.743   | 0.337   | 0.953   | 0.579       | 0.963     | 0.852     | 0.963  | 0.760 | 0.664  | 0.808 | 0.004  | 0.308    | 0.635    | 0.09  |
| + Average 3 ★               | 0.729                               | 0.451  | 0.432  | 0.746   | 0.350   | 0.954   | 0.581       | 0.965     | 0.858     | 0.961  | 0.766 | 0.656  | 0.807 | 0.004  | 0.307    | 0.638    | 0.12  |
|                             |                                     |        |        |         |         |         | Fusion S    | trategy   |           |        |       |        |       |        |          |          |       |
| All-Text                    | 0.907                               | 0.454  | 0.419  | 0.746   | 0.366   | 0.957   | 0.599       | 0.967     | 0.840     | 0.967  | 0.799 | 0.645  | 0.810 | 0.013  | 0.480    | 0.665    | 0.19  |
| Fuse-Early                  | 0.913                               | 0.441  | 0.418  | 0.745   | 0.377   | 0.953   | 0.596       | 0.967     | 0.843     | 0.960  | 0.770 | 0.653  | 0.806 | 0.013  | 0.474    | 0.662    | 0.24  |
| Fuse-Late, Concat 🖈         | 0.907                               | 0.449  | 0.445  | 0.747   | 0.395   | 0.958   | 0.603       | 0.966     | 0.857     | 0.961  | 0.773 | 0.639  | 0.812 | 0.015  | 0.481    | 0.667    | 0.17  |
| Fuse-Late, Mean             | 0.912                               | 0.458  | 0.431  | 0.748   | 0.399   | 0.955   | 0.602       | 0.967     | 0.869     | 0.963  | 0.773 | 0.625  | 0.807 | 0.015  | 0.478    | 0.667    | 0.09  |
| Fuse-Late, Max              | 0.910                               | 0.452  | 0.429  | 0.747   | 0.401   | 0.956   | 0.599       | 0.966     | 0.863     | 0.957  | 0.761 | 0.634  | 0.808 | 0.015  | 0.484    | 0.665    | 0.12  |
|                             |                                     |        |        |         |         | Multi   | modal Mos   | lel Ensen | ibling    |        |       |        |       |        |          |          |       |
| Pre-Embedding               | 0.895                               | 0.216  | 0.247  | 0.642   | 0.449   | 0.972   | 0.433       | 0.586     | 0.871     | 0.926  | 0.743 | 0.491  | 0.680 | 0.012  | 0.526    | 0.579    | 0.13  |
| Text-Embedding              | 0.867                               | 0.446  | 0.432  | 0.748   | 0.430   | 0.972   | 0.434       | 0.587     | 0.855     | 0.962  | 0.790 | 0.658  | 0.830 | 0.008  | 0.502    | 0.635    | 0.20  |
| Multimodal-Embedding        | 0.907                               | 0.439  | 0.437  | 0.749   | 0.438   | 0.974   | 0.432       | 0.587     | 0.847     | 0.967  | 0.794 | 0.683  | 0.829 | 0.007  | 0.517    | 0.640    | 0.18  |
| Weighted-Ensemble           | 0.907                               | 0.439  | 0.429  | 0.744   | 0.453   | 0.976   | 0.597       | 0.957     | 0.876     | 0.923  | 0.787 | 0.641  | 0.814 | 0.018  | 0.554    | 0.674    | 0.39  |
| Stack-Ensemble 🖈            | 0.909                               | 0.456  | 0.438  | 0.751   | 0.459   | 0.977   | 0.605       | 0.967     | 0.878     | 0.964  | 0.797 | 0.624  | 0.836 | 0.020  | 0.556    | 0.683    | 0.59  |
|                             |                                     |        |        |         | Tabula  | r AutoN | IL + Featur | e Engine  | rring Bar | elines |       |        |       |        |          |          |       |
| AG-Weighted                 | 0.891                               | 0.046  | 0.076  | -0.002  | 0.426   | 0.841   | 0.098       | 0.587     | 0.845     | 0.686  | 0.668 | 0.004  | 0.173 | 0.016  | 0.549    | 0.394    | 0.11  |
| AG-Stack                    | 0.891                               | 0.046  | 0.077  | 0.001   | 0.435   | 0.841   | 0.098       | 0.587     | 0.844     | 0.697  | 0.670 | 0.003  | 0.175 | 0.017  | 0.550    | 0.395    | 0.10  |
| AG-Weighted+ N-Gram         | 0.892                               | 0.426  | 0.382  | 0.610   | 0.450   | 0.978   | 0.526       | 0.909     | 0.842     | 0.966  | 0.772 | 0.357  | 0.829 | 0.019  | 0.546    | 0.633    | 0.11  |
| AG-Stack+ N-Gram            | 0.895                               | 0.414  | 0.383  | 0.654   | 0.466   | 0.979   | 0.569       | 0.915     | 0.850     | 0.968  | 0.775 | 0.612  | 0.842 | 0.020  | 0.548    | 0.659    | 0.19  |
| H2O AutoML                  | 0.869                               | 0.247  | 0.159  | 0.163   | 0.329   | 0.976   | 0.430       | 0.531     | 0.813     | 0.756  | 0.669 | 0.411  | 0.478 | 0.014  | 0.530    | 0.492    | 0.11  |
| H2O AutoML + Word2Vec       | 0.859                               | 0.244  | 0.285  | 0.624   | 0.347   | 0.973   | 0.534       | 0.847     | 0.827     | 0.943  | 0.755 | 0.443  | 0.778 | 0.013  | 0.524    | 0.600    | 0.16  |
| H2O AutoML + Pre-Embedding  | 0.846                               | 0.227  | 0.312  | 0.644   | 0.367   | 0.969   | 0.282       | 0.572     | 0.874     | 0.893  | 0.738 | 0.549  | 0.571 | 0.007  | 0.501    | 0.557    | 0.12  |
| ble 3. Predictive nerf      | orma                                | nce o  | f Anto | MI      | trategi | ies ov  | er our      | multi     | nodal     | hend   | hmar  | k Co   | humn  | 'ave'  | lists of | ach m    | ethod |
| inc 5. Fredictive peri      | - mai                               |        | (      | 1       | 1       |         | . Jui       | 1 1       | noual     | bent   |       |        |       |        | 1.015 64 | icin III | L     |
| erage score (across da      | tasets                              | i) and | mrr    | insts t | ne me   | an re   | ciproca     | i rank    | amor      | ng all | mode  | 15 eva | uuate | a m ti | ne penc  | nmar     | ĸ. £a |

average score (across datasets) and 'mrr' lists the mean reciprocal rank among all models evaluated in the benchmark. Each subsection encapsulates the variants compared at a design stage, with the final choice (best avg.) marked by  $\bigstar$ .

## Interesting Findings

- Neural embedding of text followed by tabular modeling is often outperformed by: N-gram featurization or leveraging text neural nets for their *predictions* (stack ensembling) not *representations* (embeddings)
- In multimodal networks, fusing modalities in *early* layers (Transformers with cross-modality attention) is **not** necessarily superior to older multitower architectures that fuse representations in *late* layers
- End-to-end multimodal neural net is improved by stack ensembling this network with tabular models trained in separate stages (not end-to-end)

# Aggregating Text & Tabular Models: Options



Embedaing-as-reature (b) Weighted-Ensemble (c) Stack-Ensemble Figure 2: Methods to combine Multimodal-Net and classical tabular models.

#### Tabular 1, 2, ... = Tabular Models (eg. Boosted Tree, Random Forest, etc.)

#### Rank in Tabular+Text ML Competition Leaderboards

- 1st in "MachineHack: Predict The Data Scientists Salary In India"
- 1st in "MachineHack: Product Sentiment Classification"
- 2nd in "MachineHack: Predict The Price Of Books"
- 2nd in "Kaggle: California House Prices"
- 2nd in "<u>Kaggle: Mercari Price Suggestion</u>"
  2380 teams with \$100,000 prize money