
Under review as a conference paper at ICLR 2021

rfu(X)X X �

q� q�+u

�� ��+u

�
�

Figure 6: Wasserstein.

A BACKGROUND

A.1 POLICY OPTIMIZATION

An agent interacting with an environment form a system that can be described by a state variable s

belonging to a state space S . In the Markov Decision Process (MDP) setting, the agent can interact
with the environment by taking an action a from a set of possible actions A given the current state
s of the system. As a consequence, the system moves to a new state s

0 according to a probability
transition function P (s0|a, s) which describes the probability of moving to state s0 given the previous
state s and action a. The agent also receives a partial reward r which can be expressed as a possibly
randomized function of the new state s

0, r = r(s0). The agent has access to a set of possible
policies ⇡✓(a|s) parametrized by ✓ 2 Rp and that generates an action a given a current state s.
Thus, each policy can be seen as a probability distribution conditioned a state s. Using the same
policy induces a whole trajectory of state-action-rewards ⌧ = (st, at, rt)t�0 which can be viewed as
a sample from a trajectory distribution P✓ defined over the space of possible trajectories ⌧ . Hence,
for a given random trajectory ⌧ induced by a policy ⇡✓, the agent receives a total discounted reward
R(⌧) :=

P
1

t=1 �
t�1

r(st) with discount factor 0 < � < 1. This allows to define the value function
as the expected total reward conditioned on a particular initial state s:

V✓(st) = EP✓|st

"
1X

l=1

�
l�1

r(sl+t)

#
. (16)

When the gradient of the score function r log ⇡✓(a|s) is available, the policy gradient theorem
allows to express the gradient of R(✓):

r✓R(✓) = EP✓

"
1X

t=0

�
tr log ⇡✓(at|st)A✓(st, at)

#
(17)

where the expectation is taken over trajectories ⌧ under P✓ and A✓(s, a) represents the advantage

function which can be expressed in terms of the value function V✓(s) in terms of

A✓(st, at) = Est+1|st,at
[r(st+1) + �V✓(st+1)]� V✓(st).

The agent seeks an optimal policy ⇡✓? that maximizes the expected total reward under the trajectory
distribution: R(✓) = EP✓ [R(⌧)].

B WASSERSTEIN NATURAL GRADIENT

Connection to the Fisher natural gradient and proximal methods. Both WNG and FNG are
obtained from a proximity measure between probability distributions:

Proposition 2 Let D(✓, ✓0) be either the KL-divergence KL(⇡✓,⇡✓0) or the Wasserstein-2 distance

between the behavioral distributions W2(q✓, q✓0) and let g
D

be either the FNG g
F

or WNG g
W

,

then

g
D

k
= lim
�!+1

argmax
u

�

✓
L(✓k + �

�1
u)� L(✓k)�

�

2
D

�
✓k, ✓k + �

�1
u
�◆

(18)

11

Under review as a conference paper at ICLR 2021

Equation (18) simply states that the both WNG and FNG arise as limit cases of penalized objectives
provided the strength of the penalty � diverges to infinity and the step-size is shrank proportion-
ally to ��1. An additional global rescaling by � of the total objective prevents it from collapsing
to 0. Intuitively, performing a Taylor expansion of Equation (18) recovers an equation similar to
Equation (8). Equation (18) shows that using a penalty that encourages global proximity between
successive policies, it is possible to recover the local geometry of policies (captured by the local) by
increasing the strength of the penalty using appropriate re-scaling. This also informally shows why
both natural gradients are said to be invariant to re-parametrization ((Arbel et al., 2020, Proposition
1)), since both KL and W2 remains unchanged if q✓ is parameterized in a different way.

C ALGORITHM FOR ESTIMATING WNG

Algorithm 3: Efficient Wasserstein Natural Gradient

1: Input mini-batch of samples {Xn}N
n=1 distributed according to q✓, gradient direction ĝ, basis

functions h1, ..., hM , regularization parameter ✏.
2: Output Wasserstein Natural gradient ĝW
3: Compute a matrix C of shape M ⇥Nd using Cm,(n,i) @ihm(Xn).
4: Compute similarity matrix L 1

N
CC

T .
5: Compute surrogate vector V using Equation (11).
6: for iteration= 1, 2, ...M do do

7: Use automatic differentiation on Vm to compute Jacobian matrix J in Equation (10).
8: end for

9: Compute a matrix D of shape M ⇥M using D JJ
> + ✏L.

10: Compute a vector b of size M using b Jĝ.
11: Solve linear system of size M : b solve (D, b)
12: Return ĝ

W 1
✏
(ĝ � J

>
b)

Algorithm 4: Similarity
1: Input N , M , K, ĝ, ✏
2: Ouput ĝ

W

3: Get a minibatch of samples Z1, ...ZN .
4: Compute embedded samples Xi = B✓(Zi) 2 Rd

5: Randomly sample Y1, ...YM from X1, ...XN without replacement
6: Randomly sample indices i1, ..., iM from {1, ..., p} without replacement
7: Compute a similarity matrix C of shape M ⇥Nd:

Cm,(n,i) @im@i+dK(Ym, Xn) (19)

8: Compute a summary vector V of size M

Vm
1

N

NX

i=1

@imK(Ym, Xn) (20)

9: for iteration= 1, 2, ...M do do

10: Using automatic differentiation compute the gradient of Vm w.r.t ✓ 2 Rp.
11: Collect gradients in a Jacobian matrix J of shape M ⇥ p.
12: end for

13: Compute a matrix G of shape M ⇥M using G JJ
> + ✏

N
CC

>.
14: Collect product Jĝ in a vector eg of shape M .
15: Solve linear system of size M : b solve (G, eg)
16: Return 1

✏
(ĝ � J

>
b)

12

Under review as a conference paper at ICLR 2021

D ADDITIONAL TECHNICAL DETAILS

Consider a policy ⇡✓ and denote by R(⌧) the reward of a sample ⌧ from P⇡✓ . The agent tries to
maximize the expected reward:

l(✓) = EP⇡✓ [R(⌧)] . (21)

We are interested in the setting where l(✓) is maximized using stochastic gradient methods while
maintaining a small Wasserstein distance between successive Behavioral distributions. More pre-
cisely, denote by � the Behavioral Embedding Map as in Pacchiano et al. (2019) which maps a
trajectory ⌧ to a feature (final state, actions or total reward) and let P�

⇡✓
be the push-forward dis-

tribution of P⇡✓ by � as in Pacchiano et al. (2019). We would like to ensure that W2(P�⇡✓k+1
,P�
⇡✓k

)

remains small between two successive iterates ✓k and ✓k+1.

To this end, Pacchiano et al. (2019) consider the penalized objective:

f(✓) := �l(✓) + �

2
WD�(P�⇡✓ ,P

�

⇡✓k
) (22)

Where WD� is the entropy regularized Wasserstein distance, with regularization parameter � >

0. Hence, minimizing f in ✓ gives the next iterate ✓k+1 while maintaining a small distance
WD�(P�⇡✓k+1

,P�
⇡✓k

). However, this process is costly since each iteration requires minimizing Equa-
tion (22). Instead, we propose to use the Wasserstein Natural gradient estimator introduced in Arbel
et al. (2020) which is formally obtained by letting � tends to 1. In this case, Equation (22) is
replaced by the following cost:

f(✓) := �rl(✓k)>(✓ � ✓k) +
�

2
(✓ � ✓k)>G(✓k)(✓ � ✓k) (23)

where G(✓k) is the Wasserstein Information Matrix. Minimizing Equation (23) gives the following
update:

✓k+1 = ✓k + �G(✓k)
�1rl(✓k). (24)

While computing and inverting G(✓k)�1 in closed form is expensive, Arbel et al. (2020) shows that
scalable approximation to Equation (24) are obtained using:

✓k+1 = ✓k +
�

✏
(rl(✓k)�M✓k(f

⇤)) (25)

where ✏ > 0 is a regularization parameter and M✓(f) is a vector whose components are given by:

M✓(f)i = lim
�

�
�1

⇣
EP⇡✓+�ei

[f(�(⌧))]� EP⇡✓ [f(�(⌧))]
⌘

(26)

and f
? is obtained by minimizing the objective J (f) over an RKHS space:

J (f) := EP⇡✓ [krf(�(⌧))k
2] +

1

✏
krl(✓k)�M✓k(f)k2 + �kfk2

H
(27)

To figure out exact expression of the updates, it remains to find explicit expressions for M✓(f). We
distinguish two cases gradient-based optimization and gradient-free optimization.

D.1 GRADIENT-BASED OPTIMIZATION

When the trajectories ⌧ are obtained through an mapping h✓(z, s) := ⌧ where z is a latent noise and
s is a state, then Arbel et al. (2020) shows that M✓(f) is expressed in terms of the jacobian of h✓:

M✓(f) = EZ,S [rf(h✓(Z, S))r✓h✓(Z, S)] (28)

This leads to the algorithm implemented in Arbel et al. (2020).

Sometimes the mapping h✓(z, s) := ⌧ is not differentiable neither is the cost ✓. In this case, it
advantageous to use Evolution Strategies. In our setting, this means that the policy ⇡✓ is replaces by
a perturbed policy ⇡ where is a sample from a gaussian p✓,� with mean ✓ and variance �. This

13

Under review as a conference paper at ICLR 2021

allows to obtain gradient wrt ✓ after smoothing by averaging over several draws . More precisely,
the loss l is replaced by the averaged loss l̄(✓):

l̄(✓) = E ⇠p✓,� [l()]. (29)
with gradient simply given by:

rl̄(✓) := 1

�
E ⇠p✓,� [l()(� ✓)] (30)

Moreover, the vector M✓(f) is replaced by an averaged one:

M̄✓(f)i = lim
�

�
�1

⇣
E ⇠p✓+�ei,�

[EP⇡ [f(�(⌧))]]� E ⇠p✓,� [EP⇡ [f(�(⌧))]]
⌘

(31)

In this case it is easy to see that M̄✓(f) admits a simple expression:

M̄✓(f) =
1

�
E ⇠p✓,� [EP⇡ [f(�(⌧))](� ✓)] (32)

Finally, the objective in Equation (27) is replaced by an averaged one J̄ (f):

J̄ (f) := E ⇠p✓,�EP⇡ [krf(�(⌧))k
2] +

1

✏
krl̄(✓k)� M̄✓k(f

?)k2 + �kfk2
H

(33)

This avoids computing the jacobian wrt to h✓(Z, S) which might be unknown. Finally, minimizing
J̄ (f) can be done using Nystrom methods as in Arbel et al. (2020).

Expression of the estimator Let n be noisy parameters with mean ✓ and Xn the correspond-
ing behavioral embeddings. Let (Ym)1mM be M uniform subsamples from (Xn)1nN . The
estimator of the natural gradient is given by:

\rWL(✓) = 1

✏

✓
D(✓)�1 �D(✓)�1

T
>

⇣
TD(✓)�1

T
> + �✏K +

✏

N
CC

>

⌘†

TD(✓)�1

◆
\rL(✓),

(34)
where C and K are matrices in RM⇥Nd and RM⇥M given by

Cm,(n,i) = @im@i+dk(Ym, Xn), Km,m0 = @im@im0+dk(Ym, Ym0), (35)

while T is a matrix in RM⇥q given by:

T =
1

N�

NX

i=1

@imk(Ym, Xn)(
n � ✓) (36)

The matrix D(✓) is diagonal and can be computed in a similar way as in Arbel et al. (2020).

E ADDITIONAL EXPERIMENTAL DETAILS

E.1 POLICY GRADIENT TASKS

We conserve all baseline and shared hyperparameters used by Pacchiano et al. (2019). More
precisely, for each task we ran a hyperparameter sweep over learning rates in the set
{1e-5, 5e-5, 1e-4, 3e-4}, and used the concatenation-of-actions behavioral embedding �(⌧) =
[a0, a1, . . . , aT] with the base network implementation the same as Dhariwal et al. (2017).

The WNG hyperparameters were also left the same as in Arbel et al. (2020).

E.2 EVOLUTION STRATEGIES TASKS

As with the policy gradient tasks, we conserved all baseline and shared hyperparameters used by
Pacchiano et al. (2019). Specifically, for the point task, we set the learning rate to be ⌘ = 0.1,
the standard deviation of the noise to be � = 0.01, the rollout length H was 50 time steps, and
the behavioral embedding function to be the last state �(⌧) = sH . For the quadruped task we set
⌘ = 0.02, � = 0.02, H = 400, and �(⌧) =

P
H

t=0 rt

⇣P
t

i=0 ei

⌘
(reward-to-go encoding; see

Pacchiano et al. (2019) for more details). Both tasks used 1000-dimensional random features and
embeddings from the n = 2 previous policies to compute the WD.

14

Under review as a conference paper at ICLR 2021

Figure 7: A visualization of the quadruped task. The agent receives receives more reward the closer
it is to the goal (green). A naı̈ve agent will get stuck in the local maximum at the wall if it attempts
to move directly to the goal.

15

	Introduction
	Background
	Wasserstein Natural Gradient
	Why use the Wasserstein Natural Gradient?

	Policy Optimization using Behavioral Geometry
	Experiments
	Background
	Policy Optimization

	Wasserstein Natural gradient
	 Algorithm for estimating WNG
	Additional technical details
	gradient-based optimization

	Additional Experimental Details
	Policy Gradient Tasks
	Evolution Strategies Tasks

