A Additional Implementation Details

Table 1: Hyperparameters for MOSS and DDPG. These hyperparameters are fixed throughout all domains.

DDPG hyper-parameter Value
Replay buffer capacity 108
Action repeat 1
Seed frames 4000
n-step returns 3
Mini-batch size 1048
Discount (v) 0.99
Optimizer Adam
Learning rate 10~
Agent update frequency 2
Critic target EMA rate (7g) 0.01
Features dim. 1024
Hidden dim. 1024
Exploration stddev clip 0.3
Exploration stddev value 0.2
Number pre-training frames 2 x 108
Number fine-turning frames 1% 10°
MOSS hyper-parameter Value
Skill dim 64
Z. ..« Prior Uniform[0,1]
Z ;0 Prior Uniform[-1,0]
Update skill frequency 50
State net fy, dim O — 1024 — 1024 — 64 ReLU MLP
Skill net g, 64 — 1024 — 1024 — 64 ReLU MLP
Prediction net gy, 64 — 1024 — 1024 — 64 ReLU MLP
Episode partition 2

A.1 MOSS Implementation

We implement MOSS using JAX [1]], Haiku [4]. We chose to build on top of JAX [1] as we observed
a 2x speedup compared to PyTorch [8]. Moreover, we use PyTorch [8] and Reverb [2] to implement
the replay buffer. Tab. [I|details the hyper-parameters used in MOSS which are taken directly from
CIC [6]. Since MOSS builds on CIC [6l], we empirically verified that our implementation on top of
JAX [[1]] matches the performance on top of PyTorch [§].

Training follows the URLB benchmark [[7]], where an agent is pretrained for 2 million steps and then
finetuned on a downstream task for 100k steps.

A.2 Baseline Implementation

For the baselines that were presented in URLB, we obtained the results by running the code from the
URLB GitHub repo: https://github.com/rll-research/url_benchmark. All hyperparame-
ters were kept the same as the original implementation.

A.3 Environment

For continuous control domains, we used the custom Deep Mind Control Suite [10] environments
from the URL Benchmark GitHub repo: https://github.com/rll-research/url_benchmark,
For the VizDoom domain, we used code from their official GitHub repo: https://github.com/
mwydmuch/ViZDoom. We include the environment renders in Figure ??.

https://github.com/rll-research/url_benchmark
https://github.com/rll-research/url_benchmark
https://github.com/mwydmuch/ViZDoom
https://github.com/mwydmuch/ViZDoom

Table 2: Hyperparameters for MOSS and DQN. These hyperparameters are fixed throughout all domains.

Double-DQN hyper-parameter Value
Replay buffer capacity 108
Action repeat 1
Frame repeat 12
Seed frames 4000
n-step returns 3
Mini-batch size 1048
Discount (v) 0.99
Optimizer Adam
Learning rate 0.0001
Agent update frequency 2
Critic target EMA rate (1) 0.01
Hidden dim. 256
. pretrain: linear_decay(start=1.0, end=0.1, steps:105)
Epsilon Schedule (c) finetune: linear_decay(start=1.0, end=0.1, steps=104)
Number pre-training frames 108
Number fine-turning frames 10°
MOSS hyper-parameter Value
Skill dim 64
Num skills 80
Prior Discrete-Uniform
Update skill frequency 50
Episode partition 5

A.4 Double DQN

We made modifications to MOSS to evaluate in discrete action settings. Specifically, we adopted
Double-DQN [[L1] as the backbone reinforcement learning algorithm, which has the Q-value target as

target

¢ = Ry +vQ(s141, argmaxQ(se41, a5 0),0;),

where 6, 6, are online network parameters and the target network parameters at time ¢, respectively.

Furthermore, since ViZDoom [5]] has a smaller action space, we provided the agent with a discrete
number of skill embeddings, similar to DIAYN [3]]. Moreover, since performing CPC loss [6] in high
dimensional pixel space is not ideal, and to save the number of parameters, we use the CNN backbone
of the agent’s DQN network to project observations into state vectors, then use an MLP identical to
the continuous action setting to calculate the CPC loss [6] using the discrete set of skill embeddings.
Tab. [2| details the hyper-parameters used for Double DQN and MOSS in the ViZDoom environment.

A.5 Compute Resources

All experiments were run on an internal cluster with 8 NVIDIA A100 GPU and AMD EPYC 7742
64-Core Processor. Pretraining MOSS takes roughly 5 hours. While finetuning takes roughly 30
mins.

A.6 Thing that did not work: Skill Distribution

In MOSS, we maintain two different skill distributions, i.e., Zyax ~ P(Z | M = 0) and Zyi, ~
P(Z | M = 1). In particular, we defined them as Z ., ~ U%(0,1) and Z,i, ~ U?(—1,0). Given
a skill of dimension d, another way to define P(Z | M = 0) and P(Z | M = 1) is to allocate half
of a skill vector for m = 0 and the other half for m = 1. In other words, Z,.x and Z,;, are both
drawn from 24/%(0, 1), however, when m = 0, (Zmax):a/2 ~ P(Z | M = 0) while (Zmax)a/2. = 0.
Conversely, when m = 1, (Zmin)ay2: ~ P(Z | M = 0) while (Znax).q/2 = 0.

B Objective Switching

Table 3: Adaptive Mode Switching Results on Quadruped. We report the results of adaptive mode switching
MOSS on the quadruped domain with 5 = 1.1 obtained from grid search
Task MOSS MOSSdaptve
Quadruped Jump 674+11 687+36
Quadruped Run 485+6 512420
Quadruped Stand 91111 869+26
Quadruped Walk 63536 758+37

Since our framework has two objectives, the reinforcement learning agent requires collecting ex-
perience to train its conditional policy under both proposed objectives. Moreover, the temporal
structure of staying in different modes of behavior in humans and animals is not monolithic; therefore,
designing when to switch modes for the agent might be an interesting area to consider. For example,
previous works investigated a similar setting and used a threshold based on Q-values [9]. However, in
unsupervised reinforcement learning, without any sense of the possible downstream task distribution,
we wish to design a mode switching mechanism that is both adaptive and scale-invariant across
environments.

Literature in active learning proposes a strategy to query high uncertainty samples. We adopt this
framework to MOSS. Intuitively, we wish to encourage the agent to collect more trajectories at places
with higher epistemic uncertainty for the agent to learn more in a more unfamiliar situation. Since
we do not wish to train additional networks, we use the online critic network to output a sample
variance to act as a proxy for uncertainty. Concretely, for a given mode m, we sample a batch IV of
skill-vectors 2\ ~ p(z|m). We then calculate the sample variance as
N A , _
Sy Qs mllse, 2ir),) — Q)?
N -1 ’

Vt,m(Qﬂm) =

where QT is the sample mean Q-value for the batch.

However, since variance is a measurement with units, and we do not wish to introduce additional
environment-specific hyperparameters, we use the history of variance and the current Q-value variance
as function inputs to select modes, bypassing the unit sensitivity problem across environments.
Concretely, we keep a record of the sample variance of both modes at each time step ¢, denoted as
V¢, m=0 for maximization skills and V; ,—; for minimization skills. At each skill switching interval,
the agent selects the mode m, for the current time step by,

m, — —(my—r — 1) BV g —(me_r—1) < Vi _(me_r—1)
¢ Mi_k otherwise,

where [is a coefficient greater than 1 that controls the threshold of switching modes, and k is the
interval we use to switch skills and modes. Intuitively, we wish to switch to the opposite mode if the
opposite mode’s uncertainty at time ¢ is greater than a coefficient times the last recorded uncertainty.
We show some preliminary results for the quadruped domain in Tab. [3] The effectiveness of adaptive
methods is demonstrated in the results, where MOSS21"e was able to beat out MOSS. However,
this method requires memory and computational resources and we found that the hyperparameter (3 is
somewhat sensitive across domains and requires tuning. Therefore, we leave additional investigations
for mode switching to future work because presenting an efficient and hyperparameter-insensitive
method of maximization and minimization of surprise was the main scope of this paper.

C Additional Results

C.1 Prior Distribution P(M)

In MOSS, we deterministically set M = 0 for the first half of the steps and M = 1 for the other
half of the steps in the episode. This corresponds to having 50% of maximization data and 50% of
minimization data. We report additional results on Walker for different ratios of maximization and
minimization in Tab. 4]

Table 4: Ablation on prior M. A prior towards entropy maximization results in a better performance than a
prior towards entropy minimization.

| Walker Flip Run Stand Walk
30% maximization ‘ 723436 515432 967+£3 921+18

40% | 738442 52615 968+2 908+24
60% 781£38 599+11 967+1 935+6

50% (MOSS) | 729+40 53120 962+3 94235
|
|

70% 785+39 567+15 965+3 93347

We observe that a prior towards entropy maximization results in a better performance than a prior
towards entropy minimization on Walker.

Table 5: Ablation on prior Z. A continuous skill performs better than a discrete skill but not by a large margin.
In addition, a higher dimensional skill tends to perform better.

\ Continuous 1 Continuous 16 Continuous 64 (MOSS) Discrete 1

Walker Flip | 82750 934+12 729440 67249
Walker Run | 329441 245+44 531+20 335420
Walker Stand | 930+7 830425 962+3 93148
Walker Walk | 954+4 960+2 94245 75170
Quadruped Jump | 193+27 649+25 674£11 194450
Quadruped Run | 16717 444426 48516 162+20
Quadruped Stand | 30632 834433 91111 267+38
Quadruped Walk | 158£19 569+49 635+36 217423

C.2 SkKkill Prior

We present additional results on the dimensionality of the skill vector along with the event space
(discrete vs continuous) in Tab. El We find that a continuous skill performs better than a discrete skill
but not by a large margin. However, it seems that in general, a higher dimensional skill performs
better, especially in Quadruped which has a higher dimensional state and action space than the Walker
domain. Our results suggest that the optimal skill vector may be task-dependent.

Table 6: Zero-shot results. The zero-shot performance of methods on the URL Benchmark

Domain Walker Quadruped Jaco

Task Flip Run Stand ‘Walk ‘ Jump Run Stand Walk ‘ Reach Bottom Left Reach Bottom Right Reach Top Left Reach Top Right
IcM 78+3 3241 1706 60+4 | 225433 150422 299444 153423 9+2 72 213 10+3
Disagreement | 20742 78+0 366+3 16742 | 46410 269+6 534+11 2737 5+1 31 27+4 942
RND 23743 8941 39244 19543 | 54947 31944 638+6 32149 4+1 31 17+2 440
APT 235+3 910 4013 2043 | 304438 194422 38444 198424 1£1 0+0 0+0 0+0
Proto 1714 72+#2 32249 16246 365 233 46+6 2343 10 10 10£2 4+1
AS-BOB 3543 2240 13244 28+2 | 170437 111+24 223+49 107421 1£1 0+0 1£1 0+0
AS-ALICE 3142 2441 13949 28+2 | 195£26 131x17 264434 12716 0+0 0+0 0+0 0+0
SMM 117£11 4944 229413 10016 | 73423 46+14 91427 48%15 10 442 942 6%1
DIAYN 22+2 18+1 107#9 20+2 | 13631 9120 181+41 93+21 10 2+1 3+1 4+1
APS 352 2741 162+11 30+2 | 134420 89£13 180%26 8913 0+0 0+0 0+0 0+0
CIC 218+5 7941 3566 17444 | 415434 248421 493441 250423 0+0 0+0 0+0 1+0
MOSS 1665 58+1 295+9 11243 | 627+28 37016 76735 306+12 00 241 0+0 1+0

C.3 Zero-shot Results

We show zero-shot results of different URL methods in Tab. [6] In addition, Tab. [7] provides zero-shot
results for both Z,, and Z ;.

100

00

00

200

100

10

120

100

120

100

400

E)

sore

200

100

800

0

400

200

Finetune Leamning 100k Steps for Quadruped Run

20000 20000 60000 0000 100000
timestep

Finetune Learning 100k Steps for Quadruped Walk

20000 20000 0000 0000 100000
timestep

Finetune Leaming 100k Steps for Jaco Reach Top Left

20000 40000 60000 0000 100000
timestep

Finetune Learning 100k Steps for Jaco Reach Bottom Left

20000 60000 80000 100000
timestep

Finetune Learning 100k Steps for Walker Run

method
ac
— moss

ss-alice
A5-bob

20000 20000 60000 0000 100000
timestep

Finetune Leamning 100k Steps for Walker Walk

0 20000 20000 60000 80000 100000
timestep

score

700

0

500

400

score

300

200

100

%00

800

00

@0

500

score

400

300

200

100

240

100

5

score

at

8

0

500

300

20

100

0

400

200

Finetune Learning 100k Steps for Quadruped Jump

1) 20000 20000 60000 80000 100000
timestep

Finetune Leal

g 100k Steps for Quadruped Stand

e

method
dic
— moss
#S-alice
#5-bob
) 20600 0000 &0600 50000 100000
timestep
Finetune Learning 100k Steps for Jaco Reach Top Right
wethod
ac
— moss
s5-alice
#5-bob /
s
3 20600 20000 @000 50000 100000
timestep
Finetune Leaming 100k Steps for Jaco Reach Bottom Right
method
dc
— moss
#5-alice
45-b0b
o 20600 0300 0000 50000 100000
timestep
Finetune Leaming 100k Steps for Walker Flip
method
ac
— moss
#5-alice
5-bob
0 20000 0000 0000 &0000 100000
timestep
Finetune Learning 100k Steps for Walker Stand
method e
ac

0 20000 40000 60000 80000 100000
timestep.

Table 7: Zero-shot results of Z,.x and Z,i,. The comparison of zero-shot results of the two mixture of skills
evaluated on the Quadruped domain.

| Quadruped Jump Quadruped run Quadruped Stand Quadruped Walk

MOSSmin frozen | 85.3£9.5 4544 110£13 43+4
MOSSmax frozen | 627+28 370£16 767£35 306£12

C.4 Finetune Learning Curves

We include the finetune learning curves in Figure [I|for MOSS and two methods that are most related
to MOSS, namely, CIC and Adversarial Surprise.

We can see that these methods generally improved with finetuning with task reward. However, we
observe that the Quadruped domain had a noticeably flatter learning curve, meaning that methods
benefited less from training than in other domains.

References

(1]

(2]

(3]

(4]
(3]

(6]

(7]

8]

(9]

(10]

(11]

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal Maclau-
rin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao Zhang. JAX:
composable transformations of Python+NumPy programs, 2018.

Albin Cassirer, Gabriel Barth-Maron, Eugene Brevdo, Sabela Ramos, Toby Boyd, Thibault Sottiaux, and
Manuel Kroiss. Reverb: A framework for experience replay, 2021.

Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. Diversity is all you need: Learning
skills without a reward function. In International Conference on Learning Representations, 2019.

Tom Hennigan, Trevor Cai, Tamara Norman, and Igor Babuschkin. Haiku: Sonnet for JAX, 2020.

Michat Kempka, Marek Wydmuch, Grzegorz Runc, Jakub Toczek, and Wojciech Jaskowski. Vizdoom:
A doom-based ai research platform for visual reinforcement learning. In 2016 IEEE conference on
computational intelligence and games (CIG), pages 1-8. IEEE, 2016.

Michael Laskin, Hao Liu, Xue Bin Peng, Denis Yarats, Aravind Rajeswaran, and Pieter Abbeel. CIC:
Contrastive intrinsic control for unsupervised skill discovery, 2022.

Michael Laskin, Denis Yarats, Hao Liu, Kimin Lee, Albert Zhan, Kevin Lu, Catherine Cang, Lerrel Pinto,
and Pieter Abbeel. URLB: Unsupervised reinforcement learning benchmark. In Thirty-fifth Conference on
Neural Information Processing Systems Datasets and Benchmarks Track (Round 2), 2021.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-performance deep
learning library. Advances in neural information processing systems, 32, 2019.

Miruna Pislar, David Szepesvari, Georg Ostrovski, Diana Borsa, and Tom Schaul. When should agents
explore? arXiv preprint arXiv:2108.11811, 2021.

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Budden,

Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, et al. Deepmind control suite. arXiv preprint
arXiv:1801.00690, 2018.

Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double g-learning. In
Proceedings of the AAAI conference on artificial intelligence, volume 30, 2016.

	Additional Implementation Details
	MOSS Implementation
	Baseline Implementation
	Environment
	Double DQN
	Compute Resources
	Thing that did not work: Skill Distribution

	Objective Switching
	Additional Results
	Prior Distribution Lg
	Skill Prior
	Zero-shot Results
	Finetune Learning Curves

