Published as a conference paper at ICLR 2024

PROTEIN MULTIMER STRUCTURE PREDICTION VIA
PROMPT LEARNING

Ziqi Gao'2} Xiangguo Sun®, Zijing Liu*, Yu Li*, Hong Cheng?, Jia Li'-?"
'Hong Kong University of Science and Technology (Guangzhou)

2Hong Kong University of Science and Technology

3The Chinese University of Hong Kong

4IDEA Research, International Digital Economy Academy

ABSTRACT

Understanding the 3D structures of protein multimers is crucial, as they play a
vital role in regulating various cellular processes. It has been empirically con-
firmed that the multimer structure prediction (MSP) can be well handled in a
step-wise assembly fashion using provided dimer structures and predicted protein-
protein interactions (PPIs). However, due to the biological gap in the forma-
tion of dimers and larger multimers, directly applying PPI prediction techniques
can often cause a poor generalization to the MSP task. To address this chal-
lenge, we aim to extend the PPI knowledge to multimers of different scales (i.e.,
chain numbers). Specifically, we propose PROMPTMSP, a pre-training and
Prompt tuning framework for Multimer Structure Prediction. First, we tailor
the source and target tasks for effective PPI knowledge learning and efficient
inference, respectively. We design PPI-inspired prompt learning to narrow the
gaps of two task formats and generalize the PPI knowledge to multimers of dif-
ferent scales. We provide a meta-learning strategy to learn a reliable initial-
ization of the prompt model, enabling our prompting framework to effectively
adapt to limited data for large-scale multimers. Empirically, we achieve both
significant accuracy (RMSD and TM-Score) and efficiency improvements com-
pared to advanced MSP models. The code, data and checkpoints are released at
https://github.com/zggao22/PromptMSP.

1 INTRODUCTION

Recent advances in deep learning have driven the development of AlphaFold 2 (AF2) (Jumper et al.,
2021), a groundbreaking method for predicting protein 3D structures. With minor modifications,
AF2 can be extended to AlphaFold-Multimer (AFM) (Evans et al., 2021) to predict the 3D structure
of multimers (i.e., proteins that consist of multiple chains), which is fundamental in understanding
molecular functions and cellular signaling of many biological processes. AFM has been verified to
accurately predict the structures of multimers with small scales (i.e., chain numbers). However, its
performance rapidly declines as the scale increases.
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search line (Esquivel-Rodriguez et al., 2012; Aderinwale
et al., 2022; Inbar et al., 2005; Bryant et al., 2022) fol-
lows the idea of step-wise assembly (Figure 1A), where
the assembly action indicates the protein-protein inter-
action (PPI). It sequentially expands the assembly size
by adding a chain with the highest docking probability. -
The advantage of this step-wise assembly is that it can Figure 1: (A). Step-wise assembly for MSP.
effectively handle multimers with large scales by enjoy- (B)- Motivation for extending I-PPI to C-PPL
ing the breakthrough in dimer structure prediction methods (Ganea et al., 2021; Wang et al., 2023;
Ketata et al., 2023; Ghani et al., 2021; Luo et al., 2023; Chu et al., 2023; Evans et al., 2021).
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As the most advanced assembly-based method, MoLPC (Bryant et al., 2022) applies independent
PPI (I-PPI, i.e., both proteins are independent without the consideration of other proteins) to score
the quality of a given assembly. Despite great potential, it does not consider important conditions in
the assembly such as the influence of third-party proteins to PPI pairs. For example, in Figure 1B,
if chain x has already docked to chain y, the interface on x that will contact with z is partially
occupied. Under this condition, the docking probability of (z, z) may decrease to lower than that
of (y, z). We name this observation as condition PPI, or C-PPI. In short, neglecting the influence of
C-PPI may easily lead to poor generalization. In this work, we focus on assembly-based MSP by
learning C-PPI knowledge than I-PPI.

Learning effective C-PPI knowledge for MSP presents

two main challenges. Firstly, we observe significant gaps s
in the C-PPI knowledge contained in multimers with var-
ied scales (chain numbers), which suggests that the bi- -
ological formation process of multimers may vary de- §,,,
pending on their scales. Secondly, as shown in Figure 2,
experimental structure data for large-scale multimers is 2o

extremely limited, making it even more difficult for the , I|.__.____7_ - |

model to generalize them. 234567 10 15 20 25 30
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Recently, the rapidly evolving prompt learning (Liu et al., Figure 2: Distribution in chain numbers of
2023; Sun et al., 2023a) techniques have shown promise multimers from the PDB database.

to enhance the generalization of models to novel tasks and

datasets. Inspired by this, a natural question arises: can we prompt the model to predict C-PPlIs for
multimers with arbitrary scales?

To address this, our core idea is to design learnable prompts to transform arbitrary-scale multimers
into fixed-scale ones. Concretely, we first define the target task for training (tuning) the prompt
model, which is conditional link prediction. Then, we additionally design the pre-training (source)
task that learns to identify arbitrary assembled multimer’s correctness. In the target task, we trans-
form the two query chains to a virtual assembled multimer, which is input into the pre-trained model
for the correctness score. We treat such a score as the linking probability of the query chains. There-
fore, arbitrary-scale prediction in the target task is reformulated as the fixed-scale one in the
source task.

Empirically, we investigate three settings: (1) assembly with ground-truth dimer structures to
evaluate the accuracy of predicted docking path; (2) assembly with pre-computed dimers from
AFM (Evans et al., 2021); and (3) assembly with pre-computed dimers from ESMFold (Lin et al.,
2023). We show improved accuracy (in RMSD and TM-Score) and leading computational efficiency
over recent state-of-the-art MSP baselines methods under these 3 settings. Overall, experiments
demonstrate that our method has exceptional capacity and broad applicability.

2 RELATED WORK

Multimer Structure Prediction. Proteins typically work in cells in the form of multimers. How-
ever, determining the structures of multimers with biophysical experiments such as X-ray crystallog-
raphy (Maveyraud & Mourey, 2020; Ilari & Savino, 2008) and cryogenic electron microscopy (Costa
et al., 2017; Ho et al., 2020) can be extremely difficult and expensive. Recently, the deep learn-
ing (DL)-based AlphaFold-2 (Jumper et al., 2021) model can milestone-accurately predict protein
structures from residue sequences. Moreover, recent studies have explored its potential for predict-
ing multimer structures. However, they mostly require time-consuming multiple sequence align-
ment (MSA) operations and the performance significantly decreases for multimers with great chain
numbers. Another research line assumes that the multimer structures can be predicted by adding its
chains one by one. Multi-LZerD (Esquivel-Rodriguez et al., 2012) and RL-MLZerD (Aderinwale
et al., 2022) respectively apply the genetic optimization and reinforcement learning strategies to se-
lect proper dimer structures for assembly. However, even when targeting only small-scale (3-, 4- and
5-chain) multimers, they still have low efficiency and are difficult to scale up for large multimers.
By assuming that the dimer structures are already provided, MoLPC (Bryant et al., 2022) further
simplifies this research line with the goal to predict just the correct docking path. With the help of
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additional pIDDT and dimer structure information, MoLPC has shown for the first time to predict
the structures of large multimers with up to 30 chains.

Prompt Learning for Pre-trained Models. In the field of natural language processing (NLP), the
prevailing prompt learning approach (Brown et al., 2020; Min et al., 2021) has shown gratifying
success in transferring prior knowledge across various tasks. Narrowing the gap between the source
and target tasks is important for the generalization of pre-trained models on novel tasks or data,
which has not been fundamentally addressed with the pre-training-fine-tuning paradigm (Zhou et al.,
2022). To achieve this, researchers have turned their attention to prompts. Specifically, a language
prompt refers to a piece of text attached to the original input that helps guide a pre-trained model to
produce desired outputs (Gao et al., 2020). Prompts can be either discrete or continuous (Sun et al.,
2023b; Li et al., 2023). The discrete prompt (Gao et al., 2020; Schick & Schiitze, 2020; Shin et al.,
2020) usually refers to task descriptions from a pre-defined vocabulary, which can limit the flexibility
of the prompt design due to the limited vocabulary space. In contrast, learnable prompts (Li & Liang,
2021; Zhang et al., 2021; Sun et al., 2023a) can be generated in a continuous space. Inspired by the
success of prompt learning, we associate protein-protein interaction (PPI) knowledge (Kovécs et al.,
2019; Gao et al., 2023a), which is commonly present in multimers across various scales, to the pre-
training phase. By fine-tuning only the prompt model, we can effectively adapt the PPI knowledge
to the target task.

3 PRELIMINARIES

3.1 PROBLEM SETUP

Assembly Graph. We are given a set of chains (monomers), which is used to form a protein
multimer. We represent a multimer with an assembly graph G = (V, ). In G, for the i-th chain,
we obtain its chain-level embedding ¢; by the embedding function proposed in Chen et al. (2019).
Each node v; € V can thus represent one chain with node attribute ¢;. The assembly graph is an
undirected, connected and acyclic (UCA) graph, with each edge representing an assembly action.

Assembly Process. For clarity, we apply an example
in Figure 3 to illustrate the assembly process, which is
achieved with the prepared dimer structures and the pre-
dicted assembly graph. Let us consider a multimer with
3 chains, whose undocked 3D structures are denoted as
X1, X5, X3. We consider an assembly graph with the
edge set {(v2,v3), (v3,v1)}, and the dimer structures
{(X1127 X212)3 (X1137 X§3)7 (X2233 X?%d)} First, we se-
lect the dimer of chains 2 and 3 as the start point, i.e., 12987
X/ = X2% and X} = X323, Next, to dock the chain 1 Y

onto chain 3, we compute the SE(3) coordinate transfor- - Prepared Dimer Structures
mation T that aligns X 42 onto X}. Lastly, we apply T to

X, resulting in the update coordinate X of chain 1. Figure 3: Assembly process with the pre-
dicted assembly graph and prepared dimers.

Definition 1 (Assembly Correctness) For an N-chain

multimer with a 3D structure X, its chains are represented by the nodes of an assembly graph
G. The assembly correctness F (G, X) is equivalent to the TM-Score (Zhang & Skolnick, 2004)
between the assembled multimer and the ground-truth.

With the above definitions, our paper aims to predict assembly graphs that maximize the TM-Scores,
taking as inputs the residue sequences of chains and pre-calculated dimer structures.

3.2 SOURCE AND TARGET TASKS

In this paper, we adopt a pre-training (source task) and prompt fine-tuning (farget task) framework
to address the MSP problem. We consider two points for task designs: 1) With given multimers for
pre-training, the model benefits from common intrinsic task subspace between the source and target
task. 2) The target task should be designed to effectively learn the condition PPI (C-PPI) knowledge
and efficiently complete the MSP inference.
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Definition 2 (Source Data D,,,) Each data instance in Dy,,, involves an assembly graph G, and
a continuous label Ysoy, i.€., (GsousYsou) € Dsou- For an N-chain multimer, Ggo,, is randomly
generated as its N-node UCA assembly graph, and ys.., is the assembly correctness.

Definition 3 (Target Data D,,,.) Each data instance in Ds,, involves an assembly graph G =
(Viar, Etar), an indicated node vq € Viqr, an isolated node v,, & Gy and the continuous label
Ytars i-€., (Giar, Vd, Vu, Ytar) € Diar. For an N-chain multimer, Gyq, is defined as its (N — 1)-chain
assembly graph. yiq, is calculated by yior = F(({Viar U vy}, {Etar U vguy }), X).

Source Task. We design the source task as the graph-level regression task. Based on source data
defined in Def. 2, the model is fed with a UCA assembly graph and is expected to output the con-
tinuous correctness score between 0 and 1. Note that theoretically, we can generate NV 2 different
UCA graphs and their corresponding labels with an /N-chain multimer. This greatly broadens the
available training data, enhancing the effectiveness of pre-training in learning MSP knowledge.

Target Task. We design the target task as the link prediction task (i.e., predicting the C-PPI prob-
ability). Based on target data defined in Def. 3, the target task aims to predict the presence of the
link between nodes v4 and v,,, which represent the docked and undocked chains, respectively.

We provide the detailed process to generate Dy,,, and D,,, in Appendix A.1. Overall, the source and
target tasks learn assembly knowledge globally and locally, respectively. Unfortunately, multimers
of varied scales exhibit distribution shifts in the target task, preventing the direct use of it for MSP.
Next, we will empirically verify the existence of these shifts and their influence on MSP.

3.3 GAPS BETWEEN MULTIMERS WITH VARIED SCALES

We have presented a significant imbalance in the data of multimers (see Figure 2). Here, we analyze
the gap in MSP knowledge among multimers with various scales (i.e., chain numbers), which can
further consolidate our motivation of utilizing prompt learning for knowledge transfer. We also offer
explanations for the reasons behind the gaps based on empirical observations.

We begin by analyzing the factor of chain number. We randomly select multimers for evaluation
and divide the remaining ones into various training sets based on the chain number, which are then
trained with independent models. We obtain the chain representations of the evaluating samples in
each model. Lastly, we apply Centered Kernel Alignment (CKA) (Raghu et al., 2021), a function for
evaluating representation similarity, to quantify the gaps in knowledge learned by any two models.
We show the heatmaps of CKA in the Figure 4 and have two observations. (a) Low similarities
are shown between data with small and large scales. (b) Generally, there is a positive correlation
between the C-PPI knowledge gap and the difference in scales. In short, C-PPI knowledge greatly
depends on the multimer scale.

To further explain these gaps, we re-divide the training sets based on the degree (i.e., neighbor
number of a node) of assembly graphs and perform additional experiments. Specifically, we define
the degree value as the highest node degree within each graph G, in the source task, and as the
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Figure 5: The overview of PromptMSP. (A). Firstly, we pre-train the GIN encoder and the task head
under the graph-level regression task. After pre-training, given an arbitrary graph, 8* and ¢* jointly
output the correctness. (B). During prompt tuning, the prompt model takes embeddings of a pair
of docked and undocked (query) chains as input and learns to produce prompt embeddings which
form the entire 4-node path. * and ¢* then jointly predict the correctness, which is equivalent to
the linking probability. We use fp- 4+ »« to denote the well trained pipeline that outputs the linking
probability of query chains with target data instance as input. (C). If the target multimer has 9
chains, we sequentially perform 8 steps for inference. In each step, we use the well trained pipeline
to calculate the probabilities for all possible chain pairs and select the most possible pair to assemble.

degree of node v, to be docked on in the target task. As shown in Figure 4, CKA heatmaps indicate
that training samples with different degrees exhibit the gap in knowledge, which becomes even
more significant than that between data with varying chain numbers. As observed, we conclude
that the gap in chain numbers between data may be primarily due to the difference in degree of
assembly graphs. Therefore, we intuitively associate the degree with the biological phenomenon
of competitive docking that may occur in MSP, as evidenced by previous studies (Chang & Perez,
2022; Yan et al., 2020; Chang & Perez, 2023). In other words, multimers with more chains are more
likely to yield assembly graphs with high degrees, and consequently, more instances of competitive
docking. We expect that prompt learning can help bridge this knowledge gap.

4 PROPOSED APPROACH

Overview of Our Approach. Our approach is depicted in Figure 5, which follows a pre-training
and prompt tuning paradigm. Firstly, using abundant data of small-scale (i.e., 3 < N < 5) mul-
timers, we pre-train the graph neural network (GNN) model on the source graph regression task.
We then design the learnable prompt model, which can reformulate the conditional link predic-
tion (target) task to the graph-level regression (source) task. In the process of task reformulation, an
arbitrary-scale multimer in the target task is converted to a fixed-scale (i.e., N = 4) multimer in the
source task. For inference, an /N-chain multimer will go through N — 1 steps to be fully assembled.
In each step, our model predicts the probabilities of all possible conditional links and selects the
highest one to add a new chain. Besides, to further enhance the generalization ability, we provide a
meta-learning strategy in Appendix C.5.

4.1 PRE-TRAINING ON THE SOURCE TASK

We apply graph neural network (GNN) architecture (Xu et al., 2018; Velickovic et al., 2017; Tang
et al., 2023) for graph-level regression (Cheng et al., 2023; Gao et al., 2023b). Our model first
computes the node embeddings of an input UCA assembly graph using Graph Isomorphism Net-
work (GIN, Xu et al. (2018)) to achieve its state-of-the-art performance. Kindly note that we can
also apply other GNN variants (Kipf & Welling, 2016; Velickovic et al., 2017; Tang et al., 2022; Liu
et al., 2024; Li et al., 2019) for pre-training. Following Def. 2, we construct source data Dg,,, by
using the oligomer (i.e., small-scale multimer) data only. The pre-training model approximates the
assembly correctness with data instances of D,y

Ysou = GNN(gsom 9, (b) ~ F(gsou; X) = Ysou (D
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where GNN represents combination of a GIN with parameters ¢ for obtaining node embeddings, a
ReadOut function after the last GIN layer, and a task head with parameters ¢ to yield the prediction
Ysou- As defined in Def. 1, F' represents the assembly correctness function for computing TM-Score
between the assembled structure and the ground-truth (GT) structure X.

We train the GNN by minimizing the discrepancy between predicted and GT correctness values:

ACp’r‘e (ysou = F(gsou; X)7 /gsou = GNN(gsou; 07 ¢))7
(2)

where L. is the mean absolute error (MAE) loss function. After the pre-training phase, we obtain
the pre-trained GIN encoder and the task head parameterized by 6* and ¢*, respectively.

0, ¢* = arg miny , Z

(gsou 7ysou)eDsou

4.2 ENSURING CONSISTENCY BETWEEN SOURCE AND TARGET TASKS

Reformulating the Target Link Prediction Task. The inference of an /N-chain multimer under
the source task setting requires all of its N~V ~=2 assembly graphs and their corresponding correct-
ness from the pre-trained model. Therefore, when dealing with large-scale multimers, such inference
manner requires effective UCA graph traversal algorithms and significant computational resources.
The target task proposed in Section 3.2 can address this issue, which aims to predict the link pres-
ence (probability) between a pair of docked and undocked chains. As shown in Figure 5C, we can
inference the structure of an N-chain multimer with just N — 1 steps. At each step, we identify the
most promising pair of (docked and undocked) chains.

The success of traditional pre-training and fine-tuning paradigm is due to that source and target
tasks having a common task subspace, which allows for unobstructed knowledge transfer (Sun
et al., 2023a). However, in this paper, source and target tasks are naturally different, namely graph-
level and edge-level tasks, respectively. Here, we follow three principles to reformulate the target
task: (1) To achieve consistency with the source task, the target task needs to be reformulated as a
graph-level problem. (2) Due to the distribution shifts in multimers with varied chain numbers (Fig-
ure 4), a multimer of arbitrary scale in the target conditional link prediction task should be refor-
mulated into a fixed-scale one in the source task. (3) The pre-trained GNN model is expected to
effectively handle multimers of such “fixed-scale” in the source task. The upcoming introduction of
prompt design will indicate that the fixed-scale value is 4. Therefore, to ensure (3), we limit the data
used for pre-training to only multimer of 3 < N < 5.

Prompt Design. Following Def. 3, we create

Fhe target data D,,, for prompt tuning. For clar- H e R(Vearl+1)xd _ 0" (Viar U, Erar), (3)
ity, we denote each data instance as a tuple form

(Gtar, vd; Vu; Ytar) € Diar, Where Gyqp denotes g ([softmax (HJ H,) H] f) (4)
the current assembled multimer (i.e., condition), “ ’

vq 18 a query chain within G, and v,, is another _ T T

query chain representing the undocked chain. We Hy=ox ([softmax (H“ Hd) Hq ] ) )
compute the last layer embeddings H of all nodes Gpro = Vpro = {Vds Vus Va, Uy },
in G, and the isolated v, with the pre-trained '
GIN encoder. To enable communications be-
tween target nodes vy and v,,, the prompt model Jtar = 9™ (6" (Gpro)), (7
parameterized by 7 contains multiple cross atten-

tion layers (Vaswani et al., 2017; Wang et al., 2023) that map H,,, Hy € R? to vectors H, H,c R4,
which represent the initial features of nodes v, and v,. Finally, the pre-trained model outputs the
assembly correctness of the 4-node prompt graph G,,.,. The whole target task pipeline of our method
is represented by the equations on the right side.

(6)

gp'ro = {edxa Exy, eyu})7

Specifically, 8 is the pre-trained GIN encoder, ¢* is the pre-trained task head and d denotes the
dimension of features. The prompt model 7, which outputs a vector R, includes non-trainable
cross attention layers and the parametric function (Multi-Layer Perceptron, MLP) o,. Moreover,
we use fp« 4+ »+ to represent the entire pipeline (Figure 5B) which takes input (G4, v4, v,,) and
outputs YJiqr. A more detailed model architecture is shown in Appendix A.2.
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Prompt Design Intuition. First of all, the link between

two query chains is equivalent to the protein-protein interac- High
tion (PPI) in biology. We introduce the / = 3 path (Kovacs =2 \f = 3 probability
et al., 2019; Yuen & Jansson, 2023), a widely validated biolog-

ical rule for modeling PPI probabilities. Figure 6 describes the — p =77 | 3.
¢ = 3 rule, which is based on the fact that docking-based PPI 2.
generally requires proteins to have complementary surface rep-

resentations for contact. It claims that the PPI probability of

any two chains is not reflected by the number of their common Figure 6: The ¢ = 3 PPI rule.
neighbors (a.k.a., triadic closure principle (Lou et al., 2013; Sin-

tos & Tsaparas, 2014)), but rather by the presence of a path of length ¢ = 3. In short, if there exists
a 4-node path with query chains at the ends, they are highly likely to have a PPI (link).

PPI?

Regardless of the node number of G,., we treat the pre-trained model output based on this 4-
node G,,, as the linking probability between v4 and v,,. Unlike most of exsiting prompt learning
techniques, the proposed task reformulation manner is naturally interpretable. Let us assume that
these two query chains are highly likely to have a link, it will be reasonable to find two virtual chains
that help form a valid £ = 3 path. This also suggests that the assembly of G,,,, tends to be correct,
ie., ¢*(0*(Gpro)) — 1. Therefore, intuitively, the correctness of G, fed to the pre-trained model
implies the linking probability between v,, and vg.

4.3 INFERENCE PROCESS WITH THE PROMPTING RESULT [« |9+ ¢~

With prompt tuning, we obtain the whole framework pipeline fr« g 4+. For inference on a multimer
with NV chains, we perform N — 1 assembly steps, in each of which we apply the pipeline fr-o« -
to predict the linking probabilities of all pairs of chains and select the most likely pair for assembly.

5 EXPERIMENTS

Datasets. We collect all publicly available multimers (3 < N < 30) from the Protein Data
Bank (PDB) database (Berman et al., 2000) on 2023-02-20. Referring to the data preprocessing
method in MoLPC (Bryant et al., 2022), we obtain a total of 9,254 multimers. To further clarity, we
use the abbreviation PDB-M to refer to the dataset applied in this paper. Overall, the preprocessing
method ensures that PDB-M contains high resolution, non-redundant multimers and is free from
data leakage (i.e., no sequences with a similarity greater than 40% between training and test sets).
Due to the commonly low efficiency of all baselines, we define a data split for 3 < N < 30 with a
small test set size to enable comparison. Specifically, we select 10 for each scale of 3 < N < 10,
and 5 for each scale of 11 < N < 30. Moreover, for comprehensive evalaution, we re-split the PDB-
M dataset based on the release date of the PDB files to evaluate our method. Detailed information
about the data preprocessing methods and the data statistic of split is in Appendix B.

Baselines and Experimental Setup. We compare our PROMPTMSP method with recent deep
learning (DL) models and traditional software methods. For DL-based state-of-the-art methods,
RL-MLZerd (Aderinwale et al., 2022) and AlphaFold-Multimer (AFM) (Evans et al., 2021) are
included. For software methods, Multi-LZerd (Esquivel-Rodriguez et al., 2012) and MoLPC (Bryant
et al., 2022) are included.

Since assembly-based methods require given dimers, we first use the ground-truth (GT) dimer struc-
tures (represented as GT Dimer) to evaluate the assembled multimer structures. For the pair of
chains with contact, GT Dimer includes their native dimer structure drawn from the GT multimer.
For those without contact, we use EquiDock (Ganea et al., 2021) for outputting dimer structures
due to its fast inference speed. Moreover, since GT dimers are not always available, for pratical
reasons, we consider to prepare dimers with AFM (Evans et al., 2021) (AFM Dimer) and ESM-
Fold (Lin et al., 2023) (ESMFold Dimer). For baselines not requiring given dimers, we use these
three kinds of dimers to reassemble based on the docking path mined in their predicted multimer,
which is referred to as the T version of the baselines. Our experiments consist of 3 settings: 1) Since
most baselines can not handle multimers with chain numbers N > 10. We follow GT Dimer, AFM
Dimer and ESMFold Dimer to evaluate all baselines on the small-scale multimers (3 < N < 10)
in the test set. 2) We evaluate MoLPC and our method by using these three types of dimers on the
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Table 1: Multimer structure prediction results. Methods are evaluated on the test set of 3 <
N < 10 by using three types of pre-computed dimers. The test set includes 80 multimer samples
in total (10 samples for each scale). For each dimer type and metric, the best method is bold and
the second best is underlined. { represents the reassembly version of baselines. R(Avg): average
RMSD; R(Med): median RMSD; T(Avg): average TM-Score; T(Med): median TM-Score.

GT Dimer \ AFM Dimer | ESMFold Dimer
R(Avg)/R(Med) T(AVg)/T(Med)\R(AVg)/R(Med) T(AVg)/T(Med)\R(AVg)/R(Med) T(Avg)/T(Med)

Multi-LZerD | 31.50/33.94 0.28/0.25 31.50/33.94 0.28/0.25 31.50/33.94 0.28/0.25
Multi-LZerDf| 18.90/19.30 0.54/0.38 29.68/27.96 0.30/0.33 33.00/31.07 0.25/0.29

RL-MLZerD | 31.04/27.44 0.29/0.32 31.04/27.44 0.29/0.32 31.04/27.44 0.29/0.32
RL-MLZerD'| 17.77/17.69 0.51/0.53 28.57/26.20 0.30/0.35 27.76 13291 0.32/0.25

Methods

AFM 20.99/24.76 0.4770.42 20.99/24.76 0.4770.42 20.99/24.76 0.47/0.42
AFMT 16.79/16.02 0.59/0.59 18.98 /19.05 0.50/0.48 26.76 /29.95 0.33/0.30
MoLPC 18.53/18.08 0.52/0.55 23.06/23.92 0.4370.42 30.17/29.45 0.31/0.31

PromptMSP | 13.57/11.74 0.67/0.71 17.36 / 17.09 0.55/0.56 22.55/24.85 0.45/0.37
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Figure 7: (A). TM-Score distribution of MoLPC and our method tested on multimers of 10 <
N < 30. The mean and median values are marked with white and black ‘x’, respectively. (B). The
relationship of learned C-PPI knowledge and the actual TM-Score. (C). The relationship of I-PPI
learned by MoLPC and the actual TM-Score. We show the Pearson’s correlation R for both.

entire test set (3 < N < 30). 3) We additionally split the PDB-M dataset based on the release date
of multimers to evaluate the generalization ability of our method. We run all methods on 2 A100
SXM4 40GB GPUs and consider exceeding the memory limit or the resource of 10 GPU hours as
failures, which are padded by the upper bound performance of all baselines.

Evaluation Metrics. To evaluate the performance of multimer structure prediction, we calculate
the root-mean-square deviation (RMSD) and the TM-score both at the residue level. We report the
mean and median values of both metrics.

Multimer Structure Prediction Results. Model performance on multimers of two kinds of
scales (3 < N < 10, 11 £ N < 30) are summarized in Table 1 and Figure 7A, respectively.
For small-scale multimers, our model achieves state-of-the-art on all metrics. In addition, we find
that most MSP methods can benefit from the reassembly of GT or AFM dimer structures. No-
tably, our model can significantly outperform MoLPC, even though it does not require additional
pIDDT information or coarse information for protein interactions. For larger-scale multimers, our
model also outperforms MoLPC, and outputs completely accurate prediction results for certain sam-
ples (i.e., TM-Score = 1.0 under GT Dimer). As for the failed inference samples of MoLPC, we
relax the model’s penalty term to successfully obtain the predictions instead of simply considering
its TM-Score as 0. Despite this, our model can still achieve significant improvements under GT
Dimer, AFM Dimer and ESMFold Dimer. The experimental results under the data split based
on the release dates is in Appendix C.1.
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Table 2 shows the inference efficiency of all baselines. Table 2: Efficiency comparison (average
As assembly-based methods require given dimer struc- MSP inference time).

tures, we report the separate running time for predicting . 3<N<10 1< N <30
: : : ime(min) Path Dimer Total | Path Dimer Total
the docking path and preparing dimers, as well as the ath D
: : : P Multi-LZerD  [187.51 -  187.50
total time consumption. Kindly note that dur'mg infer- Moo T 788 17388 _
ence, our method predicts the docking path without the aArm - - 15572
need for pre-computed dimers. Therefore, to predict the MoLPC | 11.64 165.73 177.37|11.64 354.23 365.87
structure of an N-chain multimer, our method (always) Ours-cT 001 - 001]004 - 004
: _ ; : _ Ours-aFM 0.01 80.79 80.80|0.04 187.44 187.48
requires N — 1 pre-computed dimers. We note that re onrenevroldl 001 035 036|001 109 110

gardless of the dimer type used, our method is signifi-
cantly faster than the other baselines. Our method also
achieves higher efficiency in predicting the docking path compared to MoLPC. We provide more
docking path inference results of our method (in Figure 9 in Appendix). We can find that as the
scale increases, the inference time for a single assembly process (the orange curve) of our method
does not increase, which suggests that the applicability of our model is not limited by the scale.

{)\lblation Study. Wﬁ? p'erform ablation study in Ta- Table 3: Ablation study with GT dimers.
e 3 to explore the significance of the prompt model

and the C-PPI modelling strategy. If we remove the Frompt C-PPI 3 <N <10 11 <N <30
prompt model and apply the link prediction task both X v 0.55(-17.9%) 0.29(-21.6%)
for pre-training and fine-tuning, the performance will v X 0.54(-19.4%) 0.33(-10.8%)
greatly decrease by about 21.6% on large-scale multi- v v 0.67 0.37
mers. This implies the contribution of prompt in unify-

ing the C-PPI knowledge in multimers of different scales. Similarly, the significance of applying
C-PPI modelling can be further illustrated through its relationship with the MSP problem. Fig-
ure 7(BC) indicates that I-PPI will bring negative transfer to the MSP task, ultimately hurting the
performance.

In Figure 8, we show the generalization

oge 0.60
ability of our method. The term ‘w/o L o -
prompt’ refers to the direct use of GNNs 053 - SR
for conditional link prediction for MSP. We 050 "
find that when introducing training mul- -~
timers with the scale (e.g., N > 11) ¢
differs significantly from the testing mul- 040
timers (i.e., N = 7), the performance

of the ‘w/o prompt’ method notably de- .
clines.  Conversely, for PROMPTMSP, Figure 8: Results tested on N=7. We train our model

and its ‘w/o prompt’ version on multimers of varied
scale ranges.

° ./o—ao—"

Score

™
g
N\

T ¢® 59 :\—\“ ~>~\\ P P .J,\‘\ q!_\9 3_7,\ q:_'fa ﬂs;ls 3;;,’! .5;3\\
Scale(s) of multimers for training

adding arbitray-scale multimers to the
training set will improves the model’s gen-
eralization ability. This indicates that our
model can effectively capture shared knowledge between varied-scale multimers, while blocking
the knowledge gaps caused by distribution shifts.

6 CONCLUSION

Fast and effective methods for predicting multimer structures are essential tools to facilitate protein
engineering and drug discovery. We follow the setting of sequentially assembling the target multimer
according to the predicted assembly actions for multimer structure prediction (MSP). To achieve
this, our main goal is to learn conditional PPI (C-PPI) knowledge that can adapt to multimers of
varied scales (i.e., chain numbers). The proposed pre-training and prompt tuning framework can
successfully narrow down the gaps between different scales of multimer data. To further enhance the
adaptation of our method when facing data insufficiency, we introduce a meta-learning framework
to learn a reliable prompt model initialization, which can be rapidly fine-tuned on scarce multimer
data. Empirical experiments show that our model can always outperform the state-of-the-art MSP
methods in terms of both accuracy and efficiency.
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A IMPLEMENTATIONS

A.1 DATA PREPARATIONS

Preparing Assembly Graphs. We start from the residue sequences of the given N chains to form
a multimer. We denote the j-th residue of the i-th chain as s}. The embedding function pro-

posed in Chen et al. (2019) produces initial embedding for each residue, denoted as a vector E(s})
Specifically, the embedding vector is a concatenation of two sub-embeddings, which measure the
residue co-occurrence similarity and chemical properties, respectively. We average all residue em-
bedding vectors of each chain to obtain the chain-level embedding vectors, i.e., ¢; = ni > ; E (53-),
V1 <4 < N, where n; denotes the residue number of the ¢-th chain. As for a specific multimer, we
create the assembly graph G0, = (Vsou, Esou) Whose node attribute represents the pre-computed
chain-level embeddings {c; }1<i<n. Subsequently, according to Algorithm 1 we randomly gener-
ated the edge set for the multiemrs. In short, we randomly generate several UCA graphs based on
the number of nodes (chains).

Algorithm 1 Formation of &,,,,.

Initialization: p; < Sample(N, 1), N < {i e Nt|i < N,i#p1}, YV < p, bk 1L,E+ D
while N # () do

Select ¢, from A/

N N\ {ar}

Y~ YU{a}

Esou — Esou U {(plm Qk)}

k+—k+1

Select py, from )
end while

Preparing the Source Task Labels. We denote the 3D unbound (undocked) structures of
N chains to form a multimer as {X,;}1<;<n. In advance, we prepare the set of dimer

=@V, 120

{(e(-l) (2))}1§i§ ~_1, we follow the Algorithm 2 to obtain the corresponding label.

i 16

Algorithm 2 Calculation of y,..,.

Initialization: Xé(l) — X,
for (¢, e(®)) in &,,,, do
(1) o(2)

Calculate transformation: T < Kabsch(X/,,, X5, )

(D)@
Apply T: X ) = T(X ¢ )

end for
Output: TM-Score({ X; }1<i<n, { Xi}i<i<n)

Preparing Target Data. For an N-chain multiemr, the data for the target task consists of correctly
assembled graphs with less than N nodes and one of the remaining nodes. For convenience, we
randomly generated multiple assembly graphs with less than /N nodes and kept those labeled as
1.0. For each graph, we randomly add one of the remaining nodes and calculated the new label
for assembly correctness, which is the final label for the target task. Algorithm 3 show the process
to create target dataset using one multimer with IV chains. For each element (G) in the output set
By, two nodes at the ends of the last added edge in G are vy and v,,, respectively. Each element
in Yy represents the label y:,,.. We use the output of Algorithm 3 to prepare each data instance
(gta'r‘a Vs Uy, Z/mr) in Dygp.
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Algorithm 3 Preparation for Dy,

Initialization: Dy, < 0, S, + {1,2,3, ..., N} (undocked chain set), Sq < () (docked chain set),
Start < Sample(N, 1) (starting chain), Bs < 0 (set of best assembly graphs), Y < 0 (set of
target labels)
Bs — Bs U {vstart}
Sg < Sg U {Start}
fori=1— N —2do
for G in B, do
Update S, and Sy
for vy in S, do
for v, in S, do
Calculate the TM-Score y with Algorithm 2
if y > 0.99 then
G+ GU{vy,euqt
B, < B, U{G}
Y+ Y, U{y}
end if
end for
end for
end for
end for
for G in B, do
Update S, and Sy
for v in S; do
for v, in S, do
Calculate the TM-Score y with Algorithm 2
G+ GU{vy,euq}
B; + B; U{G}
Ys «+ Y U{y}
end for
end for
end for
Output: B, and Y,

A.2 MODEL ARCHITECTURE

GNN Model for Pre-Training. We apply source dataset Ds,,, to pre-train the graph regression

model. We denote I i(k) as the embedding of node ¢ after the k-th GIN layer. Therefore, we have
the following output with each layer in the GIN encoder.

Hl(k) = MLP(k) (1 + G(k)) . Hi(kil) + Z Hq(jk—l) (8)
ueN (7)

where €(%) represents the learnable parameter of the k-th layer.

Finally, we have the GIN encoder output with a ‘sum’ graph-level readout for the last layer:
H = READOUT ({H}L)u <i< N}) ©)

where MLP denotes the Multilayer Perceptron and L means the total layer number.

Prompt Model. For a data instance (Giar, Va, Vu, Ytar) € Diar in the target dataset, we consider
vy, as an isolated node in graph G;,. = (Viar U vy, Etar). The pre-trained GIN encoder computes
the node embedding matrix H for Gj,,.. We obtain the prompt embeddings with a cross attention
module:

H,=o0, ([softmax (H;Hu) HJ}T) , (10)
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Hy, =0, ([softmax (HJHd) H;—]T) , (11)

where o (7) is a parametric function (3-layer MLP).

A.3 HYPERPARAMETERS

The choice of hyperparameters of our model is shown in Table 4.

Table 4: Hyperparameter choices of PROMPTMSP.
Hyperparameters Values

Embedding function dimension (input) 13
GIN layer number K

Dimension of MLP in Eq. 8 1024, 1024
Dimension of ¢ in Eq. 1 256, 1
Dropout rate 0.2
Number of attention head 4
Source/target batch-size 512,512
Source/target learning rates 0.01, 0.001
Task head layer number 2

Task head dimension 256, 1
Optimizer Adam

B DATASET

The overall statistic of our dataset PDB-M is shown in Table 5. Overall, we have obtained 9,254
non-redundant multimers after processing and filtering.

Download all of the multimer structures as their first assembly version
Remove multimers whose resolution of NMR structures less than 3.0
Remove the chains whose residue number is less than 50

If more than 30% of the chains have already been removed from the multiemr, the entire
multiemr will be removed.

Remove all nucleic acids

Cluster all individual chains on 40% identity with CD-HIT (https://github.com/
weizhongli/cdhit)

Remove the multimer if all of its chains have overlap with any other multimer (remove the
subcomponents of larger multimers)

Randomly select multimers to form the test set and the remaining multimers for training
and validation.

Kindly note that due to the generally lower efficiency of the baseline, the size of the test set we
divided was relatively small. Moreover, we show the experimental results with a data split according
to release date in the next section.

Table 5: Statistics of PDB-M Table 6: Dataset split based
N ‘ Train Valid Test on the released date
3 1325 265 10 Before After
Date .
4 | 942 188 10 (train) _ (test)
5 981 196 10 2000-1-1 459 8786
6-10 | 3647 730 50 2004-1-1 1056 8198
11-15 267 53 25 2008-1-1 2091 7163
16-20 198 40 25 2012-1-1 3665 5589
1-1
1-1
1-1

21-25 135 27 25 2016-1- 4780 4474
26-30 66 14 25 2020-1- 7002 2252

Total | 7561 1513 180 o4 -
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C ADDITIONAL EXPERIMENTAL RESULTS

C.1 DATA SPLIT WITH RELEASE DATE.

We show the results with 6 thresholds of release dates. Using them, we have 6 types of data split
based on the entire PDB-M. The data split statistic is shown in Table 6. As the datasets all contain
large-scale multimers, we show the comparison only between our method and MoLPC in Table 7.

Table 7: Model performance under the data split based on released dates (3 < N < 30). Threshold
represents the boundary separating the training (before) and test (after) sets.

Date

2000-1-1  2004-1-1  2008-1-1  2012-1-1 2016-1-1  2020-1-1 Avg.

Threshold
Metric ‘ TM-Score (mean) / TM-Score (median)
Ours(GT) ‘0.27/0.24 0.42/0.35 042/042 047/0.50 052/049 0.57/0.54 045/042

Ours(ESMFold) ‘ 0.31/0.28 0.33/0.29 0.34/0.36 0.36/036 0.38/038 037/041 0.35/0.35

C.2 RUNNING TIME OF PROMPTMSP

We provide more docking path inference results of our method in Figure 9. We can find that as the
scale increases, the inference time for a single assembly process (the orange curve) of our method
does not increase, which suggests that the applicability of our model is not limited by the scale.

—e— Time

Time/Scale

Time (s)
S = N W A

11 17 23 29
Scale

Figure 9: Inference running time of our method tested on various scales of multimers.

C.3 THE ROLE OF OUR META-LEARNING FRAMEWORK

We test the performance of our method in extreme data scarcity scenarios. In Table 8, data ratio
means the proportion of randomly retained multimer samples with chain numbers greater than 10.
For example, 10% suggests that we only use 10% of the large-scale multimer data in PDB-M for
training. It can be seen that the performance of our model decreases with the degree of data scarcity.
However, even with only 10% of the training data retained, our method can still slightly outperform
MoLPC. This imples that our method can effectively generalize knowledge from data with fewer
chains, without a strong reliance on the amount of large-scale multimer data.

Data ratio | 80% 60% 40% 20% 10%
Metric \ TM-Score(mean) / TM-Score(median)
MoLPC 0.47/0.45

PromptMSP | 0.57/0.60 0.55/0.53 0.58/0.55 0.53/0.53 0.49/047

Table 8: Performance with less training samples.
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C.4 VISUALIZATION

In Figure 10, we demonstrate that PromptMSP can successfully assemble unknown multimers,
where no chain has a similarity higher than 40% with any chain in the training set.

(PDB: 6XBL(N=5) ~ TM-Score:1.0  TM-Score:0.58 \(PDB: 5XOG(N=15) TM-Score:0.87 ~ TM-Score:0.41

\_ Ground

Figure 10: Visualization of multimers with chain numbers of 5 and 15. They are both successfully
predicted by PROMPTMSP. For 5XOG, our model correctly predicted 12 out of 14 assembly actions.

C.5 PROMPT TUNING WITH META-LEARNING

Inspired by the ability of meta-learning to learn an initialization on sufficient data and achieve
fast adaptation on scarce data, we follow the framework of MAML (Finn et al., 2017) to enhance
the prompt tuning process. Specifically, we use small-scale multimers (sufficient data) to obtain
a reliable initialization, which is then effectively adapted to large-scale multimers (scarce data).
Following Def. 3, we construct datasets Dg:m) and Dt((lf;) DE™D: Sufficient
using data of small-scale (N < 7) and large-scale multi- |
mers (N > 8), respectively. Let fr |9+ 4- be the pipeline with || JENTIEEN
prompt model (), fixed GIN model (§*) and fixed task head |;

A task

(¢*). In our proposed meta-learning framework, we perform . . Task pool
prompt initialization and prompt adaptation using D" |\ )
and Dt(flarr), resulting in two pipeline versions, fz g+ 4+ and @ sampie Biasks @ Eq. 3

Jr= |6+, TESPECtivEly.

| » 7@, 7®
A

Prompt Initialization to obtain f;g- 4-. The objective of —
prompt initialization is to learn a proper initialization of eEq“"!' o .
pipeline parameters such that fﬂ@* .o~ can effectively learn the 1T [EQ'S) Deoy - Scarcer) TT

common knowledge of D{*™*) and performs well on D{:"®

Before training, we first create a pool of tasks, each of which  Figure 11: Prompting with MAML.

is randomly sampled from the data points of D{™®

During each training epoch, we do three things in order. @ We draw a batch of B tasks {71, ..., Tp}.
Each task 7; contains a support set D7, and a query set DqTi.

® We perform gradient computation and update for 7 separately on the support sets of B tasks.
7 =7 — aValps (frioe )5 (12)

where 7(*) is 7 after gradient update for task 7.
© After obtaining B updated prompt models 7(*), ¢ = 1,2, ..., B, the update of 7 for this epoch is:

B
T=7T—1Vr Z‘CD% (fr®)jo%, ¢+ ) (13)

t=1

After multiple epochs in a loop (@, ® and © in order), we obtain the prompt model initialization 7.
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(lar)

iar to update m with

Prompt adaptation to obtain f,. o 4~ . We apply all data points from D
the prompt initialization 7:

=7 — aVﬂ—EDt(lar) (fﬂg*@*). (14)
With Eq. 14, we obtain the prompt adaptation result 7*.

Inference under the MAML strategy. With prompt tuning enhanced by the meta-learning tech-
nique, we obtain 7 and 7* based on small- and large-scale (chain number) multimers, respectively.
For inference on a multimer of 3 < N < 7, we perform N — 1 assembly steps, in each of which
we apply the pipeline f3|9+ 4+ to predict the linking probabilities of all pairs of chains and select
the most likely pair for assembly. For inference on a multimer of N > 8 (shown in Figure 5C), we
first apply fz|g+ 4+ to assemble a part of the 7 chains of the multimer, and then use f- 9 - for the
subsequent N — 7 assembly steps.
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