
A Environment Details

Here we provide detailed descriptions of each of experiment environments. See (§6) for high-level
descriptions and the accompanying code for implementations.

A.1 Cover Environment Details
• Types:

• The block type has features height, width, x, y, grasp.
• The target type has features width, x.
• The gripper type has features x, y, grip, holding.
• The allowed-region type, which is used to determine whether picking or placing at cer-

tain positions is allowed, has features lower-bound-x, upper-bound-x.
• Action space: R3. An action (dx, dy, dgrip) is a delta on the gripper.
• Predicates: Covers, HandEmpty, Holding, IsBlock, IsTarget.
• Contact-related predicates: Covers, HandEmpty, Holding.
• Notes: This extends the environment of [12, 13, 21] to make the robot move in two dimensions.

In the previous work, the environment was referred to as PickPlace1D.

A.2 Doors Environment Details
• Types:

• The robot type has features x, y.
• The door type has features x, y, theta, mass, friction, rotation, target, is-open.
• The room type has features x, y.
• The obstacle type has features x, y, width, height, theta.

• Action space: R3. An action (dx, dy, drotation) is a delta on the robot. The rotation acts on
the door handle when the robot is close enough to the door.

• Predicates: InRoom, InDoorway, InMainRoom, TouchingDoor, DoorIsOpen, DoorInRoom,
DoorsShareRoom.

• Contact-related predicates: TouchingDoor, InRoom.
• Notes: The rotation required to open the door is a complicated function of the door features.

A.3 Stick Button Environment Details
• Types:

• The gripper type has features x, y.
• The button type has features x, y, pressed.
• The stick type has features x, y, held.
• The holder type has features x, y.

• Action space: R3. An action (dx, dy, z-force) is a delta on the gripper and a force in the z
direction (see notes below).

• Predicates: Pressed, RobotAboveButton, StickAboveButton, AboveNoButton, Grasped,
HandEmpty.

• Contact-related predicates: Grasped, Pressed.
• Notes: Picking and pressing succeed when (1) the z-force action exceeds a threshold; (2) there

are no collisions; and (3) when the respective objects are close enough in x, y space.

A.4 Coffee Environment Details
• Types:

• The gripper type has features x, y, z, tilt-angle, wrist-angle, fingers.
• The pot type has features x, y, rotation, is-held, is-hot.
• The plate type has feature is-on.
• The cup type has features x, y, liquid-capacity, liquid-target, current-liquid.

• Action space: R6. An action (dx, dy, dz, dtilt, dwrist, dfingers) is a delta on the gripper.

15

• Predicates: CupFilled, PotOnPlate, Holding, ButtonPressed, OnTable, HandEmpty,
PotHot, RobotAboveCup, PotAboveCup, NotAboveCup, PressingButton, Twisting.

• Contact-related predicates: Holding, HandEmpty, CupFilled, ButtonPressed.
• Notes: The liquid in a cup increases when a full pot is tilted and close enough to the cup.

B Approach Details

Here we provide detailed descriptions of each approach evaluated in experiments. See (§6) for
high-level descriptions and the accompanying code for implementations.

B.1 Bilevel Planning with Neuro-Symbolic Skills (BPNS)

BPNS is our main approach, as described in the main paper.

Planning: The number of abstract plans Nabstract = 8 for Cover and Doors, and Nabstract = 1000
for Coffee and Stick Button. We would not expect performance to substantially improve for Cover
or Doors with a larger Nabstract, since we know that the first abstract plan is generally refinable in
these environments; the smaller number was selected for the sake of experiments finishing faster.
The number of samples per step Nsamples = 10 for all environments.

Operator Learning: Operators whose skill datasets comprise less than 1% of the overall number of
segments are filtered out. This filtering is helpful to speed up learning and planning in cases where
there are rare effects or simulation noise in the demonstrations.

Policy Learning: Policies are fully-connected neural networks with two hidden layers of size 32.
Models are trained with Adam for 10,000 epochs with a learning rate of 1e�3 with MSE loss.

Sampler Learning: Following Chitnis et al. [13], each sampler consists of two neural networks: a
generator and a discriminator. The generator outputs the mean and diagonal covariance of a Gaus-
sian, using an exponential linear unit (ELU) to assure PSD covariance. The generator is a fully-
connected neural network with two hidden layers of size 32, trained with Adam for 50,000 epochs
with a learning rate of 1e�3 using Gaussian negative log likelihood loss. The discriminator is a
binary classifier of samples output by the generator. Negative examples for the discriminator are
collected from other skill datasets. The classifier is a fully-connected neural network with two hid-
den layers of size 32, trained with Adam for 10,000 epochs with a learning rate of 1e�3 using binary
cross entropy loss. During planning, the generator is rejection sampled using the discriminator for
up to 100 tries, after which the last sample is returned.

B.2 BPNS No Subgoal

BPNS No Subgoal is a variation of BPNS that does not use subgoal parameterization.

Planning: Nabstract is the same as BPNS and Nsamples is not applicable.

Learning: Operator learning is the same as BPNS. For policy learning, for each input x � y in the
training data, where y is the subgoal, we use x instead, i.e., the state alone. No samplers are learned.

B.3 Graph Neural Network Metacontroller (GNN Meta)

GNN Meta is a mapping from state, abstract state, and goal to a ground skill. This baseline offers a
learning-based alternative to AI planning in the outer loop of bilevel planning.

Planning: Repeat until the goal is reached: query the model on the current state, abstract state, and
goal to get a ground skill. Invoke the ground skill’s sampler up to 100 times to find a subgoal that
leads to the abstract successor state predicted by the skill’s operator. If successful, simulate the state
forward; otherwise, terminate with failure.

Learning: Skill learning is identical to BPNS. This approach additionally learns a metacontroller
in the form of a GNN. Following the baselines presented in prior work [13], the GNN is a standard
encode-process-decode architecture with 3 message passing steps. Node and edge modules are fully-
connected neural networks with two hidden layers of size 16. We follow the method of Chitnis et al.
[13] for encoding object-centric states, abstract states, and goals into graph inputs. To get graph

16

Figure 5: Planning time analysis. Evaluation task success rate as a function of planning time
elapsed for BPNS and the two ablations. All results are over 10 random seeds and all models are
trained on 1000 demonstrations. Lines are means and shaded areas are one standard deviation.

outputs, we use node features to identify the object arguments for the skill and a global node with a
one-hot vector to identify the skill identity. The models are trained with Adam for 1000 epochs with
a learning rate of 1e�3 and batch size 128 using MSE loss.

B.4 GNN Meta No Subgoal

GNN Meta No Subgoal is the same as GNN Meta, but with skills learned via BPNS No Subgoal.

B.5 GNN Behavioral Cloning (GNN BC)

GNN BC is a mapping from states, abstract states, and goals, directly to actions. This approach
is model-free; at evaluation time, it is queried at each state, and the returned action is executed in
the environment. The GNN architecture and training is identical to GNN Meta, except that output
graphs consist only of a global node, which holds the fixed-dimensional action vector.

B.6 Samples=1

This ablation is identical to BPNS, except with Nsamples = 1 during planning.

B.7 Abstract Plans=1

This ablation is identical to BPNS, except with Nabstract = 1 during planning.

C Additional Results

Here we present additional results to supplement the main results in (§6).

C.1 Planning Time Analysis

Figure 5 reports evaluation task success rate as a function of planning time for BPNS, Samples=1,
and Abstract Plans=1. In Cover and Doors, performance peaks within the first few seconds of wall-
clock time. This is consistent with our finding that the first abstract plan is generally refinable in
these two environments. In Stick Button and Coffee, performance increases more gradually for
BPNS over time. Furthermore, given a small time budget, the Samples=1 ablation sometimes solves
more evaluation tasks than BPNS. In these two environments, the first abstract plan is typically not
refinable; BPNS exhaustively attempts to sample that abstract plan and others before arriving at a
refinable abstract plan. With Samples=1, the unrefinable abstract plans are quickly discarded after
one sampling attempt. The gap that later emerges between BPNS and Samples=1 is due to tasks
where one sampling attempt of a refinable abstract plan is not enough. This trend is fairly specific to
the details of our bilevel planning implementation. Other search-then-sample TAMP techniques that
do not exhaustively sample abstract plans before moving onto the next one may converge faster [1].

C.2 GNN Meta Additional Analysis

We were initially surprised by the poor performance of GNN Meta in Stick Button and Coffee, given
that the target functions are intuitively straightforward. In Stick Button, the model should be able
to use the positions of the buttons in the low-level state to determine whether they can be directly
reached, or if the stick should be used instead. In Coffee, the model should use the rotation of the

17

Figure 6: GNN Meta additional results. Task success rates for the GNN Meta baseline on tasks
with more objects (Eval) or the same number of objects (Train) as seen during training. The gap
suggests that the poor performance of GNN Meta in the main results (Figure 4) is largely attributable
to a failure to generalize over object count. All results are over 10 random seeds. Lines are means
and error bars are standard deviations. Note that in Cover and Doors, the distribution of object
number is the same between train and evaluation.

pot to determine if it must be first rotated. To explain the poor performance of GNN Meta in these
environments, we hypothesized that the model struggles to extrapolate to more objects than seen
during training. We tested this hypothesis by evaluating the same GNN Meta models on new tasks
from Stick Button and Coffee, but with object counts from the training distribution. Figure 4 shows
that the performance of GNN Meta sharply improves, supporting the hypothesis.

C.3 Comparison to [12, 13]

Here we elaborate on the relationship between this work and our prior work [12, 13]. In brief, [13]
extends [12] by removing the assumption that samplers are given. Our work here extends [13] by
removing the assumptions that high-level controllers are given (e.g., pick, place, move), and that
demonstration data is provided in terms of those high-level controllers.

Removing the assumption that high-level controllers are given requires several nontrivial steps. First,
in [12, 13], the demonstration data is given in terms of high-level controllers: each transition cor-
responds to the execution of an entire controller, and the controller identity is known. This setting
makes operator learning much easier because each transition corresponds to exactly one operator.
The controller identity is also used to make operator learning easier. In contrast, we are given
demonstration data where the actions are low-level (e.g., end effector positions of the robot), and
we seek to learn operators that correspond to the execution of many low-level actions in sequence.
This necessitates segmentation. Second, because the controllers are fully defined in the previous
work, including their continuous parameterizations, it is straightforward to set up the sampler learn-
ing problems. In contrast, we have no such continuous controller parameterization given to us in
this work. One of our main insights is that subgoal states can be used as the basis for continuous pa-
rameterization. This insight follows from KD1 and has the benefit that we can automatically derive
targets for learning from the demonstration data. Finally, we must learn the controllers themselves.
In the previous work, these controllers were hardcoded.

With these differences in mind, to motivate our work, we designed a version of our approach that
ablates policy learning, and can be seen as an application of [13]. This ablation works as follows:

• For each transition in the demonstration data, we create one (single-step) segment.
• Partitioning and lifting are unmodified. Operator learning is also unmodified.
• Instead of policy learning, we create a “pass-through” policy architecture that consumes a con-

tinuous action (instead of a subgoal) and returns that action.
• Sampler learning is unmodified, except rather than sampling subgoals, we sample actions to give

to the pass-through policy, consistent with the sampler learning of [13].

Another way to understand this ablation is that we are applying the method of [13] but supposing that
the given action space consists of a single parameterized controller, with the parameter space equal to
the low-level action space. We ran this ablation in the Cover environment with 1000 demonstrations
and hyperparameters unchanged from our main experiments. Results are shown in the table on the
right, with the numerical entries representing means (standard deviations) over 10 seeds.

18

Approach Tasks Solved
Ours 99.40 (0.64)

Ablation [12] 2.80 (1.20)

Qualitatively, we see that the learned skills are the same be-
tween the two approaches, except that the ablation learns an
additional skill with empty operator preconditions and effects.
This additional skill is important and provides insight into the
discrepancy between the two approaches. In the demonstration
data, the majority of transitions do not correspond to any change in the abstract state. For example,
as the robot moves in preparation for a pick or place, the abstract state is constant. These transitions
lead to the empty operator effects. The preconditions are empty because there is nothing in common
between the cases where no abstract effect occurs — sometimes the robot is holding an object, and
sometimes it is not. This empty skill makes abstract planning very difficult because there is no signal
for the planner to realize when using the skill would bring the robot closer to the goal. Note, though,
that this empty skill is needed for planning, and simply removing it would make performance even
worse; the remaining two skills can only handle the single step immediately preceding the respective
effects (i.e., the step where an object is picked or placed).

C.4 Learning from Human Demonstrations

Figure 7: GUI for collecting human demonstrations in Stick Button.
We ran an additional experiment with human demonstrations. To collect the demonstrations, we
created a graphical user interface (GUI) and a simplified version of the Stick Button environments.
The GUI is shown in Figure 7. Here the robot is a red circle, the buttons are yellow circles, the stick
is a brown rectangle, the stick holder is the gray rectangle, and all buttons outside the green region
are unreachable by the robot. Clicking a point on the screen initiates a translational robot movement,
with the magnitude clipped so that the robot can only move so far in one action. Pressing any key
initiates a grasp of the stick if the robot is close enough, or a press of the button if either the robot or
stick head is close enough.

We used the GUI to collect 994 human demonstrations. We then ran BPNS with hyperparameters
identical to the main results. Results are shown in Table 1. We find that the number of evaluation
tasks solved by the approach trained on human demonstrations is slightly below that of automated
demonstrations. This small gap can be attributed to noise, suboptimality, and inconsistencies in
the human demonstrations. Overall, the strong performance of BPNS on human demonstrations
suggests that the approach can be scaled.

C.5 Impact of Irrelevant Predicates

We conducted three additional experiments in the Cover environment to investigate the influence of
irrelevant predicates. We used 1000 demonstrations and all hyperparameters are the same as in the
main results.

19

Demos % Tasks Solved Test Time (s) Nodes Created
Automated 83.60 51.80 421.51

Human 80.00 40.07 430.93

Table 1: Human demonstration results in Stick Button.

Figure 8: Impact of irrelevant predicates.

First, we added a variable number of static predicates, i.e., predicates whose evaluation is always
True or False for an object regardless of the low-level state. Second, we added a variable number
of dynamic (i.e., not static) predicates. Concretely, we created predicates that randomly threshold
the y position of the robot. Third, in an attempt to create a setting that is adversarially bad for
our framework, we added a variable number of random predicates, where the evaluation of each
predicate is completely random on each input, with 50% probability of being True and without
regard for the low-level state.

Results for each of the three experiments are shown in Figure 8. Static predicates have no apparent
impact on evaluation performance. Qualitatively, we see that the preconditions of the learned op-
erators have more preconditions, corresponding to the static predicates that are always True. The
form of the operators, and the rest of the learned skills, are otherwise unchanged. The dynamic
predicates also have little to no impact on evaluation performance. The learned operators again
have additional preconditions, but also have additional dynamic predicates in the effects. However,
these dynamic predicates are relatively “well-behaved”, whereas in more complicated environments,
predicate evaluations could be much less regular. This motivates the random predicates experiments,
where indeed we see a substantial drop in evaluation performance. This drop is precipitated by a
much larger and more complex set of learned operators, which makes abstract planning and learning
more difficult. Altogether, these results confirm that the choice of predicates is important.

C.6 Impact of Irrelevant Objects

We conducted two additional experiments in the Cover environment to test the influence of irrelevant
objects. We used 1000 demonstrations and all hyperparameters the same as in the main results.

In the first experiment, we added a variable number of irrelevant blocks during training, and in the
second experiment, we added them instead during evaluation. The blocks are irrelevant because
they are not involved in goals; they are also placed off the table so as to not cause collisions with the
original blocks. The blocks do have the same type as the original blocks, so they will not be simply
filtered out during type matching.

20

Figure 9: Impact of irrelevant objects.

Results for each of the experiments are shown in Figure 9. Adding the irrelevant objects during
training has no impact on evaluation performance. This is expected, since our preprocessing pipeline
naturally filters out the irrelevant objects. The irrelevant objects exhibit a small impact on learning
time due to the cost of evaluating predicates. Adding the irrelevant objects during evaluation has a
small impact on evaluation performance, although success rate is robust with up to 100 irrelevant
objects. The increase in evaluation time is due to predicate evaluation and an increased branching
factor during abstract planning.

C.7 Disabling Filtering of Low-Data Skills

Environment Filter? % Tasks Solved Test Time (s) Nodes Created
Cover Yes 99.40 (0.64) 2.02 (2.84) 7.15 (0.42)

Cover No 99.40 (0.64) 1.99 (2.79) 7.30 (0.59)

Doors Yes 98.80 (0.80) 1.33 (0.59) 41.94 (4.56)

Doors No 98.80 (0.80) 1.70 (1.05) 50.84 (24.27)

Stick Button Yes 83.60 (1.78) 51.80 (11.47) 421.51 (81.28)

Stick Button No 23.80 (9.68) 121.43 (57.14) 2725.17 (1898.47)

Coffee Yes 98.00 (1.18) 49.39 (10.22) 53.68 (7.07)

Coffee No 98.20 (1.04) 47.72 (9.52) 53.95 (7.01)

Table 2: Disabling filtering of low-data skills.

We ran an additional experiment where we dis-
abled the filtering out of skills with low data.
We used 1000 demonstrations and identical hy-
perparameters to our main experiments. Re-
sults are shown in Table 2, with the numeri-
cal entries representing means (standard devia-
tions) over 10 seeds. The results show that eval-
uation performance in Cover, Doors, and Cof-
fee is largely unaffected by filtering, while the
performance in Stick Button is substantially af-
fected. The performance in Stick Button can be traced back to the rare situation illustrated in the

21

Env Approach % Tasks Solved Test Time (s) Nodes Created
Cover Ours 99.40 (0.64) 2.02 (2.84) 7.15 (0.42)

Cover Oracle 98.80 (0.30) 0.03 (0.01) 7.01 (0.17)

Doors Ours 98.80 (0.80) 1.33 (0.59) 41.94 (4.56)

Doors Oracle 100.00 (0.00) 1.04 (0.09) 84.12 (20.17)

Stick Button Ours 83.60 (1.78) 51.80 (11.47) 421.51 (81.28)

Stick Button Oracle 90.40 (1.99) 0.18 (0.03) 320.32 (46.92)

Coffee Ours 98.00 (1.18) 49.39 (10.22) 53.68 (7.07)

Coffee Oracle 100.00 (0.00) 0.07 (0.01) 67.25 (8.12)

Table 3: Comparison to oracle skills.

image on the right. Typically, when the robot (red) presses a button (yellow) with the stick (brown),
the robot is not above any other button. However, in this case, the robot is coincidentally above
a second button while executing the stick press. This leads to an operator with an effect set that
includes both the button being pressed and the robot being above a second button. That operator
is ultimately detrimental to planning because in the vast majority of cases, it is not possible for the
robot to press the button while being above a second button, so refining this operator usually fails.
This operator also has a very small amount of training data, which makes the associated policy and
sampler unreliable. For similar reasons, we prefer to filter out skills with too little training data by
default.

C.8 Comparison to Oracle

We collected statistics for an oracle approach that uses manually-designed skills. We use identical
hyperparameters to the main results. The statistics are reported in Table 3, with the numerical entries
representing means (standard deviations) over 10 seeds, and where “Ours” is the main approach,
BPNS, trained with 1000 demonstrations. In Doors and Coffee, the learned skills require fewer node
creations during abstract search to find a plan. This difference can be attributed to (1) overly general
preconditions in the operators of our manually designed skills; and (2) more targeted sampling when
using the learned samplers versus manually designed samplers. In all environments, the wall-clock
time taken to plan with our learned skills is far greater than that of the oracle. From profiling, we can
see that this difference is largely due to neural network inference time in both the learned samplers
and learned skill policies. In contrast, the manually designed skills are written in pure Python, and
can therefore be evaluated very efficiently.

C.9 Learned Operator Examples

See Figure 10 for examples of learned operators in each environment. Below, we describe the
operators that are typically learned at convergence for each of the environments. These descriptions
are based on inspection of the operator syntax, speaking to their interpretability.

• Cover:
1. Pick up a block.
2. Place a block on a target.

• Doors:
1. Move to a door from the main part of a room (not in a doorway).
2. Move to a door from another doorway.
3. Move through an open door.
4. Open a door.

• Stick Button:
1. Move from free space to press a button with the gripper.

22

2. Move from above another button to press a button with the gripper.
3. Move from free space to pick up a stick.
4. Move from above a button to pick up a stick.
5. Move from free space to press a button with the stick.
6. Move from above another button to press a button with the stick.

• Coffee:
1. Pick up the coffee pot.
2. Put the coffee pot on the hot plate.
3. Turn on the hot plate.
4. Move from above no cup to pour into a cup.
5. Move from above another cup to pour into a cup.
6. Twist the coffee pot.
7. Pick up the coffee pot after twisting.

C.10 Predicate Invention Preliminary Results

We ultimately envision a continually learning robot that uses symbols to learn skills and skills to
learn symbols in a virtuous cycle of self-improvement. One plausible path toward realizing this
vision would start with a set of manually designed symbols, as we did in this work, or skills, as done
by Konidaris et al. [4]. Alternatively, we could start with demonstrations alone. In this case, we
need to answer the chicken-or-the-egg question: which should be learned first, skills or symbols?
Here we present very preliminary results suggesting the viability of learning symbols (predicates)
first, and then skills from those learned symbols.

Metric Manual Learned
% Eval Tasks Solved 99.40 (0.64) 99.20 (0.92)
Predicates 5.00 (0.00) 5.40 (0.80)
Eval Time (s) 2.00 (2.78) 2.82 (3.10)
Learning Time (s) 372.01 (4.55) 4898.16 (692.09)

We follow the approach of Silver et al. [21],
which starts with a minimal set of goal predi-

cates that are sufficient for describing the task
goals, and then uses demonstrations to invent
new predicates. Specifically, we focus on the Cover environment, where there is only one goal
predicate: Covers. Given 1000 demonstrations, after learning predicates (see [21] for a description
of the approach), we run BPNS skill learning and planning, with the configuration identical to the
main experiments. Results are shown in the table on the right. Each entry is a mean (standard devi-
ation) over 10 random seeds. The Manual column uses the manually designed predicates from our
main experiments and the Learned column uses learned predicates. Further investigation is needed,
but the results do suggest that learning skills on top of learned predicates is a viable direction. We
also report the number of predicates learned, evaluation time, and learning time. Consistent with the
prior work, we see that additional predicates can be learned that sometimes lead to faster planning
during evaluation. We also see that the time bottleneck for the overall system is predicate invention,
not skill learning.

23

Figure 10: Learned operator examples.

24

	Introduction
	Problem Setting
	Neuro-Symbolic Skills
	Bilevel Planning with Neuro-Symbolic Skills
	Learning Neuro-Symbolic Skills from Demonstrations
	Data Preprocessing
	Skill Learning

	Experimental Results
	Related Work
	Conclusion
	Environment Details
	Cover Environment Details
	Doors Environment Details
	Stick Button Environment Details
	Coffee Environment Details

	Approach Details
	Bilevel Planning with Neuro-Symbolic Skills (BPNS)
	BPNS No Subgoal
	Graph Neural Network Metacontroller (GNN Meta)
	GNN Meta No Subgoal
	GNN Behavioral Cloning (GNN BC)
	Samples=1
	Abstract Plans=1

	Additional Results
	Planning Time Analysis
	GNN Meta Additional Analysis
	Comparison to silver2021learning,chitnis2021learning
	Learning from Human Demonstrations
	Impact of Irrelevant Predicates
	Impact of Irrelevant Objects
	Disabling Filtering of Low-Data Skills
	Comparison to Oracle
	Learned Operator Examples
	Predicate Invention Preliminary Results

