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A.4 ANALYSIS OF THE PROGRESSIVE UPSAMPLING GENERATION PROCESS IN AP-LDM

To clearly illustrate the progressive upsampling process of AP-LDM, we set 7o = [0.2,0.2,0.2] to
generate 4096 x 4096 images. As shown in Fig. 14, the images generated at different sub-stages of
AP-LDM exhibit a high degree of consistency, with only minor differences in details. Since our task
focuses on generating HR images rather than traditional image super-resolution, these differences in
details are reasonable.
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Figure 14: Illustration of the progressive upsampling generation process. The inference speed
is evaluated on a single NVIDIA 3090 GPU.
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Another noteworthy observation is that even though the progressive upsampling generation sub-
stages involve only a small number of denoising steps (e.g., 10 steps), the majority of the generation
time is still consumed in these sub-stages. This is because the time required for denoising mod-
els to perform inference increases dramatically with the image size. For each denoising step, the
time required for HR images is several times that for low-resolution images. Consequently, repeat-
ing a full denoising process at high resolution is extremely time-consuming (Du et al., 2024; Lin
et al., 2024). Considering that HR and low-resolution images should share the same low-frequency
structure, and that DMs naturally generate low-frequency structures first during denoising (Yu et al.,
2023; Teng et al., 2023), AP-LDM effectively leverages the prior knowledge of low-frequency struc-
tures in low-resolution images. This significantly reduces the number of denoising steps needed at
high resolution, thereby substantially accelerating the image generation process.

A.5 How DOES PFSA WORK?

In this section, we further elaborate on the working mechanism of PFSA. Specifically, the func-
tionality of PFSA can be described in two aspects: (i) clustering the related tokens in the latent
representations; (ii) adjusting the amplitude of the high-frequency and low-frequency components
in the latent representations.

A.5.1 PFSA CLUSTERS TOKENS OF LATENT REPRESENTATIONS

PFSA reorganizes tokens based on their similarities. Intuitively, this enables PFSA to perform to-
ken clustering, which enhances the structural consistency of latent representations. To demonstrate
the clustering effect of PFSA, we calculated the deviation of the tokens’ mean (DTM) of the la-
tent representations 2z; and z;. Concretely, assuming z; € Rixwxe and Z, = Flatten(z;) =
[Ye1, - yein] € RYXC where N = h x w, we calculate DTM as:

18



Under review as a conference paper at ICLR 2025

DTM = [mean(y;;) — mean(Z;) for i=1,...,N] 5)

To provide an intuitive illustration of the clustering effect of PFSA, we visualize the DTM based
on token indices (i.e., ¢ = 1,..., N) when t is relatively large. As shown in columns (A) and (B)
of Fig. 15, compared to the DTM of z; (blue points), the DTM of 2z; (red points) becomes more
dispersed and exhibits distinct stripe patterns, indicating that PESA indeed clusters the tokens of the
latent representations. This clustering effect can be more directly demonstrated when ¢ is smaller.
As shown in the heatmaps in columns (C) and (D) of Fig. 15, it is evident that PFSA clusters
semantically related tokens.

* ®) © ®)

DTM: z, (t=1) DTM: Z (t=1)

@& o8

DTM: z, (t=1) DTM: Z (t=1)

(b)

Byl

Token Index (t=49) DTM: z, (t=1) DTM: Z (t=1)

Token Index (t=49) Token Index (t=44)

Figure 15: The clustering effect of PFSA. Columns (A), (B), (C), and (D) show the DTM of latent
representations, while column (E) presents the corresponding generated RGB images.
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A.5.2 PFSA ADJUSTS THE AMPLITUDE OF HIGH- AND LOW-FREQUENCY COMPONENTS IN
LATENT REPRESENTATIONS

The aim of this section is to explain: (i) why appropriately delaying attentive guidance can resolve
structural deformation issues (as shown in Fig. 8), (ii) why attentive guidance enhances the details
and colors of the image (as shown in Fig. 6, 7, and 12), and (iii) why applying attentive guidance in
the later stages of denoising does not enhance the image details and colors (as shown in Fig. 9).

To explain the aforementioned three points, as shown in Fig. 16, we calculate the Fourier transforms
of z; (blue solid line) and z; (red solid line), along with the mean of the standard deviations for all
their channels (dashed line). It can be observed that PFSA significantly alters the relative amplitudes
of the high- and low-frequency components in the latent representations during the initial denoising
steps (from ¢ = 49 to t = 47), particularly affecting the low-frequency components, which results
in structural deformation. During the early and middle stages of denoising (from ¢ = 44 to ¢ = 29),
PFSA increases the amplitudes of high-frequency components in the latent representations, which
explains why attentive guidance leads to richer details and colors. In the later stages of denoising
(from ¢t = 28 to t = 0), PFSA slightly suppresses the high-frequency components of the latent
representations while almost leaving the low-frequency components unchanged. This explains why
applying attentive guidance in the later stages of denoising cannot enrich details and colors of the
generated images.

Additionally, Fig. 16 shows that PFSA increases the standard deviation of z; during the early and
middle stages of denoising, while decreasing it in the later stages. The trend of the standard deviation
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Figure 16: The Fourier transform of the latent representation and the mean of the standard
deviations across all channels. z; is represented in blue, while z; is represented in red; the Fourier
transforms are shown as solid lines, and the standard deviations are shown as dashed lines. The
results are based on the generation process of 5k images.

changes is closely consistent with the variation in the amplitude of the high-frequency components.
We conjecture that this is because the amount of information in the latent representations is positively
correlated with the standard deviation, where a larger standard deviation corresponds to more image
details and larger high-frequency components.

A.6 COMPARISON WITH ADDITIONAL BASELINE MODELS

In this section, we compare AP-LDM with additional baseline models. Specifically, we include
recently proposed HiDiffusion (Zhang et al., 2025) and a super-resolution model (SDXL+BSRGAN,
i.e., the outputs of SDXL are upsampled using BSRGAN (Zhang et al., 2021)). Since HiDiffusion
experiments are conducted using professional-grade V100 GPUs without optimization for ultra-
high-resolution images, it is not feasible to generate images with resolutions above 2048 x 4096 on
consumer-grade GPUs such as the 3090. Due to device limits, we compare its performance only at
the resolution of 2048 x 2048. The experimental setup remains the same as described in §4.

A.6.1 QUANTITATIVE COMPARISON

Comparison of generated image quality.  Table 8 presents the extended quantitative compari-
son results of generated image quality, which further demonstrate our effectiveness on HR image
generation. We observe that models employing progressive upsampling generation (e.g., AP-LDM,
DemoFusion, and AccDiffusion) achieved relatively better results, showing the robustness of the
progressive upsampling generation paradigm.

Table 8: Quantitative comparison results. The best results are marked in bold, and the second
best results are marked by underline.

2048 x 2048 2048 x 4096 4096 x 2048 4096 x 4096
FID IS FID. IS. CLIP FID Iy FID. IS. CLIP FID Iy FID. IS. CLIP FID Iy FID. IS, CLIP

SDXL 999 142 800 169 250 1499 95 1063 120 244 1731 9.1 1085 115 239 1914 83 1141 124 229
MultiDiff. 988 145 679 17.1 246 1258 96 719 157 246 1490 90 705 144 244 1684 65 766 144 231
ScaleCrafter 982 142 897 133 254 1619 100 1543 75 233 1751 97 1673 80 216 1645 94 1701 73 223
UG 822 176 658 146 255 1557 82 1650 66 217 1853 68 1757 62 205 1873 70 1976 63 218
DemoFusion 723 216 535 191 252 963 177 623 150 250 99.6 164 619 147 244 1014 207 635 135 247
AccDiff. 716 210 527 170 251 955 164 629 IL1 245 1022 152 654 115 242 1032 201 659 133 246
SDXL+BSR. 662 21.1 475 166 257 807 198 502 123 251 927 176 579 121 249 90.0 209 560 138 252
HiDiff. 81.0 168 641 142 249 - - - - - B - - - -
AP-LDM 660 210 474 175 251 890 203 560 190 250 932 195 569 165 249 906 211 590 148 246

Method

In contrast, HiDiffusion fell short compared to methods using progressive upsampling. We speculate
that its suboptimal performance is due to two factors: (i) the forced resizing of deep feature maps
during the generation process, which causes significant distribution shifts; and (ii) the use of MSW-
MSA (a sparse attention mechanism similar to SwinTransformer (Liu et al., 2021)), which forcibly
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alters the attention’s receptive field and sequence length, leading to severe shifts in the entropy of
attention weights (Jin et al., 2024). The aforementioned two issues prevent HiDiffusion from fully
addressing the problem of repeated object structures and result in severe artifacts and deformations
in the generated images (as shown in Fig. 17).

The super-resolution model (SDXL + BSRGAN) demonstrated strong performance in quantitative
experiments, a phenomenon also observed in the DemoFusion’s experiments. This is because super-
resolution models can at least preserve the low-frequency structures of images without significant
errors. However, as discussed in DemoFusion (Du et al., 2024) and AccDiffusion (Lin et al., 2024),
super-resolution models fail to add finer details to high-resolution images (as shown in Fig. 18).

Comparison of resource consumption. We also compare the inference time and GPU memory
usage required by the models. Specifically, we test the minimum GPU memory requirements during
model inference based on the model’s open-source code. Table 9 shows the resource consumption
of different models when generating images at various resolutions. SDXL+BSRGAN, unlike DMs,
does not require iterative inference, allowing it to achieve the fastest generation speed. However,
the super-resolution model fails to generate the level of detail expected in high-resolution images,
which has limited its widespread adoption.

Table 9: Model resource consumption. The best results are marked in bold, and the second best
results are marked by underline. Time unit: minute. Storage unit: GB.

M 2048 x 2048 [ 2048 x 4096 [ 4096 x 4096
ethod - . .
time cost  storage cost time cost  storage cost time cost  storage cost

SDXL 1.0 15.9 3.0 16.1 8.0 16.6
MultiDiff. 3.0 22.0 6.0 16.8 15.0 16.8
ScaleCrafter 1.0 17.4 6.0 17.6 19.0 19.1
uG 1.8 23.9 4.0 16.5 11.1 18.0
DemoFusion 3.0 15.2 11.0 18.4 25.0 16.8
AccDiff. 3.0 22.1 12.7 23.0 26.0 22.1
SDXL+BSR. 1.0 14.6 1.0 11.1 1.0 21.1

HiDiff. 0.8 23.9 - - - -
AP-LDM 0.6 16.0 2.0 21.1 57 23.8

It is worth noting that for high-resolution image generation tasks, the memory bottleneck lies in the
encoding and decoding of the VAE rather than interpolating the image in pixel space. To address the
challenges of encoding and decoding high-resolution images, researchers typically employ tiled en-
coders and tiled decoders. In this work, we also utilize a tiled-encoder and decoder when generating
ultra-high-resolution images, allowing us to generate images with resolutions up to 4096 x 7280 or
higher on a 24GB VRAM NVIDIA 3090 GPU (as shown in Fig. 1).

A.6.2 QUALITATIVE COMPARISON

Qualitative Comparison with HiDiffusion. = We conduct extensive qualitative comparison exper-
iments between AP-LDM and HiDiffusion, with the results shown in Fig. 17. From the figure, it can
be observed that AP-LDM consistently generates high-quality, high-resolution images. Although
capable of generating some good results, HiDiffusion suffers from significant distribution shifts in
the UNet features due to forced feature scaling and the use of window attention, which alters the se-
quence length during attention computation. This often causes the generated images to collapse, as
illustrated in Fig. 17 (a)-(e). Even when HiDiffusion avoids image collapse, it frequently produces
noticeable artifacts and distortions, as shown in Fig. 17 (f)—(h). In Fig. 17 (i) and (j), HiDiffusion
still exhibits severe structural repetition in the generated outputs, indicating that merely resizing the
deep features of the UNet is insufficient to completely eliminate low-frequency structural errors.

Qualitative Comparison with SDXL+BSRGAN. We conducted extensive qualitative compar-
isons between AP-LDM and SDXL+BSRGAN. Specifically, we compared their performance at
resolutions of 2048 x 2048 (Fig. 18 (a)-(d)) and 4096 x 4096 (Fig. 18 (e)-(h)). As we can see,
compared to AP-LDM, SDXL+BSRGAN, while maintaining decent image structure, fails to gen-
erate the level of detail expected from HR images. The absence of these details sometimes leads
to the model’s inability to simulate realistic scenes. For example, in Fig. 18 (c), SDXL+BSRGAN
fails to generate realistic shadows. At higher resolutions (e.g., 4096 x 4096), SDXL+BSRGAN may
introduce artifacts, as shown in Fig. 18 (e) and (g).
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Figure 17: Quantitative comparison with HiDiffusion, where all images have a resolution of
2048 x 2048. The prompts for the generated images are provided above the figures.

A.7 ATTENTIVE GUIDANCE ALSO WORKS IN OTHER GENERATION FRAMEWORKS

In this section, we apply attentive guidance to other generative frameworks to demonstrate its gen-
eralization capability. Specifically, we apply attentive guidance to the generative frameworks of
HiDiffusion and DemoFusion, and conduct both quantitative and qualitative ablation studies.

A.7.1 QUANTITATIVE ABLATION IN OTHER GENERATIVE FRAMEWORKS

In this section, considering the long inference time of DemoFusion, we perform quantitative ablation
studies on attentive guidance using the HiDiffusion generation frameworks at a resolution of 2048 x
2048. All experimental settings are consistent with those in §4.

Table 10: Quantitative ablation of attentive guidance using HiDiffusion frameworks. The best
results are marked in bold. AG: attentive guidance.

Method FID IS FID. IS. CLIP

HiDiffusion 81.0 16.8 64.1 142 249
HiDiff+AG 794 17.0 624 14.6 249
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Figure 18: Qualitative comparison with SDXL+BSRGAN. Figures (a)-(d) have a resolution of
2048 x 2048, while Figures (e)-(h) have a resolution of 4096 x 4096. The prompts for the generated
images are provided above the figures.

Table 10 presents the quantitative ablation results using the HiDiffusion framework. It is evident that
incorporating attentive guidance improves HiDiffusion across all metrics. This is further corrobo-
rated by the qualitative analysis in Fig. 19, which demonstrates that attentive guidance alleviates
some of the structural collapses observed in HiDiffusion.

A.7.2 QUALITATIVE ABLATION STUDIES IN OTHER GENERATIVE FRAMEWORKS
HiDiffusion+attentive guidance. HiDiffusion enforces scaling of the UNet feature maps during

image generation, which often leads to structural collapse and deformations in the generated images
(as shown in Fig. 17). Fig. 19 (a)-(f) demonstrate that using attentive guidance effectively mitigates
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Figure 19: Qualitative ablation of attentive guidance in the HiDiffusion Framework. All images
have a resolution of 2048 x 2048. Figures (a)-(f) demonstrate that attentive guidance can mitigate the
issue of structural collapse in generated images, while Figures (g)-(1) show that attentive guidance
resolves structural deformation issues and enhances image details.

the issue of structural collapse in synthesized images. Fig. 19 (g)-(1) further show that attentive
guidance can also address the structural deformation inherent to HiDiffusion, enhance image details,
and improve overall image quality.

DemoFusion+attentive guidance. In the analysis presented in §4.3 and §A.3, we observed that
DemoFusion tends to produce repetitive structures (as shown in Fig. 5 and 13), a phenomenon also
noted in other studies (Lin et al., 2024). We incorporate attentive guidance into the generative
framework of DemoFusion. As shown in Fig. 20 (a)-(e), attentive guidance effectively mitigates
the issue of repetitive structures in DemoFusion. Fig. 20 (f)-(j) further illustrate role of attentive
guidance in enriching image details and enhancing overall image quality.

A.8 COMPARATIVE AND ABLATION ANALYSIS BASED ON STABLEDIFFUSION 2.1

To validate the generalization capability of AP-LDM, we conducted extensive quantitative and qual-
itative analyses using StableDiffusion 2.1 (SD2.1) as the pretrained base model.

A.8.1 COMPARISON EXPERIMENTS

Quantitative comparison.  Since the code for using SD2.1 as the pretrained model in AccDif-
fusion and DemoFusion is not publicly available, we compare AP-LDM with ScaleCrafter in this
section. We compared the model performance at four resolutions: 1536 x 1536, 1024 x 2048,
2048 x 1024, and 2048 x 2048. Considering that SD2.1’s generation capabilities are weaker than
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Figure 20: Qualitative ablation of attentive guidance in the DemoFusion Framework. All im-
ages have a resolution of 2048 x 2048. Figures (a)-(e) demonstrate that attentive guidance effectively
mitigates the issue of repetitive structures in images, while Figures (f)-(j) showcase attentive guid-
ance’s ability to enrich image details.

SDXL, we set 175 = [0.2,0.2,0.3] for the experiments in this section, while keeping other settings
consistent with §4.

Table 11: Quantitative comparison results based on SD2.1. The best results are marked in bold.

Method 1536 x 1536 | 1024 x 2048 | 2048 x 1024 | 2048 x 2048
FID IS FID. 1IS. CLIP FID Iy FID. 1IS. CLIP FID IS FID. 1IS. CLIP FID IS FID. IS. CLIP
SD2.1 954 17.8 834 158 250 858 159 761 163 252 101.8 158 798 168 24.6 121.7 144 927 144 245

ScaleCrafter 1404 10.6 1364 9.7 219 1500 10.1 1393 101 21.7 1498 104 1356 115 21.8 1442 104 1352 103 234
AP-LDM 603 210 506 183 254 611 199 541 184 250 637 192 504 182 247 605 215 488 172 253

Table 11 presents the results of the quantitative comparison, demonstrating that AP-LDM maintains
strong performance when using SD2.1 as the pre-trained model. ScaleCrafter, on the other hand,
performs suboptimally due to its tendency to produce structural collapse in generated images, a
phenomenon more evident in the qualitative analysis.

Qualitative comparison.  Fig. 21 presents the results of the qualitative comparison. It can be
observed that when generating high-resolution images, SD2.1 also encounters issues with repetitive
object structures. ScaleCrafter frequently exhibits structural collapse in generated images during
denoising with SD2.1, leading to its suboptimal performance. In contrast, AP-LDM consistently
produces high-quality results across all resolutions, demonstrating the generalizability of the AP-
LDM generation framework.
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Figure 21: Qualitative comparison using SD2.1 as the pretrained model.

A.8.2 ABLATION STUDY ON ATTENTIVE GUIDANCE

Quantitative ablation.  Table 12 shows the results of the quantitative ablation on attentive guid-
ance using SD2.1 as the pretrained model. It can be observed that attentive guidance leads to im-
provements in metrics. These improvements are more evident in the qualitative ablation analysis.

Table 12: Quantitative ablation results based on SD2.1. The best results are marked in bold.

1536 x 1536 1024 x 2048 2048 x 1024 2048 x 2048
FID. IS. CLIP FID IS  FID. IS. CLIP FID IS FID. IS. CLIP FID 1S FID. IS. CLIP

w/oAG 612 209 502 189 252 615 196 540 195 249 646 196 492 170 246 61.1 212 465 182 252
w/AG 603 21.0 506 183 254 611 199 541 184 250 637 192 504 182 247 605 215 488 172 253

Method
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Figure 22: Ablation study of attentive guidance using SD2.1 as the pre-trained model. Resolu-
tion: 2048 x 2048.

Qualitative ablation.  Fig. 22 presents the ablation analysis of attentive guidance based on SD2.1.
From the figure, it can be observed that attentive guidance also enhances detail richness and color
vibrancy when using SD2.1, further demonstrating its generalization capability.
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