Supplementary Material for “Closing the Gap: Tighter Analysis of
Alternating Stochastic Gradient Methods for Bilevel Problems"
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A Proof for stochastic bilevel problem

A.1 Auxiliary Lemmas
Throughout the proof, we use Fr; = o{y®, a0 ... yF 2k ol Rty F =
o{y®, 20, ... y**T1}, where o{-} denotes the o-algebra generated by the random variables.

We first present some results that will be used frequently in the proof.
Proposition 5 (Restatement of Proposition[I). Under Assumptions 1-3, we have the gradients

VF(z) = Vo f(2,y* (@) — V2,9(2,5"(2)) [V2,9(z,y* ()] Vyf(z,y*(@). (G2

Proof. Define the Jacobian matrix

s=yi(z) o g=ui()
sz(x) = o T o
e Ya(z) o gi-ya(z)
By the chain rule, it follows that
VFE(z) = Vo f(z,y"(x)) + Vay* (2) 'V, f (2,57 (2)). (33)
The minimizer y*(z) satisfies
Vyg(z,y*(2)) =0, thus V,(Vyg(z,y*(x))) =0, (34)

from which and the chain rule, it follows that
V2,9(z, 5" (2)) + Vay* ()" Vi, 9(z, v (x)) = 0.
By Assumption 2, V2, g(x,y*(x)) is invertible, so from the last equation,

Yoy (2) T == —V2 g(,y" (2)) [V2,9(z.y"(2))] (35)

Substituting (33) into (33) yields (6).
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Lemma 4 ([16, Lemma 2.2]). Under Assumptions I and 2, we have

IVef (@, y"(x)) = Vaf(z, )l < Lflly* (z) =y (36a)
IVF(z1) = VF(x2)|| < Lplzr — o2 (36b)
[y (z1) — y"(z2)|| < Ly|lz1 — 22| (36¢)

with the constants Ly, L, Ly given by

Lgilyr  Lro Lyaly 2 by
Ly:—=/¢ 9, ) iy g9,1*g, O HQ ; [ - 9, Ok
f=rr g ’ug(gﬂ g )— (k) y = g— (k)

L
bgallra+ Ly) + tro (ggg + M) = O(x?),

Lp:={p1+
Hg Hg Hg

where the other constants are defined in Assumptions 1-3.

Lemma 5 ([18, Lemma 11]). Recall the definition of h’;é in (I0). Define
s .= E[R5|F].

We have

N
N2 7 1
||fo(xk7yk+l) - hlffH <lgalp1— ( — 'ug> =: by,
Hg by

_ 3 B
E[|h% — 1E|1%) < 0% + 2 [(0F + o) (025 +202 ) + 0702 ] =: 67 = O(K?),
g

where k is the condition number defined below Assumption 2.

A.2 Proof of Lemmal[l]

Using the Lipschitz property of VF in Lemmaf] we have

L
E[F(z"t1)|F] < F(a*) + BE(VF ("), 2" — 2%)| F] + TFHE[II&?’“+1 — 2"|?| 7]
Kk k\ 7.k LFO‘% k2|
= F(z") — ap(VF(z"), h}) + E[||hF % 7]

(a) . Qg Qg+ oy, -
< (k) - SFIVF@EN|2 - SRS + SEIVF@E*) - |

+ Fll” +

LFa2 - LFOZ2 -
22| LI} - B121F]

®) Qg ar  Lpa?\ | -
< Fat) - VRGP - (5 - 2 ) e

LFO‘% )
9 7f

« —
+ S IVE@) - R + (37)

where (a) uses 2a b = [|a]|? + ||b]|> — [la — b]|? twice and (b) uses Lemmal3}
We decompose the gradient bias term as follows

IVE@*) = Bf1” = IV F ",y (@4) = Vf(ak, g™ + Vit g ) = Ry
<2V f(a*,y* (@¥) = VI, yF )12 + 2|V (") — BE|J?

—

a

< 203y — ()| + 267 (38)

=

where (a) follows from Lemmad]and Lemma[5] Plugging (38) into (37) completes the proof.
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A.3  Proof of Lemmal[2]
Recalling the definition of V,y*(z) in @, for any x1, x2, we have

IVt (1) — Vg (22)] (39)
= V2,00 g @) V2 gy (@)~ — V2yg(an, y* (22))[V2 gy (22)])
< IV, g,y (21)) — V29022, " ) [11V2, g,y (@)
V2,02 v ) V20, v )] — [V2y0(ea, " (e2))]
Qiuvzyg(m,y (£1)) — V2,92, 5" (22))|
+€q,l|
() 1

V2, 9(z1,y" (z1))] (Vf,yg(fcl,y*(ml)) — V2 ,9(x2,y" (22))) [Vi,9(z2, y* (22))] 71|
||nyg(9317y (1)) — V2, 9(x2,y" (x2))]] + Hvyyg(fcl,y*(xl)) — Vi, 9(x2,y" (z2))

where both (a) and (b) follow from Assumption 1 and 2.

In addition, we have that

1 * * *
;Hviyg(why (21)) = Va,9(z2,y" (z2))l| M fot ||Vyy9($17y (21)) = Viyy9(2, 9" (22))]]
g

Ly o loo . 67167 lgilg2, . .
< 22 lay — ol + 22y (21) — (@) || + 222 |y — @ + L2 [y (@) — y* (22)]]
Ng /~Lg lug N’g

(e (¢ £,oL L,1(£ lyoL
< ( 9,2 '; 9.2y | g.1( 912:2_ 9.2 y)> |z1 — z2|| (40)
9 9

where (c) follows from Lemma]

Next we derive the bound of h’},
E[|R5I1P1F5] = RGP + E[l[h% — hE %72

a9 = . _
< (IVF@ER g + 1S = Vi@, "7 + 67

2
© Crol 0,00 N
< (éf,o+ H0%g:l 4 Zelthl (1—“9> ) +52

Hg Hg g1
Crol lorlr1\?
S (gf,o + f,0¢g,1 + g1 f71> _1_6_? (41)
Hg Hg

where (d) is from Lemmal[3} and (e) is due to

Ve (@, 9)ll = Ve f (2,9) = V2,9(2.9) [V,9(z.9)] " Vif (2.9)]
< IV (@)l + 192,90 || (92,002 9)) " || 19,/ (2 )1

§ €f70 Jr 697176‘]“70.
Hg

As a result, we have

l £, oL ly,1(L £y oL
Lys = 9.2 T fg2Ly + g.1( g,2+2 g.2Ly) _ O(KS) (42)
ﬂg /’Lg
- ¢ 1\?
CJ% = <lf,0 + LJ(f,l + fg,1€f,1> + &J% = O(KQ) (43)
Hg Hg

from which the proof is complete.

17



A.4 Proof of Lemma[3

This part of analysis is very important to obtain our improved results. We start by decomposing the
error of the lower level variable as

A+ =y @I = =yt @ @) — g @)

+2 (YT -y (@), vt () -y (e T)). (44)

Notice that y* ! = y*T as defined in (Oa). We first analyze
Ef|ly® ™ — y* (2*)II*| 7]
= E[ly"" = Brhg’ — " (") F]
= [ly™* — y* (@*)? = 28k (™" — y*(2F), B[R

(@)
< g™ =y (@) = 281" =y (@), Va(a®,y™ ) + BRI Va (=™, ") + Biog

) + BRE|hg 7| F5)

(®) 2/14 Y4 1 2

< (1= 9*9, kit w0 kY2 _ \V/ k , k,it\)2 2 2

< (1= ) I = @ B (B — o ) IV P + B
(0

< (L= pgB)lly™" —y* (@)? + Bioy., (45)

where (a) comes from the fact that Var[X] = E[X?] — E[X]?, (b) follows from the ji,-strong
convexity and £, 1 smoothness of g(z,y) [53} Theorem 2.1.11], and (c) follows from the choice of

2pg8g.1

stepsize fj, < - +é ~ in (T2) and the definition of p, := o g

Taking expectation over F}, on both sides of (@3)) and using induction, we are able to get
E[A] = E[lly*" =y (")) < (1= pgB) "Elly" —y* @")|P] + ThRog 1. (46)
The upper bound of J, can be derived as
ElJo] = E[lly*(z"*1) — y* (@")|°] < LE[l«*T" — 2*||?]
= L2} [E[||% — B + hE|?1 ]
< L2a} (E([RE|?) + 52) (47)
where the inequality follows from Lemma 3}

Our analysis of the term J;5 is very different from existing bilevel optimization literature [[16} |18 |17,
25 126]. The term J3 can be decomposed as

Bl = —El" - g (), Ty (@) (= o)
5
—E[y -y ("), g7 (") -y (aF) — vy (@) (2= b)) (48)

I3

k+1 k‘+1

Using the alternating update of z and y, e.g., 2% — y , we can bound J3 by

—E[(y Iy (a8), Vi (@) (2= 2h))] = — E[(F =yt (o), B[V () (@ — ) | FL)]
D B[yt (@), Vi (aF)Rk)]
<arE[[ly 1= y* (&) || Vy* (=) RE]]

©
<ar LyE[lly* =y ()[R ]

) L2a2
2By =y (aM)[17] + 8y E[IR5IP] 49
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where (d) uses the fact that k% = E[h}|F/]; () follows from LemmaEI; and (f) uses the Young’s
2
inequality such that ab < 2vy,a® + 8%.

Next we will use the smoothness of y*(x) in Lemma We can bound JZ by

—E[(y" =y (@), 5" (") — 7 (aF) = Vi (@) (M= )
<E[|ly* 1=y (@) llly* (@) =y (2") = Vy* (@) (@2

(9D L, . .

<R [l g (@) et 2]

WnL ) Lys

< EE [yt -yt @ PEl - 2P A + 43;7 E [E[|l2**— «*|1*| 7]
)nLyfoak

T Elly" =yt @7 + Wna’“( [IRF1] +67) (50)

where (g) uses the smoothness of y* (x); (h) follows from the Young’s inequality such that 1 < 7 +- ﬁ;
and (i) uses the fact that E[||h 1217 < 02 in Lemmaand the variance bound in Lemm: I

Plugging @9) and (30) into ([@8), we have

nLyaC} k Lyaj  Ly.of T Lyz03 _
E < ) E +1_ (k|2 Yy Y k E hk 2 Yy k 2'
< ( o+ L o - g )P+ S D) g+ Lt

&1V

Plugging @7), (31) into [@4), we get

) 0Ly .
Eflly** -y (@2 < (1+ 4y + 2L B[y -y ()]

2
L,.0? - L, .02\ _
+ (£20? TR = CE[IR 1) + (Lgaz+—y2n L)

from which the proof is complete by choosing v;, = Ly Lyo.

A.5 Proof of Theorem I

Using Lemmas|[T|and [3] we, respectively, bound the two difference terms in (T3) and obtain

E[VkJrl} . ]E[Vk]

LFOL2 Lf Lf OL%LQ Lf Lo
<——]E VF (—_7k_7L,2a2_7 R k) Rk
IVE@"))?] - 5 L, T T Ly o [IR%]12]
L NLyeC? .
F 2 (1t Lo + LGB -y @) - LRl -y )
Yy

Lr | Ly o, LiLys\ 2.9
+akbi+(—+—L +Z )ao
2 L, L, 21 f

< )2 - (% - Leoi

Lra L2 Ly L
< - SE[VF@ . Lrcily Ly Lysos

T it i L L2

— LyLyog —

P2 (st Lo+ fof)< — poB)T — 1)E[ly* — y" (")

Y 2
L Ly.C? Lp Li Ly,
+L—f(1+47,€+Lf/:yak+77 o fa%)TBiag’l—Fakbi—k( + LyL, +Lf 7 )oﬂ&;
Y
(52)

where (a) uses (I8a) in Lemmal[3}
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Selecting i = Ly L, oy, we can simplify (52) as

2
o oy Ly Lyof Tk2
~ LyLyof = 5 = FL 5 BRI

BV~ B[V < = SRIVFEHI) - (5 -

L T}L 62 *
+ 2 (1 2Ly yon + TE03) (1= 807 < 1)E(ly -y (@)
Y

L NLyC?
+=L (1 +5Ly Ly + —o—1 i)
L, 1

Lp Ly Ly -
+apb? + (7 4 LyLy + 2§7Ly )aia?. (53)

To guarantee the descent of V¥, the following constraints need to be satisfied
1

@ (54a)
Sy AL;Ly + e
NL,, C
Tpyfh > 2Ly Lo + 2 o} (s4b)
2
< —. (54¢)
Ok tg + Ly
Finally, we define (with p, 1= 2242:2
_ 1 _ 8T
= 2LfL » Q2 = . A2~ (55)
2Lr + 4LfL + — (,ug + 6971)(8LfLy + 277LymC’fa1)
and, to satisfy the condition (34), we select the following stepsizes as
(. a 8L Ly + 2nLyoChan s
ak = min ala a27 \/? I k= 4Tpg O(k;. ( )
With the above choice of stepsizes, (53] can be simplified as
! ~
E[VFH] — E[VF] < — 7’“E[||VF(M)||2] + 10702 ) + apbi + c20}57 (57)
where the constants ¢; and ¢, are defined as
Ly,C? 8LyLy + 2nLy,C3a1\2 1
_f( ~ o Myt o fly T 2Nbyatyo
c1=—(1+5LyLy01 + a)( —
Y v 4 1 4p, T
Lp Ly, Ly
= (% + LyLy + 2220, 58
2 (2+fy+277Ly ©8)
Then telescoping leads to
K-1 o
1 + apb? + 10202 + e TH26
LS pyjwr(aty7 < L i oulh £ evodoh oo THR}
k=0 3 Zk 0 Qk
2v0 2c1 ¢ 2co10
< —— + + 202 + o2+ =52 (59
K min{a;, as} a\/E Rt VK 99,1 VE !

To obtain the best k-dependence, we choose the balancing constant ) = % = O(k), and then we
can get @y = O(k™3), &g = O(Tr3), c1 = O(k°/T), ca = O(xk?). To obtain b? = \/%, we need
N = O(rlog K). Select a = @( =5/2) and T = O(k*), we are able to get

—ZEWF 1?] = O(';i ’jf)

To achieve e-optimal solution, we need K = O(K € ), and the number of evaluations of h’}, h’; are
O(k%e72), O(k%e?) respectively.

20



B Proof for stochastic min-max problem

Recall that the lower-level function for the min-max problem is g(z, y; ¢) = — f(x, y; £). Then we
rewrite the bilevel problem (T)) as
min - F(z) := E¢ [f (z,y" (2); §)] (602)
zER
st.  y*(z) = argmin —E¢[f(z,y; )] (60b)
yERY

In this case, the bilevel gradient in (6)) reduces to

VF(z) =V, f(z,y*(z)) + wa*(x)—rvyf(:c, y*(2)) = Vaof (z,y"(2)) (61)
where the second equality follows from the optimality condition of the lower-level problem, i.e.,
Vy f(z,y*(x)) = 0. We approximate V F'(x) on a vector y in place of y*(z), denoted as V f (z, y) :=
Vaf (x, y) Therefore, the alternating stochastic gradients for this special case are given by

ht = =V, f(a®, y*% &) and B} = Vo f(a®, y* 11 65). (62)

B.1 Verifying lemmas

We make the following assumptions that are counterparts of Assumptions 1-3, most of which are
common in the min-max optimization literature [9, 10} 30} 28].

Assumption 4 (Lipschitz continuity). Assume that f(-,y) is Lipchitz over x € RY, that is, we
have || f(z1,y) — f(x2,9)|| < Lyollz1r — x2||. Assume NV f, N2 f are £y 1, 2-Lipschitz continuous;
that is, for z1 = [z1;y1], 22 = [w2;92], we have [V f(z1,y1) — Vf(22,92)| < {rallzr —
22|, V2 f(@1,51) — V2 fa2,y0) || < Lyollzr — 2.

Assumption 5 (Strong convexity of f in y). For any fixed x, f(x,vy) is f1y-strongly convex in y.

Assumptions 1 and 2 together ensure that the first- and second-order derivations of f(z,y) as well as
the solution mapping y*(z) are well-behaved. Define the condition number x := €71 /.

Assumption 6 (Stochastic derivatives). The stochastic gradient V f(x, y; €) is an unbiased estimators
of V f(x,y); and its variances is bounded by UJ%.

Next we re-derive Lemmas [2] @] and [5] for this special case.
Lemma 6 (Counterparts of Lemmas 2| @and[5). Under Assumptions 1-3, we have

(Lemmal) (| Vy*(21) = Vy*(22)|| < Lyollzy — 2ol E[IWf]?|F7] < CF

(Lemmafl) ||V f(z,y"(z)) = Vf(z,y)| < Lylly* (z) - yl|

IVE(z1) = VF(z2)|| < Lpllzy — 22,y (21) =y (22)|| < Lyllay — a2
(Lemmal) h% =V f(zk 51, E[Hh’fc — ﬁ’}||2|f,’€] < &J%

where the constants are defined as
1o bratlealy | Lra(bra+ braLy)
yr = + 2
Ky Ky

=0(k%), Ci=10,+0}

% ¢
LfZZfJZO(l)a LF:<£f,1—‘r ;}I)ZO(K), Ly:ﬁzo(ﬁ), 6’?:0’?

Proof: We first calculate L by
IVf(z,y™ (@) = V(@ y)ll = (Ve f (2,97 (2)) = Vo f(2,9)]]
< Lrally* (@) =yl = Lylly" () =yl (63)
We then calculate L by
IVE(z1) = VE(@2)|| = [IVaf(z1,5"(21)) = Vi f (22, 5" (2))|
< IVaf e,y (1)) = Ve f (@2, g™ (@))| + Ve f (22,57 (21)) = Vi f (@2, 4" (22)) |
< fpaller = 2ol + Epally™ (1) =y (z2)]]

(2
< (f,,l + 5;) 21 — 2| := Lr|jzy — 2. (64)
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The calculation of L, L, follows the proof of Lemmaand Lemma' and 52 e C?, 3 follows from
the fact b = V, f(a%,y* 1 €5), Wit = =V, f (¥, o> . €51) . Note that different from the bilevel

case, the upper-level gradients h? in the min-max case only contain V f not V,, f, which only needs
the lipschitz continuity of x.

B.2 Reduction from Theorem [I]to Proposition

In the min-max case, we apply Theorem [T| with 7 = 1. We define
1 _ 8T'pg

, Qg = =~
2Lp + 4Ly Ly, + S (g +£g.1) (8L Ly + LyzCFan)
and, to satisfy the condition (34)), we select

=

8LsLy + LyoCtay

«
- i o Q —— d = A
oy = min{ay, as, \/[?} and Sy T, Qg
With the above choice of stepsizes, (39) can be simplified as
K-1
1 2V° 2V0 201a 2co0
E[|[VF(z*)|?] < o2 2 65
7 ;—0 IVFEIT < prmtaray T ave T v D VR (65)

where the constants can be defined as

wé% 2) <8LfLy + T]Lymé]%dl )2 1
C1 (0%

Lf Ly HZ3
“1(1 12,0 o
(120 Ly + = a? 1p, 7~ 9F)

Y

L L,.L
ey = (TF + L¢L, +— f) = O(K?).

AL,
Note that &, = O(k™2), aa = O(Tk™2). Select o = O(k 1), T = O(k), then
-1
15 K2 K
= VF(z* 20(+>. (66)
f 2 BV =0 (T + o

To achieve e-accuracy, we need K = O(k?e¢~2). And the number of gradient evaluations for h’;c, h’g

are O(rk%€72), O(k3e2) respectively.

C Proof for stochastic compositional problem

Recall that in the stochastic compositional problem, the upper- level function is defined as f (z,y; &) =
f(y; &), and the lower-level function is defined as g(z, y; ¢) := 3 |ly — h(z; ¢)||*. Then we rewrite
the bilevel problem (T) as

min  F(z) = Ee [f (4" (2); )] (67a)
st. y*(z) = argmin M\ly h(a; ¢)|1%]- (67b)

yeR
In this case, the bilevel gradient in @ reduces to
VF() : = V2,90, (@) [Viy9(e.y"@)] ' Vyf @y (@)
= Vh(z;:9) "V f(y*(z)) (68)
where we use the fact that szg(x, y;9) = Ly wq and nyg(cc y;¢) = —Vh(x;¢)"

Similar to Section [2| we again evaluate VF'(z) on a certain vector y in place of y*(x), which is
denoted as V f(z,y) = Vh(z)V f(y). Therefore, the alternating stochastic gradients h%, h%* for
this special case are much simpler, given by

hy' =y*" = b ¢") and k= Vh(a"; ")V IR, (69)
It can be observed that h’; is an unbiased estimate of V f(z* y**1), that is, hk Vf(x,y),bx = 0.
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C.1 Verifying lemmas

We make the following assumptions that are counterparts of Assumptions 1-3, all of which are
common in compositional optimization literature [[12, |37, 14,141} 38]].

Assumption 7 (Lipschitz continuity). Assume that f,V f, h, Vh are respectively {5 o, L1, 0p.0,%h1-
Lipschitz continuous; that is, for z1 1= [x1;y1], 22 := [x2;y2], we have || f(z1,y1) — f(z2,y2)| <
Lrollzr = 2ol IV f(z1,91) = V (22, 92)[| < Lypallza (1) = h(@2)[| < lhollzr —
za|, [Vh(z1) = VA(z2)|| < lnal|z1 — 22|

Note that the Lipschitz continuity of Vg, V2g in Assumption 1 can be implied by the Lipschitz
continuity of i, Vh in the above assumption. Assumption 2 is automatically satisfied for stochastic
compositional problems since V,g(x, y; ¢) = Ly x4 and the condition number « := 1.

Assumption 8 (Stochastic derivatives). The stochastic quantities V f (z,y; ), h(x; @), Vh(x; @) are
unbiased estimators of V f (x,y), h(z), Vh(z), respectively; and their variances are bounded by
UJ%, 0'}2“0, O’}QL,l, respectively.

The unbiasedness and bounded variance of Vg(x,y; ¢), V2g(x,y, ) in Assumption 3 can be implied
by the unbiasedness and bounded variance of h(z; @), Vh(z; ¢)

Next we re-derive Lemmas 2} @] and 5] for this special case.
Lemma 7 (Counterparts of Lemmas and). Under Assumptions 1-3, we have

(Lemma) ||Vy*(x1) = Vy*(z2)|| < Lyallws — @all, E[IRF]?|F] < CF

(Lemmaf) ||V f(z,y*(x)) — Vf(z,y)| < Lylly*(z) — y|
[VF(21) = VF(z2)|| < Lr|lzy — z2ll, [[y"(z1) — y* (@2)]| < Lyllz1 — 22|

(Lemmal) E[[|n — h}[|*|F] <67, b} =V f(a* y*)
where the constants are defined as
Ly=10holy1, Ly=4_ho, Lr Zfioffﬁ-ﬁfofh 1, Lys =Llh1
Uf—€h00f+(€f0+gf)ahlv Cf—(gfo‘i”(jf)(gho‘i’g}%,l) (70)

Proof: We first calculate L by

IVf (@ y"(2) =V, y)l = [Vh()Vf(y" (2)) = VA@)VF ()]
< VRV f(y*(x)) = V@)l
< nolyally™(x) =yl := Lelly"™(x) = yll.
We then calculate L by
IVE(z1) = VE(z2)|| = [VA(21)V f(h(z1)) = VA(22)V f(h(22))]|
< (VA )IIV f (1)) =V [ (Mz2)) [+ IV f (R(@2)) VA (21) = VA(22)
< G olyalley — woll + polnllz — 2|
= LF”LEl —.’£2||. (71)

We then calculate L, and L, by
[y (21) — y" (@) | = [|M(@1) = h(z2) || < lholley — wall := Lyllz1 — z2|
IVy™(21) = Vy(@2)[[| = [VA(z1) = VR(22)[| < lhaller = zo = Lyz |21 — 22|

We then calculate 57 by
E[||nf — hj|1*1Fi] < E[IVA(2*; 65)V (1565 = VRN V217
< E[|IVf(y 0PIV A®; 65) = VA" |[*[ 7]
+E[| VAPV F 5 €0 =V " I1P1F
< (GGo+0F)on, + 4 goF =57 (72)
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We then calculate C‘? by
E[||W}]1*|F7] = E[|Vh(*; 65)V f (4565121 F7]
<E[|VF (" 9P FLIENI VA(2®; 65) (17| F2]
(éfo'i'a'f)(eh +0'h 1) = Cf (73)

C.2 Reduction from Theorem [I|to Proposition 4]

In the compositional case, we apply Theoremlby setting 7' = 1, = 1,7 = -—. We define
1 8

] = , Qg = =
P60 ol + 2ol +a By T (gt lg) (805183 o+ Coan)

and, to satisfy the condition (54), we select

8103 o+ C3a
akmin{&l,dg,\/o%} and ﬁk:%ak. (74)

And the constants ¢y, ¢z in (38)) reduce to

Cl—€f1(1+2€f1€h0a1+é? )(w)

4 4
2 0 1+ Lrolna J4 ,132
Cy = ( POTIL TIROTL g2 g w) (75)
2 R 4
We apply (®9) and get
2V 2V0 2¢ 2o 1
= [IVF(x —— + + = +&2=0<) 76
Z I ] Kmin{ay,a} ovK VK hi1 VK f VK (76)
from which the proof is complete.
D Proof for actor-critic method
Recall the state feature mapping ¢(-) : S — R% . Define
A9, = Earpig 5Py [0(5) (70(5') — 9(5)) 7], (77a)
bo,p = EsNue,aNﬂe,S’NP[r(Sv a, S/)¢(3)] (77b)
It is known that for a given 6, the stationary point y*(6) of the TD update in (29) satisfies
Ap,sy™(0) +bg,s = 0. (78)

Due to the special nature of the policy gradient, we make the following assumptions that will lead
to the counterparts of Lemmas 2] ] and [3]in reinforcement learning. These assumptions are mostly
common in analyzing actor-critic method with linear value function approximation [50-H52].
Assumption 9. For all s € S, the feature vector ¢(s) is normalized so that |¢(s)|2 < 1. For all
eligible 0, Ag 4 is negative definite and its maximum eigenvalue is upper bounded by constant —\.

Assumption [9]is common in analyzing TD with linear function approximation; see e.g., [54} 55, 50].
With this assumption, Ay , is invertible, so we have y*(§) = —Ae_)}tbg@. Defining Ry := Tmax/A,
we have ||y*(6)|l2 < R,. It justifies the projection introduced in the critic update (29).

Assumption 10. For any 0,0’ € R%, s € S and a € A, there exist constants Cy, Ly, L such
lhaﬁ-‘ i) Hi@ﬁ(sva)ﬂz < Cy; i) [[Po(s, a) — Yo (s, a)ll2 < Ly|0 — 0'l]2; i) 7o (als) — o (als)] <
L ||0 — €2

Assumption |10|is common in analyzing policy gradient-type algorithms which has also been made
by e.g., [56,157]. This assumption holds for many policy parameterization methods such as tabular
softmax policy [57], Gaussian policy [58] and Boltzmann policy [44].
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Assumption 11. For any 0,0 € R?, there exist constants such that: i) ||Vug(s)|l2 < C,; ii)
I956(5) — Vo ()l2 < Lt 10 — 011 i) s () — pior(5)] < Lolld — &'

Assumption [T1]is the counterpart of Assumption [I0] that is made for the stationary distribution
uo(als). Note that the existence of Vg (s) has been shown in [39]. In this case, under Assumption
[10} i) and iii) of Assumption[TT|can be obtained from the sensitivity analysis of Markov chain; see
e.g., [60, Theorem 3.1]. While we cannot provide a justification of (ii), we found it necessary to
ensure the smoothness of the lower-level critic solution y*(6).

Assumption 12. For any 0, the Markov chain under my and transition kernel P(-|s, a) is irreducible
and aperiodic. Then there exist constants k > 0 and p € (0, 1) such that

sug dry (P(sy € -|sg = s,79), o) < kp', Vi (79)
sE

where L1y is the stationary state distribution under g, and s, is the state of Markov chain at time t.

Assumption@assumes the Markov chain mixes at a geometric rate; see also [54}155]].

We define the critic approximation error as
Capp = 5\ o | Viy (5) = Vi (). (80)

This error captures the quality of the critic function approximation; see also [[61} 50, 51]. It becomes
zero when the value function V7, belongs to the linear function space for any 6.

D.1 Auxiliary lemmas

We give a proposition regarding the L r-Lipschitz of the policy gradient under proper assumptions.

Proposition 6 (Smoothness of policy gradiemt [56])). Suppose Assumption [I0] holds. For any
0,0" € RY, we have |[VF(0) — VF(0')|2 < Lr||0 — 0'||2, where L is a positive constant.

We provide a justification for Lipschitz continuity of y*(6) in the next proposition.
Proposition 7 (Lipschitz continuity of y*(6)). Suppose Assumption [10] and [12] hold. For any
01,02 € RY, we have ||y*(01) — y*(02)||2 < Ly||01 — 02||2, where L, is a positive constant.

Proof. We use y7,ys, A1, As, by and by as shorthand notations of y*(61), y*(62), Aﬂel, Amz,
bry, and br, respectively. By AssumptionEl, Ay, is invertible for any § € R?, so we can write
y*(0) = —A;’é)bgyd). Then we have
lys = y3lle = | = A7 o1 + A5 boll2

== A7 — AT oo + AT oo + AT Do

= | = A7 (b = b2) — (ATT = A3 )bolfo

< AT b = ba)lla + [I(ATT = A5 H)ba ]2

< AT H2llor = balla + | AT = A5 l2[b2|2

= [|AT l2llbr = ball2 + [[ AT (A2 — A1) AZH2[|b2 2

< AT Hlalbr = balla + 14T 2l A5 M l2[1B2 1211 (A2 — A1)l2

SATHb1 = bl + A rmax [ A1 = Azl (81)
where the last inequality follows Assumption[9] and the fact that

[b2ll2 = |E[r(s, a,s")¢(s)]ll, < E|r(s,a,s)o(s)]l, < E (s, a,s)[[¢(s)]l2] < max-  (82)

Denote (s!,a’, s't) and (s2, a?, s'?) as samples drawn with 0; and 0, respectively, i.e. s' ~ pg,,
al ~ g, 8"t ~ P and s% ~ pg,, a* ~ mp,, s’ ~ P. Then we have

161 = bally = ||E [r(s',at, s™)e(sh)] = E[r(s*,a®, s)o(s))]]],
< sup [7(s,a,s")p(s) |2l P((s', a', s™) € ) = P((s*, 0%, 5™) € ) |l7v
< rmax||HD((817 0'17 sll) € ) - P((827 CL2, 8/2) € ')HTV
= 2'rtnaxdTV (Mal ® T, ® pa Ho, ® o, & P)
< 2max Al L (1 +log, £71 4 (1= p)~H)[101 — 622, (83)
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where the first inequality follows the definition of total variation (TV) norm, and the last inequality
follows in [S0, Lemma A.1]. Similarly we have:

A1 — Aally, < 2(1+)drv (1o, ® 7o, , ko, @ Ta,)
= (1 + ALz (1 +log, k7" + (L= p) 71|61 — 022
= Laollh — 02]2. (84)
Substituting (83) and (84) into (8T)) completes the proof. O
We prove the Lipschitz continuity of Vey*(6) next, for which we will use the following fact.

Fact. If the functions f(6), g(6) are bounded by C'; and Cy; and are L ;- and L4-Lipschitz continuous,
then f(0)g(#) is also bounded by C'tCy and is (Cy L, + CyL¢)-Lipschitz continuous.

Proof. Using the Cauchy-Schwartz inequality, it is easy to see that f(6), g(#) are bounded by C;C.
In addition, we have that

1 £(01)g(61) — f(02)9(02)[| = [ £(01)g(61) — f(61)g(02) + f(61)g(62) — f(02)g(02)||
< 1 £(00llg(61) — g(62)[l + [1f(61) — £(02)]l[lg(62)]]
< (Cng + CgLf)”‘gl — 02|z
which implies that f(#), g() is (CyL4 + CyLs)-Lipschitz continuous.
Proposition 8 (Lipschitz continuity of Vyy*(0)). Suppose Assumption hold. Forany 01,05 €
RY, we have | Voy*(01) — Voy*(02)|l2 < Lyz||61 — 022, where Ly, is a positive constant.

Proof. With y*(0) = —A;’clbbg,(ﬁ, we have
Voy*(0) = —=Vo(Ag 4bo.s) = —Ag 5 (VoAss) Ay 1bo.s — Ao.o(Vobo,g)- (85)

To validate the Lipschitz continuity of Vgy*(#), we need to show the boundedness and Lipschitz
continuity of A;;, bo,4, VoAg 4 and Vigbg .

From (83) and (84), we have that there exist constants L 4 o and Ly, o such that Ag , is L 4 o-Lipschitz
continuous, and b, is Ly, o-Lipschitz continuous. From Assumption[J]and (82), we have that there
exist constants C'4 o and C, o such that ||Ag |l2 < Ca,0, and ||bg g|l2 < Ch,o.

In addition, using A; and A, as shorthand notations of A,re1 and A,m?, respectively, we have
AT = A3 2 = [|ATH (A2 — A1) A2
< AT 12147 I l(Az — Al
<A AL = Al
€ _
< A %Laol|01 — 02 (86)
Therefore, A(;; is A™2L 4 o-Lipschitz continuous, and is bounded by A~! due to Assumption El
For simplicity, denote
A(s,8') = 0(s)(v0(s") = d(s) T, b(s,a,8") == 1(s,a,5")¢(s) (87)
and then by ¢ = Espig,anmg,s'~P[b(s,a,8")] and Ag ¢ == Esvpy snp,, [A(s,8")].
Next we analyze Vg Ay 4 and Vybg 4, which is given by
VgAg s = Vg( Z wo(s)mo(als)P(s']s,a)A(s, 5’))

s,a,s’

= Z [(Vope(s)mo(als)P(s'|s,a)A(s,s") + pe(s)Vemg(als)P(s']s,a)A(s,s")]. (88)

From Assumption [10{and |11} ug(s),mg(als), Vaue(s), Vemg(als) are Lipschitz continuous and

bounded. Using the Fact, we can show that there exist constants C4 1 and L 4 ; such that Vg Ag 4 is
L 4 1-Lipschitz continuous and bounded by Cy4 ;.
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Likewise, we have

Vobo,y = V@( Z ug(s)we(a|s)P(s’\s,a)b(s,a,s')) (89)
= Z [Voug(s)ma(als)P(s'|s,a)b(s,a,s’) + pa(s)Vema(als)P(s|s,a)b(s,a,s’)].

From Assumption [10] and [11} w4 (s), me(als), Vape(s), Vomg(als) are Lipschitz continuous and
bounded. Using the Fact, we are able to show that there exist constants C 1 and L ; such that
Vb, is Ly 1-Lipschitz continuous and bounded by Cy ;.

Therefore, since A;;, bo,¢,» VoAg g and Vgbg 4 are all Lipschitz continuous, using Fact, we

can show that Vyy* () in @) is L, ,-Lipschitz continuous, where L, depends on the constants
Cu,Cyp, Lx, Lo, Ly 1, A defined in Assumptions|10] O

D.2 Convergence of critic variables
For brevity, we first define the following notations (cf. £ := (s, a, s)):
0(&y) =r(s,a,8") +78(s') Ty — 6(s) Ty,
hg (57 y) = 5(57 y)¢(8)7
hg(ea y) = Es~u9,a~7r9,s/~7? [hg(f, y)] .
We also define constant Cs := rmax + (1 + v) max{Rmax, Ry}, and we immediately have
1hg (& 9)ll2 < [r(€) +7¢(s) Ty — (5) "yl < Pmax + (1 +7) Ry < Cy (90)

and likewise, we have ||hy (&, y)|l2 < Cj.

The critic update can be written compactly as:

Yr+1 = g, (Y + Brg(€esyr)) 1)
where &, := (sg, ax, s},) is the sample used to evaluate the stochastic gradient at kth update.

Proof. Using y*(6},) as shorthand notation of Yp, - We start with the optimality gap

lyk+1 — y*(9k+1)\|§
= llyk+1 — ¥* () + ¥ (0k) — ¥ (Brs) I3
= llyksr =¥ O0)1I5 + v (Ox) — ¥ Ok )15 + 2 W1 — ¥*(0h), 4" (6k) — ¥ (Oks1)) - (92)
‘We first bound
lyes1 — ¥ O)ll5 =I0r, (Y& + Brg (& ye)) — ¥ (Ok)ll3
<llyk + Brg (&, yx) — v (01113
=lyr — v (0x)|l5 + 28k (k. — ¥* (0r), 9(Ersv)) + 1Br9 (& w5 - (93)
We first bound E[(yx — v* (01), 9(Ok, yx)) |yx] in as
El{yx — y* (0r), 9Ok, ur)) Lyl = (ke — ¥ (Ok), hg Ok, yr) — hg(Or, ¥ (0k)))
= (9= 4" O E[(16() = 9()) " (i =" (61))6(5)]
(=7 (60),E [6() (v (s") = ()" | (w =" (60)
= (9= 4" (O0): Amy, (05— ¥ (01)))
< = Mlye — (613, (94)

where the first equality is due to hy(6,y;) = Ag 4y*(0) + b = 0, and the last inequality follows
Assumption 9]

)
)
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Substituting (94) into (93), then taking expectation on both sides of (93)) yields

Ellyre1 —y" (6013 < (1= 2X80)E |y — y" (605 + C5 B2 (95)
and plugging into into (92) yields

Ellye+r1 =y O3 < (1= 2XB0)E [y — y7 (00) 5
+ 2B (i1 — ¥ (0k),y" (0) — ¥ (Ok1)) + B [ly"(6x) — " (Brr0) 15 + C2 5z

(96)
Next we bound the third and fourth terms in (96) as
E (Yk+1 =y (Ok), y" (0k) — ¥ (Ok+1))
=E (Yrg1 — 4" Ok), y* (Ok) — y" (1) — (VY (k) " (Orsr — O1))
+ E (yrs1 — v (0k), (VY (01)) " (Ors1 — )
(a) L2 . T
< 7E‘|yk+1 —y* O 210k01 = Okll3 +E [(Yrer — v (1), E[(VY* (1)) " (Ohsr — 1) | yi1])]
( ) L2 * 2 * A
< 7E||yk+1 Y (0) 120101 — Okl + e LyE lyks1 — v ()| [ 7og (Ors gt
( ) Li x 2 2, Lye 2 x z
< L2E|lyksr — v (0n) 1310611 — 0xl13 + 1 EllOkr1 = O4llz + Ly lyra = y™ 00|y (Ors yesa) |
(d) 2C’2L2 L? « - 2
< Sk ; Y2y — y (0n)[|2 + Z@]E||9k+1 — 013+ L2 E |lyesr — v (0k)]3 + Zk]E 7o Bk 1)
02 2 o B a202 2
< (akL;z + fﬂ) Ellyisr =y O3+ 57E [y (O, yisn) || + % 7

where (a) follows from the L, »-smoothness of y* with respect to §; (b) follows from L, is the
Lipschitz constant of y* in Proposition[7]and

E[(Vy*(0r) " (041 — Ok) | yrta] = Vy*(ek))TBmeka)'
(c) uses the Young’s inequality; (d) uses the Young’s inequality and the fact that |11 — 0|2 =
aukllhy (&, Ok, ye1) || < CoCy = C and ||y (O, yi1)|| < C.

‘We bound
E [ly*(6x) = y* (Orr1)ll5 < LIE (|6 — Ohsa

~ 2
< Lioj §(€kayk)w0k(5k>ak)H2 < LiCG03 (98)

where the inequality is due to the L,-Lipschitz of y*(¢) shown in Proposition and the last inequality
follows the fact that

186k wr)ebo (s, a) 2 < CyCy = Cy. (99)
Substituting (97)-(98) into (92)) yields
2

* 2 akC?Livz * 2
Ellyers =y Orsn)l3 < |1+ anLy + =22 ) E [yt — v (00)1

4
g N 5 02 2
+ LB ||hs 0, yes) || + # +L2C3a2. (100)

O

D.3 Proof of Theorem 2]

Recall the notations:
5(57 y) = T(S, a, Sl) + 7¢(s/)Ty - ¢(S)Tyu
5(67 y) = Eswdg,aNﬂ'g,s'N’P [T(Sa a, S/) + 7¢(3/)Ty - ¢(S)Ty | y]
5(&,0) =r(s,a,8") + YV, (s') = Vi, (5).
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The actor update can be written compactly as:
Or1 = Ok + arhy (&, O, Yrt1) (101)

where  hp(&h, Ok, yrtr) = 0(&hr Y1)y (Skr ar)- Define  hy(0k, yrr1) =
E[0(&),, Yk+1)Vo, (Sk, ax)|ye+1]. Then we are ready to give the convergence proof.

Proof. From L p-Lipschitz of policy gradient in Proposition [} taking expectation conditioned on
Ok, Yr+1, We have:

E[F(0111)] — F(0)) (102)
L
> E(VF(0h), 01 — 00) — = Ell0hr — 043

. L
> ouB (VE(0k), iy (O yis1)) = =5 Ell0isr — 0cll3

« « - 2« - 2 L
= S EIVEO)® + FE|hs O yrr)||” = FE[VFO) — s yisn)[|” — 5 Ellbiss — 04l13
« « = 2 « = 2
> SEIVFOI + ZE [hs (O, yiesn)||” = S E[VFOk) = R (B yin)|
Lra? - L a2. _
— S5 Bl Ok, v )3 — =~ Bl (B, ykn) — g (€ Ok, i) |3
o « Lra? - 2« _ 5  LpC?a3
> CER |V F(0,))* + (; - k) ||y 0k, pis )’ — B[ VF(6) — iy O yirn) |~ =
where the last inequality follows the definition of C'y in (99).
We next bound the gradient bias as
_ ~ 2
|VF(0r) = hs(Ok, yk+1)||2 = HVF(91<) —E[6(&, Yr+1) Vo, (S, ak)\ykﬂ]H
~ 2
< 2||VP(0k) — EIB(&L " (06)) o (1, an) ]|
~ N 2
+ 2| |BI(3(¢h y (00)) = 3(&hs yns1) o (s @)y
< 4)|VF(0r) — E[5(&. 0u)o, (s an) lynra ]|
I
~ 2
o+ 4| |EI0(6k 00) 00, (55 a1 1] = EI(Eh, ™ (00)) o, (s, @)y
L 12 ]
~ A 2
2| |BI(h y (00)) — Sk a1 ) on (s, @)l (103)

I3

Then we bound I; as

I = |[VF(0k) — E[6(&,, 0k) e, (i, ar) 0k, yrsa] |
2

= HVF(HIC) —-E Spr~doy, |:(T(Sk’ Ak S?c) + '7V7Tek (S;c) - Vﬂek (sk)) Yo, (S, ak)

AR ~To, ,SL,NP

Ok, yk+1:|

2
=0

= HVF(GIC) — Esindo, |:A779k (Sky ar)o, (Sk, ax) 9k,yk+1}

akwrrgk

where the last equality follows from the policy gradient theorem.
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Then we bound I as
Iy = |[BI8(k, 0x o, (55, @8) 05 via) — EIB(EL " (00, (5, ) O, |
= [ [ (5t 00) — 86k u (@1)) o, (512 a0)10, o] |
= || {[a(6k.00) — 86 v 0] I (552 an)l O] |
= &3 [ [|oteh. 00) — et v 0] r v ]|
< O3 (VE[6(53) Ty (08) = Vi, (53] + B [Va, (5 = 6(50) T 60))

<cs (ME 65Ty 00~ Ve ()] + B

< Cw(l + V)GCLPP

Vi (51) — 0(50) 0]

Then we bound I3 as

Iy = [[BIG(EL v 00)) — B(eks i) (v, 005wl

< CZE [18(64 " (00)) = 8(6hs )% 61, s |

= CjE [||7¢(5k)T “(0k) — d(sk) "y (Ok) — (%) " wrs1 + E(sk)  Yrs1 1710k, Yrta ]
< CLA+ Ny (0k) — yrra |l

Then (T03) can be rewritten as

IVE @) — hip (O i) | < ACT L+ 7)eapp + 2031+ Ny (08) — s |

plugging which into (T02)) leads to

o o Lra
EF (6k41)] > F(0) + 5 B [VFOR)]* + (2 - k) E||fs (O, yr1)|
« - 2 LpC3oj
~ S E[[VE@) ~ by O,y - —5—
a ar Lpaj - LpC3a2
> F0)+ LEIVFOII + (% — 258 ) B s 00| -
— 20, C5 (1 4 ) €app — axCo (1 + VY (6k) — yrsr |- (104)

Consider the difference of the Lyapunov function V¥ := —F(0;) + |lyx. — v*(6%)||%, given by
E[VFHY] —E[VF] = — E[F(0k41)] + Ellyr1 — ¥ (1) lI5 +EF ()] — Ellye —y* (0x)II3

a 2 LrCiag
<~ SBIVFOIP - (G - 255 ) E ] + 5

+ arCo (L +9)[ly* (6k) — yzmll2 + Ellye+1 — y* (k)13 — Ellye — v* (0c) 115

L CQ 2
)Eth 9k,yk+1)H2+FTJMk

(673 LFOZ,f

+ 2akCi(1 + Y)eapp

<- LRIVFEI - (- % -

axCiLL

+ (1 +aglys+ —— = +aCi(1+ 7)) E [llges1 — v (0n)113]

272

aiC?L
—Elly o (013 + =2 + LyCFof + 200C3(1 +7)capp. (105)
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Applying (93) to bound E |:Hyk+1 - y*(@k)Hg] , we have

E[V*!] — E[V¥]
(697 o (673 LFOé2 - 9 LFC2Q%
<= FEIVFOIP - (5 - % = 25 ) Oyl + ZG + 2000304 2o
a?C?L?
| (1 arld, + =2 4 CE(14+7)) (1= 2080 = 1| Bl — v (001
a?C?L2 a?C?L?
+ (1 +agL2, A2 fl Y2 L o C3(1 + 7)) C2p2 A2 fl 92 4 12033 (106)

Similar to the steps (34)-(56), if we select
1 ALY 5 +8C7 + CFLy 5 /2L
Qp = min{ —, . , Br = v:2 L ! y’2/ Fak. (107)
2Lr VK 8\

which ensures that

Qe LFOéi
— — > 108
12 20 (1082)
Q2C2I2,
(1+akL,§72 +arC2(1+7) + %)(1 oG <1 (108b)
we can simplify (T06) as
LpC?a? aiC’?L;Q

E[VA1] — E[VH] < — SR IV + =L + 20,030 +1)eapy +

2
a2C2[2
- <1 +arly, + = b anCl(1+7) | I8 + LjClad.  (109)

4

After telescoping, we have

K 272
1 2 2V1 OékC L ,2
% > RE|VF@O) <o® "t LpChoy +4C35 (1 + 7)éapp + % +2LCF oy,
k=1
02C2I2 0232
+2 (1 + oLl + % + o C(1 + v)) Z—ﬁ’“ (110)
k
which, together with o, = O(1/VK), B = O(1/VK ), completes the proof. O
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