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ABSTRACT

Graph neural networks (GNNs) – learn graph representations by exploiting the
graph’s sparsity, connectivity, and symmetries – have become indispensable for
learning geometric data like molecules. However, the most used graphs (e.g., radial
cutoff graphs) in molecular modeling lack theoretical guarantees for achieving con-
nectivity and sparsity simultaneously, which are essential for the performance and
scalability of GNNs. Furthermore, existing widely used graph construction methods
for molecules lack rigidity, limiting GNNs’ ability to exploit graph nodes’ spatial
arrangement. In this paper, we introduce a new hyperparameter-free graph construc-
tion of molecules and beyond with sparsity, connectivity, and rigidity guarantees.
Remarkably, our method consistently generates connected and sparse graphs with
the edge-to-node ratio being bounded above by 3. Our graphs’ rigidity guarantees
that edge distances and dihedral angles are sufficient to uniquely determine the
general spatial arrangements of atoms. We substantiate the effectiveness and effi-
ciency of our proposed graphs in various molecular modeling benchmarks. Code is
available at https://github.com/shihhsinwang0214/SCHull.

1 INTRODUCTION

Graph neural networks (GNNs) have emerged as indispensable tools for learning graphs, e.g., social
networks (Perozzi et al., 2014) and molecules (Duvenaud et al., 2015; Gilmer et al., 2017). GNNs
operate by exchanging messages between neighboring nodes for learning features at both node and
graph levels; see, e.g. (Gilmer et al., 2017; Satorras et al., 2021). Constructing sparse and connected
graph representations of the input data plays a pivotal role in the success of GNNs, especially in
molecular modeling. Graph sparsity enables computational efficiency, and connectivity ensures that
information can flow seamlessly throughout the network – it has been shown that the disconnectivity
of a graph can degrade the model’s performance; see, e.g., (Sverdlov & Dym, 2024).

A common method for creating molecular graphs involves setting a radial cutoff distance; atoms
are connected by edges if their Euclidean distance falls below the cutoff threshold (Schütt et al.,
2017; 2018; Unke & Meuwly, 2019). To limit the number of connections per atom, ad-hoc post-
pruning can be applied, removing edges between distant atoms if a node has too many connections.
However, determining an optimal cutoff for molecular graphs presents a significant challenge. A
large cutoff might guarantee that all atoms are connected, but it can result in overly dense graphs.
Conversely, while post-pruning can reduce the density of graphs, it might introduce the risk of
disconnectivity. Furthermore, for large molecules like proteins with thousands of atoms, a fixed
cutoff is often insufficient to ensure connectivity. Examples include long-range atomic interactions
in protein allosteric regulation (Süel et al., 2003; Zhu et al., 2022) and inter-chain interactions in
protein oligomerization (Chen et al., 2021; Chen & Bell, 2021). To illustrate the limitations of the
radial cutoff method, we present Fig. 1(a), which depicts a protein molecule with colored residues.
These colored residues represent a single instance from the Fold biomolecule dataset (Murzin et al.,
1995; Hou et al., 2018). As shown in Fig. 1(b), applying a cutoff of 10Å on the data consisting
of Cα atoms of amino acids results in a disconnected but quite dense graph. To further solidify
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(a) A protein molecule (b) Radial cutoff graph (10Å) (c) SCHull graph
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Figure 1: Illustration of challenges of radial cutoff graphs in balancing sparsity and connectivity for the Fold
biomolecule dataset. (a) Colored residues in a large protein, representing a single instance from the Fold dataset.
(b) A radial cutoff graph with a cutoff of 10Å for the colored residues, demonstrating disconnectivity and density;
in contrast, (c) showcases our proposed SCHull graphs, ensuring sparsity and connectivity. Panels (d) and (e)
plot the number of nodes against the edge-to-node ratio and the percentage of connected graphs, respectively, for
radial cutoff graphs using different thresholds and our SCHull graph construction. The results highlight that
radial cutoff has to trade sparsity for connectivity, while our SCHull graphs maintain both properties.

the challenges in balancing sparsity and connectivity using radial cutoff graphs, we investigate the
sparsity and connectivity tradeoff using various cutoff thresholds to construct graphs for proteins in
the Fold dataset. Next, for these radial cutoff graphs, we calculate the edge-to-node ratio and the
proportion of connected graphs for different cutoff thresholds. As shown in Fig. 1(e), a cutoff of 48Å
is required to achieve connectivity for large proteins with more than 1000 amino acids. However, as
shown in Fig. 1(d), connectivity comes at the cost of dramatically increased density, e.g., a cutoff of
48Å results in graphs with over 100 times more edges than graphs constructed with a 6Å cutoff. We
further discuss other popular graph representations of molecules like chemical graphs and k-nearest
neighbor graphs in Section 2.

A

B

Figure 2: Illustration of two distinct, non-
isometric arrangements of nodes in Euclidean
space. When applying a radial cutoff to the
arrangements in A and B, we obtain con-
nected and sparse graphs. However, the corre-
sponding edges in both graphs have identical
lengths, making it challenging for graph neu-
ral networks to distinguish between them.

Besides sparsity and connectivity, it’s essential to con-
sider whether a geometric graph could contain sufficient
information to determine its nodes’ spatial arrangement
(geometries). Pairwise distances between all nodes theo-
retically determine the geometric arrangement (Satorras
et al., 2021) up to rigid motions, but computing pairwise
distances between all nodes amounts to involving a dense
graph in the operation. Alternatively, researchers have
explored sparse edge distributions with specific geomet-
ric features to identify the spatial arrangement of graph
nodes. Sverdlov & Dym (2024) connect identifying nodes’
arrangement to graph rigidity and have demonstrated that
graph rigidity can ensure a GNN’s ability to distinguish
general geometric configurations of nodes. Nevertheless,
radial cutoff graphs often lack sufficient rigidity, leading
to ambiguity in spatial arrangements (Joshi et al., 2023;
Wang et al., 2024). Figure 2 illustrates this limitation using a synthetic example: A and B are two
distinct, non-isometric arrangements of five points in Euclidean space; while applying a radial cutoff
to these arrangements results in connected and sparse graphs. However, the edges in both graphs
have the same lengths, making it challenging for GNNs to distinguish between them.
1.1 OUR CONTRIBUTIONS

In response to the limitation of existing graph constructions of molecules, we propose Spherical
Convex Hull (SCHull) – a new hyperparameter-free graph construction method tailored for data with
3D coordinates, especially molecules. SCHull constructs graph representations of the underlying
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points in two computationally efficient steps: (1) project points onto the unit sphere centered at the
center of points, and (2) construct a convex hull for the projected points and add an edge to connect
two original points if the convex hull has an edge connecting the corresponding projected points; see
details in Section 3.1. SCHull graphs enjoy a few advantages with theoretical guarantees:

• SCHull graphs are connected and sparse. In particular, the edge-to-node ratio is bounded above
by 3; see detailed theoretical results in Section 3.2.

• SCHull graph mirrors the spatial arrangement of the underlying point clouds, ensuring that
encoding edge distances and dihedral angles are sufficient for GNNs to uniquely determine the
geometric configurations of nodes up to isometries; see Section 3.3 for details.

Furthermore, the SCHull graph can be seamlessly coupled with existing GNN learning techniques
to boost the performance of off-the-shelf models. We substantiate the effectiveness and efficiency
of the proposed SCHull graph using a few molecular modeling benchmarks, including predicting
atomic forces for small chemicals, protein fold classification, enzyme reaction classification, and
protein-ligand binding affinity prediction; see details in Section 4. Our numerical results show that
using SCHull can consistently improve the prediction accuracy of existing remarkable GNNs by a
significant margin at the cost of a tiny computational overhead.

1.2 ORGANIZATION

We organize this paper as follows: In Section 2, we recap on necessary background materials
and some related results. We present the construction process of our proposed SCHull graphs in
Section 3.1, followed by their sparsity and connectivity analysis in Section 3.2. We further analyze
the rigidity of SCHull graphs and their benefits in improving GNN’s performance in Section 3.3. We
substantiate the performance of SCHull in Section 4 using various benchmark tasks in molecular
modeling. Technical proofs and additional experimental details are provided in the appendix.

2 BACKGROUND AND SOME RELATED WORKS

In this section, we provide a brief review of key concepts and related results. Specifically, we revisit
concepts of geometric graphs as discussed by Joshi et al. (2023); Wang et al. (2024), review existing
graph construction methods for molecules, and introduce convex hulls and polyhedral graphs along
with a key result on their rigidity. An overview of graph rigidity is provided in Appendix B, along
with a quick example. For a more in-depth exploration, we refer readers to (Asimow & Roth, 1978;
Connelly, 2005). Furthermore, we will recap on message-passing GNNs and their separation power.

Point clouds and geometric graphs. A 3D point cloud, consisting of m points x1,x2, . . . ,xm, can
be viewed as a spatial arrangement of a set of m nodes V = {1, 2, . . . ,m}, where each index i is
associated with a node with coordinate xi ∈ R3. We can represent a point cloud as a set {xi}mi=1
or as a spatial arrangement of nodes (V,X = [x1,x2, . . . ,xm]). Optionally, each node may be
associated with features fi ∈ Rnf beyond coordinates. Extending from a point cloud to a geometric
graph – denoted as G = (V, E ,X) (resp. (V, E ,X,F )) – introduces a graph structure by connecting
nodes using edges in the set E to include relationships between points in (V,X) (resp. (V,X,F )).
Here, (i, j) ∈ E denotes an edge and F = [f1, . . . ,fm] represents node features.

Existing graph representations of molecules. As mentioned earlier, radial cutoff is one of the
prevailing approaches to constructing graph representations of molecules. Besides radial cutoff,
there are several other methods have also been used to construct graphs for molecules, including
k-nearest neighbor graphs (kNN) (Jørgensen et al., 2018) and chemical graphs (Gilmer et al., 2017).
Similar to the radial cutoff graphs, k-nearest neighbor graphs, and chemical graphs also struggle to
achieve sparsity, connectivity, and rigidity at the same time; we contrast different graphs’ properties
in Table 1.

Table 1: Contrasting different graph construction methods in achieving sparsity, connectivity, and rigidity.

Construction method Sparsity Connectivity Rigidity

Radial cutoff (small threshold) ✓ ✗ ✗
Radial cutoff (large threshold) ✗ ✓ ✓

k-nearest neighbors ✓ ✗ ✗
Chemical graphs ✓ ✓ ✗

SCHull (ours) ✓ ✓ ✓

Rigid motions and geometric isomorphism. A rigid motion, a.k.a. an isometry, is a transformation
defined by an orthogonal matrix Q ∈ O(3) and a translation vector t ∈ R3. It acts on the point cloud
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by transforming all its points according to xi 7→ Qxi + t. The group of 3D rigid motions is called
the Euclidean group and is denoted by E(3). Two geometric graphs G1 = (V1, E1,X1,F1) and
G2 = (V2, E2,X2,F2) are said to be geometrically isomorphic if and only if there exists a bijection
b : V1 → V2 and a rigid motion (Q, t) ∈ E(3) such that for any (i, j) ∈ E1, (b(i), b(j)) ∈ E2, and for
any i, fi = fb(i), xi = Qxb(i) + t. Notice that the condition requiring a rigid motion (Q, t) ∈ E(3)
such that xi = Qxb(i) + t for all i is equivalent to the condition ∥xi − xj∥ = ∥xb(i) − xb(j)∥ for
all i, j. A function F defined on the geometric graphs is said to be invariant if F (G1) = F (G2) for
any two geometrically isomorphic geometric graphs G1,G2.

Convex hull and polyhedral graph. A convex hull of a set of points {x1, . . . ,xm} ⊂ R3 is defined
as Conv({x1, . . . ,xm}) = {

∑
i αixi |

∑
i αi = 1, α1, . . . , αm ∈ [0, 1]}, which is the smallest

convex set containing these points. When the points are not coplanar, the convex hull is also known
as a convex polyhedron, whose graph structure comprises its vertices, edges, and faces. Any graph
derived from this structure is referred to as a combinatorial polyhedron or polyhedral graph. Steinitz’s
Theorem (Grünbaum, 2007) establishes a one-to-one correspondence between polyhedral graphs
and 3-connected simple planar graphs1. This means every polyhedral graph can be represented as a
3-connected simple planar graph and vice versa.

A geometric polyhedral graph is a geometric graph (V, E ,X) whose underlying graph structure is a
polyhedral graph. It can be considered as assigning node coordinates to a polyhedral graph (V, E). A
well-known rigidity theorem for polyhedral graphs by Stoker (1968) (see also (Cho & Kim, 2023))
states that a strictly-convex geometric polyhedral graph is uniquely determined by its edge lengths
dij and dihedral angle τij on edge (i, j), where the dihedral angle on edge (i, j) is defined as the
angle between two faces that contain edge (i, j). More precisely, we have the following theorem:
Theorem 2.1 (Stoker (1968)). Let G = (V, E ,X) and G′ = (V ′, E ′,X ′) be two strictly-convex
geometric polyhedral graphs. Suppose there exists a graph isomorphism b : V → V ′ satisfying
τij = τ ′b(i)b(j) and dij = d′b(i)b(j) for any (i, j) ∈ E , where dij and τij denote the length of edge
(i, j) ∈ E and dihedral angle associated with edge (i, j). Then G and G′ must be geometrically
isomorphic, i.e., there is a rigid motion (Q, t) ∈ E(3) such that xi = Qx′

b(i) + t for any i ∈ V .

Message-passing GNNs and their separation power. For any geometric graph G = (V, E ,X,F ),
a message-passing GNN propagates features, with f

(0)
i = fi, as follows:

f
(t+1)
i = UPD

(
f
(t)
i ,AGG({{f (t)

i ,f
(t)
j , eij | j ∈ Ni}})

)
, (1)

where eij are edge attributes (eij can be xi − xj or pre-determined invariant edge attributes like
relative distance ∥xi − xj∥), Ni denotes the one-hop neighbors of node i, i.e., the set of nodes in
V that are reachable from i through an edge in E , and UPD and AGG are learnable update and
aggregate functions operating on the graph G, respectively. After T message-passing steps, we apply
a multiset Readout function to obtain the graph level global features

sglobal = Readout
({{

f
(T )
i | i ∈ V

}})
. (2)

A common approach to evaluating GNN’s performance is to assess its ability to learn distinct global
features from non-isomorphic geometric graphs. In particular, a standard assumption in this analysis
is to consider maximally expressive GNNs, where the update, aggregation, and readout functions
are all injective (Joshi et al., 2023; Wang et al., 2024; Sverdlov & Dym, 2024). We say a maximally
expressive GNN F with depth T can distinguish two geometric graphs G1 and G2 if, after T iterations,
the learned global features for G1 and G2 are distinct, that is, sglobal1 =: F (G1) ̸= F (G2) := sglobal2 .

3 MAIN RESULTS

In response to the limitation of existing graph representations – in achieving sparsity, connectivity,
and rigidity – for geometric data with 3D coordinates, we propose SCHull – a new graph construction
method for molecules and beyond. SCHull eliminates hyperparameter tuning and ensures connectivity
while maintaining sparsity and rigidity. In this section, we will outline the two steps in constructing
SCHull graphs, followed by proving how these steps achieve the desired properties and how the
resulting graph benefits GNNs’ performance.

1In this context, a simple graph is one without self-loops or multiple edges. A graph is 3-connected if
removing fewer than three vertices doesn’t disconnect it. A graph is planar if it can be drawn on a plane without
edge crossings.
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3.1 SCHULL – A NEW GRAPH CONSTRUCTION

SCHull constructs graphs in two steps: (1) project points (nodes) onto the unit sphere centered at
the center of the points, and (2) construct the convex hull for the projected points and connect two
original points if the convex hull contains an edge connecting the two corresponding projected points.

Step 1: Project points onto the unit sphere. Let (V,X = [x1,x2, . . . ,xm]) be a point cloud, e.g.,
representing atoms in a protein molecule. Denote the center of X by x := 1

m

∑
xi. Consider the pro-

jection px : R3 → S2 defined by x 7→ x−x
∥x−x∥ , where S2 := {x ∈ R3 | ∥x∥ = 1} is the unit sphere.

That is, px projects points onto the unit sphere centered at x. Applying this projection to all points,
we obtain a new point cloud (V, px(X)) on S2, where px(X) = [px(x1), px(x2), . . . , px(xm)].

In rare cases, there may be points such that xi = x for some i, which prevents us from defining its
projection. To ease our analysis, we assume that the projections of all points in a given point cloud
(V,X) are well-defined and these projections on S2 are distinct. This implies that |V| = |{px(xi) |
i ∈ V}|. More precisely, we assume the following generic condition holds:

xi ̸= x and px(xi) ̸= px(xj) for any i ̸= j ∈ V. (3)

Point clouds satisfy this condition with probability 1 if they are uniformly distributed; see Lemma 3.4.
We focus on this case in the main context and present a strategy in Appendix D to maintain the
desired properties of our graph when the generic condition equation (3) does not hold.
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Figure 3: Visualizing the SCHull graph construction process: (left panel) The blue points xis represent the
given point cloud, and the gray node x denotes the center of this point cloud. Each point is projected onto the
green unit sphere centered at x, resulting in the corresponding orange points zi = px(xi). (middle panel) The
convex hull of the orange points zi = px(xi) is constructed, with its edges highlighted in gray. (right panel)
The gray edges on the convex hull of the projected points induce the graph structure on the original point cloud.

Step 2: Construct the convex hull and SCHull graph. Next, we construct a convex hull – using
the QuickHull algorithm (Barber et al., 1996) – for the projected points (V, px(X)) obtained from
Step 1, and we denote the resulting convex hull as Conv ({px(xi) | i ∈ V}). In particular, the
boundary of this convex hull is a polyhedral graph with nodes, edges, and faces. By disregarding
the face structure, we obtain a graph (V, E) that includes all points in V thanks to the generic
condition equation (3). Our graph construction for the given point cloud (V,X) is then defined as
G = (V, E ,X). This graph includes the original point cloud (V,X), with edges defined by those on
the convex hull of (V, px(X)). Specifically, nodes i, j are connected by an edge in E if and only if
their projected points on the unit sphere px(xi), px(xj) are connected by an edge on the convex hull
Conv ({px(xi) | i ∈ V}).
We demonstrate an example of applying our SCHull graph construction for a synthetic point cloud in
Fig. 3. For simplicity, we assume all points {xi}6i=1 are coplanar. The green circle represents the
unit sphere centered at the mean point x = 1

6

∑6
i=1 xi. Each zi := px(xi) denotes the projection of

xi onto the green unit sphere. We then construct the convex hull Conv ({zi}) of the projected points,
with solid gray lines indicating the edges. Finally, the SCHull graph is created by connecting points
xi and xj if their corresponding projections zi and zj are connected by an edge in the convex hull.

Computational complexity. To analyze the computational complexity of constructing SCHull
graphs, let m be the number of points in the point cloud. The overall cost is dominated by the convex
hull construction, which utilizes QuickHull with a computational complexity of O(m logm) (Barber
et al., 1996). Other steps, including projecting points to the unit sphere and attributes computation
(see Section 3.3), result in O(m) additional computational complexity.
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3.2 CONNECTIVITY AND SPARSITY OF SCHULL GRAPHS

In this section, we prove that SCHull graphs are connected and sparse. We begin by presenting a
fundamental proposition that outlines the properties of convex hulls formed by points on a sphere.
Proposition 3.1. Let Z = {zj} be a set of points on a sphere where |Z| ≥ 3 (the number of points
is at least 3), and let Conv(Z) denote the convex hull of Z with its associated graph structure
consisting of nodes, edges, and faces defined by its boundary. Then, we have

1. Connectivity: Any two points in Z are connected by a sequence of edges in Conv(Z).

2. Sparsity: The number of edges in Conv(Z) is no greater than 3|Z| − 6.

Moreover, Conv(Z) is a strictly convex geometric polyhedral graph if zjs are not coplanar.

Proposition 3.1 ensures that the convex hull of a finite set of points on a sphere is always connected,
eliminating the possibility of isolated points. Additionally, the number of edges is bounded above
by three times the number of nodes, ensuring sparsity. Notice the SCHull graph directly inherits
the graph structure from the convex hull of the projected points on the unit sphere, along with its
connectivity and sparsity. We summarize these implications in the following corollary:
Corollary 3.2. For any point cloud (V,X) with more than 2 points and satisfying the generic
condition equation (3), the SCHull graph (V, E ,X) is a connected geometric polyhedral graph and
has a linear relationship between the number of edges and the number of nodes. Specifically, the
edge-to-node ratio is bounded above by 3, i.e. |E|

|V| < 3.

The theoretical results in Corollary 3.2 are numerically substantiated by the results in Fig. 1. In
particular, SCHull graphs are always connected, and the ratios between the number of edges and the
number of nodes are always bounded above by 3 for all molecules in the benchmark Fold dataset.

3.3 RIGIDITY OF SCHULL GRAPHS AND ITS ROLE IN GNN’S PERFORMANCE

SCHull graphs guarantee both sparsity and connectivity. However, a crucial question remains:
How do SCHull graphs impact the performance of GNNs?

To answer this affirmatively, we delve into the rigidity of SCHull graphs; see Appendix B for an
overview of rigidity. We first introduce a common assumption about the genericity of point clouds
in graph rigidity studies; see e.g., (Laman, 1970; Asimow & Roth, 1978; Connelly, 2005). We
then propose a simple attribute-based design for SCHull graphs and provide a theoretical analysis
demonstrating that our SCHull graphs – with their geometric attributes on both edges and nodes –
can effectively enable GNNs to distinguish between any two non-isomorphic generic point clouds.
Definition 3.3 (Genericity of point clouds). A point cloud (V,X) is said to be generic2 if

No multivariate polynomial P with rational coefficients satisfies P (x1, . . . ,xm) = 0. (4)

The genericity of a point cloud means that the points are arranged in a way that cannot be described
by a simple polynomial equation with rational coefficients. It’s important to note that almost all
point clouds are generic, with exceptions forming a set of Lebesgue measure zero (Mityagin, 2015).
In particular, the genericity of point clouds presented in Definition 3.3 is stronger than the generic
condition equation (3) that we have assumed in Section 3.1.
Lemma 3.4. Any generic point cloud satisfies the generic assumption equation (3).

Moreover, generic point clouds also avoid the cases where all the projected points {px(xi)} are
coplanar; this leads to the following result, allowing us to apply Theorem 2.1.
Lemma 3.5. Let (V,X) be a generic point cloud. Then Conv ({px(xi) | i ∈ V}) – the convex hull
on the sphere we constructed in Section 3.1 – is a strictly convex geometric polyhedral graph.

According to Lemma 3.5 and Theorem 2.1, edge lengths dij and dihedral angles τij are sufficient to
uniquely determine the spatial arrangement of Conv ({px(xi) | i ∈ V}) due to its convexity. While
the SCHull graph is also a geometric polyhedral graph, its lack of convexity raises concerns about
whether edge lengths and dihedral angles are sufficient to determine the spatial arrangement of points.

2Also known as algebraically independent.
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However, by including the original distances of the nodes from the center of the point clouds as node
attributes, we can prove that any maximally expressive GNN – a standard framework for analyzing
GNNs’ performance – can distinguish between any two non-isomorphic point clouds (see Section 2
for a brief overview). Specifically, for a given point cloud (V,X), we consider the attributed version
of our SCHull graph G = (V, E ,X,F ), where we encode

the edge attributes eij = (∥xi − xj∥, τij) for any (i, j) ∈ E , and
the node attributes fi = ∥xi − x∥ for any i ∈ V. (5)

Notice that τij are the dihedral angles between faces computed on Conv ({px(xi) | i ∈ V}). Under
these settings, we have
Theorem 3.6. Let F be a maximally expressive GNN with depth T = 1. Then F can distinguish
between the attributed SCHull graphs defined in equation (5) of any two non-isomorphic generic
point clouds.

Remark 3.7. The node attribute design of SCHull in equation (5) can be omitted without affecting
the theorem’s result if we consider removing an additional measure zero subset of point clouds. Due
to page limitations, this version of Theorem 3.6 is provided in Appendix F. Additionally, while we
do not address the coplanar case in the main text, the corresponding theory and discussion regarding
the effectiveness of our SCHull graph for coplanar cases can be found in Appendix E.
Remark 3.8. As discussed in the introduction, the rigidity property does not generally hold for other
graph construction methods, e.g., radial cutoff. While Sverdlov & Dym (2024) propose power graphs
as a solution to ensure rigidity in these methods, power graphs often lead to increased graph density
and do not address cases where the original graph is disconnected. A more detailed introduction
to power graphs is provided in Appendix A and an empirical study is provided in Appendix B. In
contrast, the SCHull graph – when dealing with generic point clouds – naturally strikes a balance
between rigidity and sparsity, making it an efficient and suitable option for GNN applications.
Remark 3.9. Existing works, such as (Joshi et al., 2023; Li et al., 2024; Hordan et al., 2024), have
established theoretical frameworks that address both generic and non-generic point clouds. In
particular, Li et al. (2024) highlights the challenges of distinguishing ambiguous symmetric point
clouds. While our method does not currently provide a theoretical guarantee for such cases, we
present empirical evidence in Appendix B showing that even shallow graph neural networks using our
approach can effectively distinguish ambiguous symmetric point clouds – cases where incorporating
all edge lengths on complete graphs fall short.

θ

Figure 4: Depicting the rotation of the graph
from the NestedSquares dataset. Ten rotated
graphs are generated by randomly choosing θ.

To solidify Theorem 3.6, we design a synthetic dataset
named NestedSquares. The NestedSquares dataset com-
prises ten graphs, each consisting of two nested squares.
In each graph, the inner square is rotated by an angle
θ ∈ (0, π/2); see Fig. 4 for an example. Each graph
is labeled with the angular rotation, and the objective
is to minimize the mean squared error when predicting
this angle. The data is split into 6 training graphs, 2 test
graphs, and 2 validation graphs. This task evaluates GNNs’ ability to learn both local and global
geometric information. To show the effectiveness of SCHull graphs, we compare message passing
using solely the information provided by SCHull against existing geometric GNNs with common
graph constructions. We introduce MPNN+SCHull, a message-passing neural network (MPNN)
that takes the SCHull graph as input, incorporating both graph structure and the constructed edge
attributes and node features as defined in equation (5); see Appendix G.2 for the detailed architecture
of the used MPNN, and Appendix H.1 for experimental details.

Radial cutoff kNN (k = 3) Voronoi SCHull (ours)
MPNN 0.657 ± 0.165 0.213 ± 0.013 0.281 ± 0.049 0.068 ± 0.049

DimeNet++ 0.281 ± 0.049 0.281 ± 0.049 0.292 ± 0.018 —
SphereNet 0.661 ± 0.212 0.450 ± 0.121 0.494 ± 0.128 —
ComENet 0.885 ± 0.287 0.502 ± 0.1928 0.816 ± 0.275 —

Table 2: Test mean squared error (MSE) of single-layer invariant GNNs for the NestedShapes dataset.
MPNN+SCHull utilizes the SCHull graph structure. Our method outperforms all other models and graph
constructions. The mean ± standard deviation is reported from 10 random trials.

In particular, we cover several representative invariant GNN models, including DimeNet++ (Gasteiger
et al., 2020a), SphereNet (Liu et al., 2022), and ComENet (Wang et al., 2022b). These invariant GNNs,
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along with the simple MPNN, were equipped with various graphs, including Radial cutoff, kNN,
and Voronoi. Notably, we did not implement other invariant GNNs on SCHull to avoid any potential
biases introduced by their specific designs. Table 2 shows the advantage of SCHull over other graphs
with different invariant GNN models. Notice that MPNN+SCHull significantly outperforms all other
models almost by an order of magnitude.

3.4 SOME FURTHER DISCUSSIONS

While SCHull graphs have connectivity, sparsity, and rigidity guarantees, their performance in
practice may vary depending on the complexity of the problem. Our proposed SCHull graph is more
likely to connect distant nodes, capturing global information but potentially overlooking local details.
To fully leverage the strengths of SCHull graphs, we recommend using them in conjunction with an
additional informative sparse graph, such as a radial cutoff graph with a small cutoff threshold or a
chemical graph. This combined approach can ensure both global geometric completeness and capture
of local information while maintaining connectivity and sparsity.

To demonstrate the integration of SCHull graphs with existing GNNs that use radial cutoff graphs,
we consider a geometric graph G = (V, E ,X,F ) constructed using the radial cutoff method from
the point cloud (V,X). We then construct the corresponding SCHull graph G̃ = (V, Ẽ ,X, F̃ ).
Notice that most GNNs – e.g., (Wang et al., 2022a; Liu et al., 2022; Jing et al., 2020) – utilize a
predesigned embedding function EMB(E ,X,F ), to obtain the edge attributes e = {eij | (i, j) ∈ E}
and the embedded node features F ′ = [f ′

1, . . . ,f
′
m] on the graph G. These attributed graphs are then

input into the GNN model. We apply the same embedding function to compute the edge attributes
ẽ = {ẽij | (i, j) ∈ Ẽ} and the embedded node features F̃ ′ = [f̃ ′

1, . . . , f̃
′
m] for the SCHull graph

G̃. It is worth mentioning that the embedded features ẽ and F̃ ′ contain the features mentioned in
equation (5). We then define the integrated node features as F ∗ = F ′ ⊕ F̃ ′, and the integrated edges
and edge attributes as E∗ = E ∪ Ẽ and e∗ = e ∪ ẽ, respectively. Finally, we obtain the SCHull
integrated graph G∗ = (V, E∗,X,F ∗), which serves as the input to the GNNs.

4 NUMERICAL RESULTS

We present comprehensive empirical results to show the effectiveness of SCHull-integrated GNNs.
Across various tasks, we highlight that: (1) The SCHull graph’s connectivity and sparsity properties
effectively capture geometric information while maintaining computational efficiency. (2) The
enriched graph structure, coupled with comprehensive node and edge features, significantly enhances
message-passing capabilities. To validate our approach, we integrate SCHull into several GNN
models and evaluate their performance on both small- and large-scale graph tasks, including atom
force prediction, protein fold and enzyme reaction classification, and protein property prediction. The
results consistently demonstrate that SCHull-integrated GNN models outperform the baseline models
across multiple metrics while maintaining computational efficiency.

Software and equipment: Our implementation relies on the PyTorch Geometric (Fey & Lenssen,
2019) and SciPy (Virtanen et al., 2020) frameworks. Experiments are conducted on a single NVIDIA
RTX 3090 GPU, and T4 and A100 GPUs provided by Google Colab (Google Colaboratory, 2023).

Training setup: The training setups for different tasks are available in Appendices I.2 and I.3.

We integrate SCHull graphs into DimeNet (Gasteiger et al., 2020b), SphereNet (Liu et al., 2022)
and LEFTNet (Du et al., 2024) for learning node-level equivariant features on molecule dataset
MD17 (Chmiela et al., 2017). Also, we integrate SCHull into ProNet-Backbone, ProNet-Amino-
Acid (Wang et al., 2022a), and GVP-GNN (Jing et al., 2020) for benchmark tasks of protein fold
classification (Fold) and enzyme reaction classification (React) (Hou et al., 2018), and protein-ligand
binding affinity prediction (LBA) (Wang et al., 2004; Liu et al., 2015).

Metrics: For prediction, we use various metrics depending on the tasks e.g., mean absolute error
(MAE), root mean square error (RMSE), Pearson Correlation (Uebersax, 1987), Spearman Corre-
lation (Panda & Pati, 2015) and Kendall Correlation (Bradley, 1976). For each task, we run the
experiment five times and record the standard deviation of the corresponding metric.

4.1 PREDICTING ATOMIC FORCES FOR MD17 SMALL MOLECULES

In this experiment, we evaluate how effectively the SCHull framework enhances different models
in learning equivariant features by predicting atomic forces on the MD17 dataset. We integrate
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SCHull into LEFTNet, DimeNet, and SphereNet. Following prior research (Schütt et al., 2018; Liu
et al., 2022; Du et al., 2024), we train individual models for each of the seven molecules: Aspirin,
Benzene, Ethanol, Malonaldehyde, Naphthalene, Toluene, and Uracil. Detailed experimental and
hyperparameter settings are provided in Appendices H.2 and I.2, respectively. Both the training and
validation sets consist of 1,000 samples each, with the remaining data reserved for testing.

We use MAE to assess model performance on the test dataset. The results in Table 3 show that all
SCHull-integrated models outperform baselines on MD17 while maintaining comparable runtime.
This indicates that SCHull enhances the models’ ability to capture equivariant information without
significantly affecting message-passing efficiency.

Molecule DimeNet DimeNet+SCHull SphereNet SphereNet+SCHull LEFTNet LEFTNet+SCHull

Aspirin 0.499 0.427±.004 0.430 0.387±.005 0.281 0.240±.005
Benzene 0.187 0.157±.006 0.178 0.155±.004 0.147 0.098±.002
Ethanol 0.230 0.198±.003 0.208 0.181±.003 0.138 0.109±.002
Malonaldehyde 0.383 0.334±.003 0.340 0.298±.003 0.205 0.151±.002
Naphthalene 0.215 0.178±.002 0.178 0.144±.002 0.074 0.058±.001
Toluene 0.210 0.169±.002 0.155 0.129±.002 0.083 0.076±.001
Uracil 0.301 0.288±.002 0.267 0.242±.003 0.117 0.095±.001

Training Time/Epoch(s) 43±0.9 50±0.8 51±1.0 62±1.5 24±0.5 28±0.5

Table 3: Test MAEs of MD17 dataset vector-valued properties prediction.

4.2 LEARNING PROTEINS

We demonstrate the importance of ensuring connectivity and sparsity in large-scale graph tasks, such
as protein classification and property prediction. Protein graphs can contain thousands of nodes,
making it crucial to maintain graph sparsity for computational efficiency while preserving connectivity
to allow GNNs to capture global geometric information. We integrate SCHull into protein-task-
specific GNNs – such as ProNet-Backbone, ProNet-Amino-Acid, GVP-GNN, SEGNN, and MACE –
and evaluate them on three protein datasets. Details of the model training and hyperparameters are
provided in Appendix I.3. The experimental results highlight the significance of capturing global
information during message passing using SCHull features, particularly in large graphs. Additionally,
including SCHull does not introduce significant overhead in terms of runtime.

4.2.1 FOLD CLASSIFICATION

Protein fold classification (Levitt & Chothia, 1976) informs the connection between protein structure
and function, as well as protein evolution. In this experiment, we assess our SCHull integrated models
for the protein fold classification task by following the fold dataset and experimental frameworks
in Wang et al. (2022a). To evaluate generalization performance, three test sets are used:

• Family: includes proteins from the same family in the training data.
• Superfamily: excludes proteins from the same family appearing in the training data.
• Fold: excludes proteins from the same superfamily appearing in the training data.

More dataset information and splits can be found in Appendix H.3. Table 4 demonstrates that SCHull
improves model accuracy across all three test datasets, with only a marginal increase in runtime.
Furthermore, to assess how SCHull aids models in capturing global information, we divide each test
set into four subsets based on the number of nodes (with at most 150, 300, 450, and 600 nodes). Fig. 5
shows that as graph size increases, the SCHull-integrated ProNet-Backbone achieves progressively
higher accuracy over its original model. This result supports our claim that preserving connectivity
is crucial for GNNs to learn global information and predict the class of protein data. Indeed, our
proposed SCHull graph ensures connectivity, as shown in Fig. 1.

150 300 450 600
Number of Nodes

90

95

100

Ac
cu

ra
cy

(%
)

ProNet-Backbone ProNet--Backbone-SCHull

150 300 450 600
Number of Nodes

50

60

70

Ac
cu

ra
cy

(%
)

150 300 450 600
Number of Nodes

50

60

70

Ac
cu

ra
cy

(%
)

150 300 450 600
Number of Nodes

90

95

100

Ac
cu

ra
cy

(%
)

(a) (b) (c)
Figure 5: Comparison of the accuracy (%) on different sizes of graphs in the Fold classification dataset
using ProNet(Backbon) and ProNet(Backbon)+SCHull. (a) Accuracy on test(Fold) dataset; (b) Accuracy on
test(Super) dataset; (c) Accuracy on test(Family) dataset with at most 150, 300, 450, and 600 nodes.
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Method React Avg. Time Fold Avg. Time
Fold Super Family Avg.

GCN (Kipf & Welling, 2017) 67.3 16.8 21.3 82.8 40.3 –
IEConv (Hermosilla et al., 2020) 87.2 – 45.0 69.7 98.9 71.2 –
DWNN (Li, 2022) 76.7 – 31.8 37.8 85.2 51.5 –
GearNet (Zhang et al., 2022) 79.4 – 28.4 42.6 95.3 55.4 –
HoloProt (Somnath et al., 2021) 78.9 – – – – – –
MACE (Batatia et al., 2022) – – 23.7±0.5 21.4±0.5 60.2±0.2 35.1 114±0.5

MACE+SCHull – – 27.0±0.6 23.1±0.5 65.0±0.2 38.4 135±0.5

SEGNN (Brandstetter et al.) – – 28.8±0.6 30.3±0.6 77.1±0.3 45.4 121±0.7

SEGNN+SCHull – – 32.0±0.4 36.8±0.7 86.9±0.3 51.9 152±0.5

GVP-GNN (Jing et al., 2020) 65.5 320±5 16.0 22.5 83.8 40.8 106.3±0.5

GVP-GNN + SCHull 77.1±0.5 345±5 24.5±0.3 27.1±0.2 88.6±0.3 46.7 111.5±0.5

ProNet-Amino-Acid (Wang et al., 2022a) 86.0 210±5 51.5 69.9 99.0 73.5 70.5±0.5
ProNet-Amino Acid+SCHull 87.9±0.3 221±6 55.2±0.2 73.9±0.2 99.1±0.1 76.1 73.8±0.5

ProNet-Backbone (Wang et al., 2022a) 86.4 213±5 52.7 70.3 99.3 74.1 71.4±0.8
ProNet-Backbone+SCHull 88.1±0.3 230±5 56.1±0.3 74.6±0.2 99.4±0.1 76.7 75.8±0.5

Table 4: Accuracy (%) on protein fold and enzyme reaction classification tasks. Ave. Time denotes the average
time per training epoch. The top results are in boldface. SCHull consistently improves baseline models.

4.2.2 REACTION CLASSIFICATION

Enzymes are proteins functioning as biological catalysts. They can be categorized using enzyme com-
mission (EC) numbers which classify enzymes according to the reactions they facilitate (Omelchenko
et al., 2010). In this experiment, we evaluate the SCHull-integrated models on the reaction classifica-
tion task using the same reaction dataset and experimental settings as outlined in (Wang et al., 2022a;
Hou et al., 2018). Additional details on the dataset and the training, validation, and test splits are
provided in Appendix H.3. Similar to the fold classification results in Section 4.2.1, Table 4 shows
that SCHull consistently outperforms the original models, with a minimal increase in runtime.

4.2.3 LIGAND BINDING AFFINITY

Predicting protein-ligand binding affinity (LBA) plays a crucial role in various downstream processes
in drug discovery. For this task, we use the SCHull-integrated models to predict LBA. The dataset is
sourced from PDBbind (Wang et al., 2004; Liu et al., 2015) along with the experimental protocols
established by (Jing et al., 2020). We employ default dataset split. See Appendix H.3 for more details
of the dataset. We use a variety of statistical metrics, including RMSE, Pearson, Spearman, and
Kendall correlations, to evaluate how SCHull enhances the learning capacity and generalization of
GNNs. Again, Table 5 shows that SCHull-integrated models consistently outperform the original
models across different metrics while maintaining high computational efficiency.

Method LBA Avg. Time
RMSE↓ Pearson↑ Spearman↑ Kendall↑

IEConv (Hermosilla et al., 2020) 1.554 0.414 0.428 – –
HoloProt-Full Surface (Somnath et al., 2021) 1.464 0.509 0.500 – –
HoloProt-Superpixel (Somnath et al., 2021) 1.491 0.491 0.482 – –
GVP-GNN (Jing et al., 2020) 1.529±0.001 0.441±0.001 0.432±0.002 0.301±0.002 48.6±0.6

GVP-GNN + SCHull 1.401±0.001 0.475±0.001 0.459±0.001 0.335±0.002 53.6±0.6

ProNet-Amino-Acid (Wang et al., 2022a) 1.455 0.536 0.526 0.465±0.001 31.7±0.5

ProNet-Amino Acid+SCHull 1.355±0.002 0.556±0.001 0.568±0.001 0.512±0.001 33.9±0.5

ProNet-Backbone (Wang et al., 2022a) 1.458 0.546 0.550 0.481±0.001 32.1±0.5

ProNet-Backbone+SCHull 1.321±0.002 0.581±0.001 0.578±0.1 0.535±0.001 34.4±0.5

Table 5: RMSE/Pearson Correlation/Spearman Correlation/Kendall Correlation on the LBA Test Dataset. Ave.
Time refers to the average running time of one epoch in model training.

5 CONCLUDING REMARKS

In this paper, we introduce SCHull – a new computationally efficient and scalable method for
constructing graph representations of molecules, large proteins, and general data with 3D point
clouds. The SCHull graphs are guaranteed to be sparse, connected, and rigid; these properties are
essential for learning biomolecules using graph neural networks. Furthermore, our proposed SCHull
graph can be seamlessly integrated into the existing learning framework to boost the performance
of existing models. There are a few avenues for future work. An important avenue is investigating
whether the SCHull graph can ensure the maximal expressive power of GNNs for distinguishing
non-generic point clouds, as demonstrated in the experiments in Appendix B.
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not see any issues with potential conflicts of interest and sponsorship, discrimination/bias/fairness
concerns, privacy and security issues, legal compliance, and research integrity issues (e.g., IRB,
documentation, research ethics.

8 REPRODUCIBILITY STATEMENT

We are committed to conducting reproducible research. To ensure the integrity and transparency
of our work, we employ a multifaceted approach: First, we meticulously compare the novelty of
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A ADDITIONAL RELATED WORKS.

Invariant graph neural networks and completeness of geometric attributes. Invariant graph
neural networks (GNNs) have emerged as powerful tools for analyzing geometric graphs by leveraging
invariant geometric features (attributes) that remain unchanged under transformations like rotation
and translation. The effectiveness of invariant GNNs hinges on the development of such features that
not only remain invariant but also truly capture the essential geometric information carried by the
graph. Several studies have explored methods for learning different meaningful invariant geometric
features that effectively capture the underlying geometric structure of the data. SchNet (Schütt et al.,
2018) utilizes pairwise distances between nodes as basic invariant geometric attributes. SphereNet
(Liu et al., 2022) employs a local spherical coordinate system around each node to generate invariant
distance and angular features. GemNet (Gasteiger et al., 2021) and ComENet (Wang et al., 2022b)
incorporate torsion angles computed on node quadruplets, which is particularly useful for predicting
the properties of molecular conformers. Similar to the way torsion angles capture the angles between
local structures, LEFTNet (Du et al., 2024) leverages local frames centered on each node, allowing
them to scalarize all spatial information into a set of invariant features and then combine them with
frame transition information to capture global features.

Notably, Wang et al. (2022b) introduced the notion of completeness of geometric attributes on the
graph, which is closely related to rigidity. Geometric attributes on the graph are considered complete
if they can uniquely determine the spatial arrangement of the nodes within the graph. In fact, Wang
et al. (2022b) demonstrated that their proposed framework ComENet is complete. However, as
noted in (Wang et al., 2024), most existing methods, including all the models mentioned above,
rely on fixed-size neighborhoods, which may be insufficient to capture all relevant global geometric
features. While our graph rigidity proof hinges on the assumption of generic point clouds, it’s crucial
to recognize that the graph structure, formed through a global assessment of geometric arrangement,
cannot be inferred solely from local information.

Power graphs. The kth-power graph of a given graph connects any two nodes if there exists a path
between them in the original graph with length ≤ k. Sverdlov & Dym (2024) propose 4th-power
graphs as a potential solution to achieve rigidity in 3D geometric graphs. While power graphs may
offer a potential approach to achieve rigidity in generic point clouds, they can lead to overly dense
graphs, which can be inefficient for large-scale structures. Additionally, power graphs require the
original graph to be connected for the resulting power graph to remain connected. Furthermore,
they may fail to help GNNs distinguish between two ambiguous, non-generic point clouds. These
limitations are demonstrated in Tables 6 and 7.

High-order graphs. Several studies have explored incorporating higher-order structures into graphs
to capture more detailed geometric information. Notable examples include simplicial complexes
(Eijkelboom et al., 2023) and combinatorial complexes (Battiloro et al., 2024). While these ap-
proaches show promise for encoding and learning geometric properties, they often suffer from high
computational complexity during their construction, making them less efficient than our approach,
especially when dealing with large proteins, along with other potential limitations. Specifically,
simplicial complexes, constructed in (Eijkelboom et al., 2023), rely on radius-based connectivity,
which may not guarantee connectivity (and hence may not guarantee rigidity) in all cases, as shown
in Fig. 1. However, it would be interesting to explore how our graph construction method could be
used as a foundation for generating simplicial complexes and how these resulting complexes might
perform in capturing geometric and structural properties. Combinatorial complexes provide a more
general framework for higher-order structures, encompassing simplicial complexes as a subset. Of
particular interest is the concept of molecular combinatorial complexes introduced in (Battiloro et al.,
2024). These complexes incorporate atoms, bonds, rings, and functional groups as cells of complexes.
Developing invariant features to ensure the rigidity of these complexes presents an exciting avenue
for future research. To the best of our knowledge, however, no prior work has explored this direction.
We believe it would be worthwhile to investigate whether sparse, connected, and rigid simplicial or
combinatorial complexes can be effectively constructed and applied in higher-order models.

Graph construction for symmetric detections The graph construction method we propose shares
similarities with the one introduced in (Welzl et al., 1988) for symmetry detection, later adapted in
the ML community to construct equivariant frames (Baker et al., 2024). However, our approach
defines the graph on the original point clouds, rather than solely on the projected point clouds as in
the referenced work. Furthermore, our design of graph attributes differs significantly: while Welzl
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et al. (1988) uses interior angles of facets, we employ dihedral angles between facets as the key
attribute in our graph construction.

B ADDITIONAL DISCUSSIONS

Rigidity of graphs. Graph rigidity, in its traditional definition, examines the geometric constraints
imposed on a graph by fixed edge lengths. A graph with fixed edge lengths is considered rigid if
it allows only one possible realization of node positions, up to rigid motions; for a comprehensive
understanding, we direct readers to (Asimow & Roth, 1978; Connelly, 2005). To illustrate this
concept, consider a simple 2D convex graph with four nodes and four equal-length edges. As
demonstrated in Fig. 6, this graph is not rigid; it can take different geometric forms, such as a square
or a rhombus. To make this convex graph rigid in 2D space, we add a diagonal edge (see Fig. 7).
This addition results in a structure where edge lengths uniquely determine node coordinates, up
to isometry. However, rigidity can be generalized beyond edge lengths. Incorporating geometric
invariants like interior or dihedral angles provides a broader perspective. For instance, fixing the
four interior angles of our example graph also ensures rigidity as shown in Fig. 7. This extended
notion, initially explored by Cauchy and further developed in recent studies such as Cho & Kim
(2023), addresses the rigidity of nonconvex polyhedra with respect to both edge lengths and dihedral
angles. Building upon this extended notion of rigidity, we establish theoretical guarantees for the
performance of Schull graph-based graph neural networks on general point clouds in Section 3.3.

Figure 6: A four-node graph with four edges of equal fixed length, which can form either a square
(left) or a rhombus (right), illustrating its non-rigidity.

Figure 7: Two approaches to achieving graph rigidity: on the left, a square with a diagonal, demonstrat-
ing rigidity through fixed edge lengths; on the right, the same square with shaded angles, illustrating
rigidity via fixed interior angles.

Non-generic point clouds. Several existing works have explored the expressivity of GNNs on
non-generic point clouds. For instance, k-DisGNNs (Li et al., 2024) aim to address the limitations of
GNNs in fully leveraging the distance graph (i.e., a complete graph with distance as edge attributes) by
designing higher-order GNN models that can better distinguish non-generic point clouds. Similarly,
Hordan et al. (2024) propose WeLNet, which utilizes the distance graph and provides a theoretical
guarantee that it can distinguish between all non-isometric 3D point clouds.

In this section, we apply our method to non-generic point clouds, particularly focusing on symmetric
point clouds to assess if it improves traditional GNNs’ ability to distinguish them. Prior work, such as
(Li et al., 2024), has shown that even when distances are incorporated into a complete graph – where
every pair of nodes is connected – GNNs can still struggle with special cases, such as collections of
nodes from the vertices of convex regular polyhedrons.
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Figure 8: Visualization of pairs of 6-point (green) and
14-point (purple) configurations from (Li et al., 2024),
where the edges represent the dodecahedron.

To investigate whether incorporating our SCHull
graph addresses these challenges, we test it us-
ing counterexamples of 6-point and 14-point
configurations from (Li et al., 2024); see Fig. 8
for a visualization. Specifically, we adapt the
EGNN architecture from (Satorras et al., 2021)
by removing equivariant updates and replac-
ing edge attributes with invariant features such
as distances and dihedral angles. Experiments
were conducted on a dataset consisting of aug-
mented counterexample pairs, each subjected to
20 random rotations, over 100 epochs, with results averaged over 10 independent runs. We report the
mean accuracy and standard deviation to ensure robustness. The empirical results in Tables 6 and 7
demonstrate that the edge attribute design of the SCHull graph (equation (5)) enables even shallow
GNNs to distinguish between two non-isomorphic geometric graphs successfully.

To provide further validation and comparisons, we have also tested the efficacy of using only edge
distances within the SCHull graph and evaluated alternative graph construction methods, including
radial cutoff graphs with varying thresholds, power graphs (Sverdlov & Dym, 2024), and complete
graphs (Li et al., 2024; Hordan et al., 2024). The graph properties and performance for all methods are
summarized in Tables 6 and 7, with tuple notations representing distinct graph properties on paired
point clouds. Additionally, visualizations of the graphs for the 14-point configurations are provided
in Table 8, offering a clearer geometric perspective on the differences between the approaches.

1 Layer 2 Layers # Edges / # Nodes # Components
Radius Graph (r = 1.8) w/ Distance 50.0 ± 0.0 50.0 ± 0.0 0.33 4
Radius Graph (r = 2.5) w/ Distance 50.0 ± 0.0 50.0 ± 0.0 1 (2, 1)
Radius Graph (r = 3.0) w/ Distance 50.0 ± 0.0 50.0 ± 0.0 1.67 1

4th-power Radius Graph (r = 1.8) w/ Distance 50.0 ± 0.0 50.0 ± 0.0 0.33 4
4th-power Radius Graph (r = 2.5) w/ Distance 100.0 ± 0.0 100.0 ± 0.0 (1, 2.5) (2, 1)
4th-power Radius Graph (r = 3.0) w/ Distance 50.0 ± 0.0 50.0 ± 0.0 2.5 1

Complete Graph w/ Distance 50.0 ± 0.0 50.0 ± 0.0 2.5 1
SCHull w/ Distance 50.0 ± 0.0 50.0 ± 0.0 2.0 1

SCHull w/ Distance and Dihedral Angles 100.0 ± 0.0 100.0 ± 0.0 2.0 1

Table 6: Comparison of graph properties and GNN performance (Unit:%) on 6-point symmetric
point clouds using different graph construction methods. Tuple notations represent distinct graph
properties on paired point clouds.

1 Layer 2 Layers # Edges / # Nodes # Components
Radius Graph (r = 1.8) w/ dij 50.0 ± 0.0 50.0 ± 0.0 1.0 (1, 2)
Radius Graph (r = 2.5) w/ dij 50.0 ± 0.0 51.0 ± 3.0 3.0 1
Radius Graph (r = 3.0) w/ dij 60.5 ± 11.1 57.2 ± 9.1 5.0 1

4th-power Radius Graph (r = 1.8) w/ dij 100.0 ± 0.0 100.0 ± 0.0 (5, 3) (1, 2)
4th-power Radius Graph (r = 2.5) w/ dij 50.0 ± 0.0 50.0 ± 0.0 6.5 1
4th-power Radius Graph (r = 3.0) w/ dij 50.0 ± 0.0 50.0 ± 0.0 6.5 1

Complete Graph w/ dij 59.0 ± 6.6.0 50.0 ± 0.0 6.5 1
SCHull w/ dij 100.0 ± 0.0 100.0 ± 0.0 2.57 1

SCHull w/ dij and τij 100.0 ± 0.0 100.0 ± 0.0 2.57 1

Table 7: Comparison of graph properties and GNN performance (Unit:%) on 14-point symmetric
point clouds using different graph construction methods. Tuple notations represent distinct graph
properties on paired point clouds.

The results showcase the limitations of alternative methods: radius graphs face issues of disconnectiv-
ity at small radii and edge redundancy at larger radii, neither of which ensures consistent performance;
power graphs exhibit inconsistent performance that depends heavily on careful parameter tuning, and
they fail to address issues of sparsity or connectivity effectively; complete graphs – while providing
exhaustive connectivity – are computationally expensive and do not improve accuracy. In contrast,
the SCHull graph achieves a balance of sparsity and rigidity, offering a compact yet expressive
representation that enhances GNN performance. Its efficiency and scalability make it particularly
appealing for large datasets, enabling effective learning with minimal computational overhead.

18



Published as a conference paper at ICLR 2025

Radius graph with cutoff r = 1.8 4th-power radius graph with cutoff r = 1.8

Radius graph with cutoff r = 2.5 4th-power radius graph with cutoff r = 2.5

Radius graph with cutoff r = 3.0 4th-power radius graph with cutoff r = 3.0

SCHull graph Complete graph

Table 8: We visualize the graphs of 14-points point clouds used in the experiments whose graph
properties and performance with GNNs are presented in Table 7.

These findings emphasize the SCHull graph’s robustness and efficiency in distinguishing symmetric
point clouds, confirming its design as both expressive and computationally efficient. However, a
formal theoretical analysis of this approach for non-generic point clouds is left as a direction for
future work.

Geometric Interpretation. We present an intuitive explanation of the SCHull graph construction
to clarify its connection to the convex hull and its advantages in representing point clouds.

The convex hull captures only the outermost boundary of a point cloud, omitting information about
interior points. This is evident in Fig. 9, where the convex hull of {xi}6i=1 (left) aligns with the
SCHull graph for those points. However, for {xi}8i=1 (right), the convex hull remains the same as for
{xi}6i=1, failing to account for interior points x7,x8. In contrast, SCHull connects interior points,
preserving the structural relationships necessary to recover both the convex hull and the full geometry
of the point cloud.
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SCHull’s design addresses this limitation by leveraging spherical projection. Points are mapped onto
the unit sphere, where the graph structure is computed. This ensures that interior points contribute to
the graph’s structure. Conceptually, this transformation is akin to converting 3D Cartesian coordinates
(x, y, z) into spherical coordinates (r, θ, ϕ), where the radial distance r is excluded in the graph
construction. The SCHull graph, therefore, relies only on the angular coordinates (θ, ϕ), capturing
the intrinsic geometry of the point cloud. One can see this rationale through the polar grid in Fig. 9.
Importantly, the radial coordinate r is retained as a node feature. This allows for the reconstruction
of the original 3D coordinates (r, θ, ϕ) and allows SCHull to represent global geometric properties
effectively. For example, as shown in Fig. 9, edge lengths like ∥x1 −x7∥ and ∥x1 −x6∥ can be used
together with node features ∥x1∥, ∥x6∥, ∥x7∥ to compute information on the convex hull, such as
∥x1 − x6∥.

In summary, SCHull preserves the global geometry of the convex hull while enriching it with the
structural representation of interior points. This makes SCHull an effective tool for capturing the full
spatial structure of point clouds and their intrinsic relationships. We note that Fleming & Fleming
(2018) uses the convex hull to estimate hydrodynamic volume, and we believe that the SCHull graph
could not only improve the prediction of this property but also offer additional insights.

x1

x2

x3

x4

x5

x6

x7x8

x1

x2

x3

x4

x5

x6

Figure 9: This figure highlights the close relationship between the convex hull of point clouds and SCHull
graphs. While the convex hull captures only the outer boundary, potentially discarding information about interior
points, the SCHull graph retains this information by connecting interior points. The edges of the SCHull graph
are represented by solid gray lines, while the dashed gray lines indicate convex hull edges that differ from those
of the SCHull graph. This distinction emphasizes SCHull’s ability to preserve and enrich geometric relationships
beyond the convex hull.

Discontinuous intrinsic properties of graph construction. The discrete nature of graph data
inherently prevents the possibility of truly continuous graph construction, a limitation shared by all
graph construction methods, including the one proposed in this work. While this was not the primary
focus of our discussion, it raises an intriguing question: how does the choice of graph construction,
especially those with attribute designs, affect the smoothness properties of end-to-end neural network
models? Specifically, if the input data is perturbed by noise or errors, can we theoretically analyze how
different graph construction methods influence the resulting impact on the neural network’s output?
For instance, does the output exhibit stability under input perturbations such that the end-to-end
models are still continuous?

C MISSING PROOFS AND ADDITIONAL DETAILS

Proposition 3.1. Let Z = {zj} be a set of points on a sphere where |Z| ≥ 3 (the number of points
is at least 3), and let Conv(Z) denote the convex hull of Z with its associated graph structure
consisting of nodes, edges, and faces defined by its boundary. Then, we have

1. Connectivity: Any two points in Z are connected by a sequence of edges in Conv(Z).

2. Sparsity: The number of edges in Conv(Z) is no greater than 3|Z| − 6.
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Moreover, Conv(Z) is a strictly convex geometric polyhedral graph if zjs are not coplanar.

Proof of Proposition 3.1. Since the point cloud Z lies on a sphere, each point in Z is an extreme
point (Leonard & Lewis, 2015) of Conv(Z). Consequently, each point appears as a node in the
graph structure of the convex hull. If the points in Z are not coplanar, then Conv(Z) is a convex
polyhedron, and, hence by definition, Conv(Z) is a strictly convex polyhedral graph. Since each
convex polyhedron can be represented as a 3-connected planar graph by Steinitz’s theorem, Conv(Z)
is connected, and the number of its edges is bounded above by 3|Z| − 6 (Lipton & Tarjan, 1979;
O’Rourke, 1998). If the points in Z are coplanar, then Conv(Z) itself is a connected planar graph.
Therefore, the same bound of 3|Z| − 6 on the number of edges holds.

Lemma 3.4. Any generic point cloud satisfies the generic assumption equation (3).

Proof of Lemma 3.4. If xi = x for some i ∈ V , it directly defines a linear algebraic dependence on
the coordinates, leading to a contradiction. Similarly, suppose px(xi) = px(xj) for some i, j ∈ V .
Then we have (xi−x)

∥(xi−x)∥ =
(xj−x)

∥(xj−x)∥ , implying that (xi−x) · (xj−x) = ∥xi−x∥∥xj−x∥. Taking
the square of both sides, we obtain an algebraic dependence on the coordinates, which leads to a
contradiction.

Lemma 3.5. Let (V,X) be a generic point cloud. Then Conv ({px(xi) | i ∈ V}) – the convex hull
on the sphere we constructed in Section 3.1 – is a strictly convex geometric polyhedral graph.

Proof of Lemma 3.5. Due to Proposition 3.1, it suffices to show that {px(xi) | i ∈ V} are not copla-
nar. This is true unless the original point cloud lies on a plane, which contradicts the genericity
assumption.

Theorem 3.6. Let F be a maximally expressive GNN with depth T = 1. Then F can distinguish
between the attributed SCHull graphs defined in equation (5) of any two non-isomorphic generic
point clouds.

Proof of Theorem 3.6. The proof is inspired by the work Sverdlov & Dym (2024). Consider two
SCHull graphs, G and G′, generated from point clouds (V,X) and (V ′,X ′), respectively. If the
maximally expressive GNN F assigns the same global feature to G and G′ after one iteration, then
the multisets of node features {{si}} and {{s′i}} are identical. This implies |V| = |V ′|. By relabeling, if
necessary, we can assume that si = s′i for all i ∈ V . This further implies that for each node i ∈ V , the
node features fi = f ′

i and the multisets of edge features {{eij | j ∈ Ni}} = {{e′ij | j ∈ N ′
i}} are also

the same. That is, ∥xi − x∥ =
∥∥x′

i − x′
∥∥ and {{(∥xi − xj∥, τij) | j ∈ Ni}} = {{(∥x′

i − x′
j∥, τ ′ij) |

j ∈ N ′
i}}. Notice that the number of edges |E| is equal to 1

2

∑
i di, where di denotes the degree of the

node i. Since the degrees of corresponding nodes on graphs G,G′ are equal, both graphs have the same
sum of node degrees and hence the same number of edges, i.e., |E| = |E ′|. Due to the generic nature of
point clouds, for any edge (i, j) ∈ E , the distance ∥x′

i −x′
j∥ will appear exactly once in the multisets

corresponding to nodes i and j on both graphs. This means that (i, j) is also an edge in E ′ and hence
the underlying graph (V, E) and (V ′, E ′) are isomorphic. It also follows that the edge attributes of
corresponding edges are the same, i.e., ∥xi − xj∥ = ∥x′

i − x′
j∥ and τij = τ ′ij . Next, we observe

that the triple (∥xi −xj∥, ∥xi − x∥ , ∥xj − x∥) uniquely determines the distance between projected
points px(xi), px(xj) on the unit sphere as we show in Lemma C.1 below. Therefore, the equality
between triples (∥xi − xj∥, ∥xi − x∥ , ∥xj − x∥) = (∥x′

i − x′
j∥,

∥∥x′
i − x′

∥∥ ,∥∥x′
j − x′

∥∥) implies
∥px(xi)− px(xj)∥ = ∥px′(x′

i)− px′(x′
j)∥. Combined with the identity τij = τ ′ij and the fact that

(V, E) and (V ′, E ′) are isomorphic, we can conclude that (V, E , px(X)) and (V ′, E ′, px′(X ′)) are
geometrically isomorphic using Lemma 3.5 and Theorem 2.1. Finally, because we can recover the
original coordinates X from the projected points px(X) by ∥xi − x∥ · px(xi) = xi, (V, E ,X,F )
and (V ′, E ′,X ′,F ′) are also geometrically isomorphic.

Lemma C.1. The triple (∥xi−xj∥, ∥xi − x∥ , ∥xj − x∥) uniquely determines the distance between
projected points px(xi), px(xj) on the unit sphere.
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Proof of Lemma C.1. We denote the projection px by p for simplicity. Notice that the angle formed
by the vertices xi,x,xj is the same as the angle formed by the vertices p(xi),x, p(xj), since
projection p preserves the angle subtended by these points. Denote this angle by α. Following the
Law of Cosines, we have:

cos(α) =
∥xi − x∥2 + ∥xj − x∥2 − ∥xi − xj∥2

2∥xi − x∥ · ∥xj − x∥
(6)

and

∥p(xi)− p(xj)∥2 = ∥p(xi)− x∥2 + ∥p(xj)− x∥2 − 2∥p(xi)− x∥∥p(xj)− x∥ cos(α)
= 2− 2 cos(α),

(7)

where we have used the fact that ∥p(xi) − x∥ = 1 and ∥p(xj) − x∥ = 1 as both points lie
on the unit sphere. From equation (6), we can compute cos(α) using the given triple (∥xi −
xj∥, ∥xi − x∥ , ∥xj − x∥). Substituting this value of cos(α) into equation (7), we can then solve
for ∥p(xi)− p(xj)∥, which gives the distance between the projected points.

D MAINTAINING THE CONNECTIVITY OF SCHULL

In the SCHull graph construction presented in the main text, we assume the following condition
holds:

xi ̸= x and px(xi) ̸= px(xj) for any i ̸= j ∈ V. (8)

Here, we outline a strategy to maintain the connectivity and sparsity of our graph when the generic
condition equation (3) does not hold.

When xi = x for some node i: To preserve graph connectivity, we employ a strategy similar to
k-nearest neighbors. We connect xi to its nearest neighbor(s) in the point cloud. Unless there is
a significant number of points exactly at the center of the point cloud, this modification will not
substantially compromise sparsity.

When px(xi) ̸= px(xj) for some nodes i, j: In these cases, we compare the norms ∥xi∥ and ∥xj∥.
If ∥xi∥ > ∥xj∥, we treat xi as the representative of the point px(xi) on the unit sphere and then
connect edges to xi following the original SCHull graph construction. Subsequently, we connect xj

to xi. This approach ensures that sparsity is preserved.

E SCHULL GRAPHS OF 2D POINT CLOUDS.

O

z1

z2

z3

z4

z5 z6

Figure 10: A visualization illustrating how the edge lengths of a polygon on the unit circle uniquely determine
the spatial arrangement of its vertices.

When a point cloud lies on the plane, its associated SCHull graph corresponds to a polygon, with
each vertex positioned on the unit circle, as illustrated in Fig. 10. In this case, the dihedral angles, as
defined in equation (5), become zero since there is only a single facet.

Nevertheless, the SCHull graph with edge attributes ∥xi−xj∥ and node attributes ∥xi−x∥ provides
sufficient information for a maximally expressive GNN to distinguish non-isomorphic generic point
clouds on the plane. Here the genericity of point clouds (Definition 3.3) is characterized by 2D
coordinates on the plane. The formal result is stated in the following theorem:
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Theorem E.1. Let F be a maximally expressive GNN with depth T = 1. Then, F can distinguish
between the attributed SCHull graphs defined in equation (5) of any two non-isomorphic generic
point clouds on the plane.

The proof of this theorem follows a similar approach to Theorem 3.6, relying on an analogous result
to Theorem 2.1 for polygons on the unit circle. Specifically, we need to show that the edge lengths of
a polygon uniquely determine its structure on the unit circle, up to isometry:
Lemma E.2. The coordinates of the vertices of an n-polygon inscribed in a circle are uniquely
determined by the sequence of its edge lengths, up to isometry.

Proof of Lemma E.2. Let the coordinates of the vertices on the circle be denoted as z1, z2, . . . ,zn,
ordered counterclockwise. We aim to show that the edge lengths ∥zi+1 − zi∥ for 1 ≤ i ≤ n− 1 and
∥z1 − zn∥ are sufficient to uniquely determine the vertices z1, z2, . . . ,zn, up to isometry. Each edge
length ∥zi+1 − zi∥ determines the triangle formed by zi, zi+1, and the circle’s center O using the
side-side-side (SSS) triangle congruence criterion. Similarly, the edge length ∥z1 − zn∥ determines
the triangle formed by zn, z1, and O. By sequentially composing these triangles in order, the shape
of the entire polygon is fully determined by Cauchy’s Arm Lemma (Chern, 1967) up to isometry. A
visualization is demonstrated in Fig. 10.

Proof of Theorem E.1. Following the same steps as in the proof of Theorem 3.6, we first establish
that the underlying graphs (V, E) and (V ′, E ′). Additionally, the distances between corresponding
nodes satisfy ∥px(xi)− px(xj)∥ = ∥px′(x′

i)− px′(x′
j)∥. From the graph structure of the polygons,

it follows that the sequence of edge lengths is identical for the two graphs. By Lemma E.2, this
implies that the projected point clouds on the circle are identical up to isometry. Using the node
features {∥xi − x∥} and {∥x′

i − x′∥}, we conclude that the underlying point clouds are identical up
to isometry.

F RIGIDITY OF ATTRIBUTED SCHULL GRAPHS WITHOUT NODE ATTRIBUTES

In Section 3.3, we demonstrated that the attributed design defined in equation (5) is sufficient for
maximally expressive GNNs to distinguish non-isomorphic generic point clouds in Theorem 3.6.
Here, we investigate when the node attributes fi, ∥xi −x∥, representing the original distance of each
point to the center of the point cloud, can be omitted. We will show that edge lengths and dihedral
angles are sufficient to guarantee the rigidity of SCHull graphs of generic point clouds under the
following additional generic assumption:

Any four projected points {px(xi)} are not coplanar. (9)

Point clouds that do not satisfy this condition are included in a finite union of zero sets of analytic
functions, which has Lebesgue measure zero (Mityagin, 2015).

Specifically, we aim to prove the following theorem:
Theorem F.1. Let F be a maximally expressive GNN with depth T = 1. Then F can distinguish
between the SCHull graphs using only edge-attributes defined in equation (5) of any two non-
isomorphic generic point clouds satisfying equation (9).

Note that the proof of Theorem 3.6 relies on the rigidity of strictly-convex geometric polyhedral
graphs stated in Theorem 2.1. Similarly, our proof of Theorem F.1 relies on the following rigidity
theorem for geometric polyhedral graphs from (Cho & Kim, 2023):
Theorem F.2. If a geometric, possibly nonconvex and self-intersecting, polyhedral graph satisfies
that (i) every face is convex, (ii) there are no coplanar adjacent faces and no set of seven vertices lies
on the same plane, and (iii) any triple of vertices is not collinear, then its geometric arrangement is
uniquely determined up to rigid motions by its dihedral angles and edge lengths.

To prove Theorem F.1, it suffices to show that generic point clouds satisfying equation (9) fulfill the
required conditions in Theorem F.2.

First, the genericity of point clouds ensures the conditions (ii) and (iii), as they can be expressed as
polynomials of points’ coordinates with rational coefficients. To demonstrate that all faces on the
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SCHull graph are convex, we observe that since any four projected points {px(xi)} are not coplanar,
their convex hull can only have triangles as its faces. This implies that the faces of the SCHull graph
are all triangular, and triangles are inherently convex.

G ALGORIHTMS AND ARCHITECTURE DETAILS

G.1 GRAPH CONSTRUCTION ALGORITHMS

Radial cutoff. The Radial cutoff graph construction is implemented using the PyTorchGeo-
metric (Fey & Lenssen, 2019) data transform RadiusGraph. This constructs the set of edges
{eij | ||xi − xj || < r} for a fixed radius r. In the NestedSquares dataset r = 4, this is the side length
of the outer square. In all other tasks, where the baseline models use RadiusGraph to construct the
graph, we use the default radius r.

kNN. The kNN graph construction is implemented using the PyTorchGeometric (Fey & Lenssen,
2019) data transform KNNGraph. This constructs a directed set of edges such that each node has
exactly k neighbors. The graph is then made undirected. In all tasks k = 3.

Voronoi. The Voronoi graph construction is implemented using the SciPy (Virtanen et al., 2020)
spatial transform Voronoi. This constructs an undirected graph from the ridges of the Voronoi
diagram.

G.2 MESSAGE PASSING NEURAL NETWORK

The following message-passing neural network:

mij = ϕm

(
hl
i,h

l
j , eij

)
mi =

∑
j∈N (i)

mij

hl+1
i = ϕh(h

l
i,mi)

is used for the experiments in Section 3.3. In particular, for the architecture MPNN+SCHull, we
utilize the attributed version of SCHull defined in equation (5). For the base MPNN architecture, the
edge attributes are discarded, i.e., mij = ϕm

(
hl
i,h

l
j).

H BENCHMARK DETAILS

H.1 NESTEDSQUARES

The NestedSquares dataset is a graph property prediction task designed to test the expressivity of
geometric GNNs. The training, validation, and test splits contain rotated graphs depicted in Fig. 4.
There are 6 training graphs, 2 test graphs, and 2 validation graphs, and they contain randomly rotated
graphs. The training procedure uses the Adam optimizer to minimize the mean squared error (MSE)
loss between the model predictions and ground truth graph labels. The training uses the Adam
optimizer with a learning rate of 1e-4 and a learning rate scheduler, which reduces by a factor of 0.9,
has a patience of 25, and a minimum lr of 1e-5. The model is trained for 100 epochs, with the test
loss reported for the epoch with the best validation loss.

H.2 MD17

The MD17 dataset is a node property prediction task, which contains a variety of molecular dynamics
trajectories. Both the training and validation sets contain 1K samples, with the remaining data used for
testing. The training procedure uses the Adam optimizer to minimize the L1 loss between the model
predictions and ground truth molecular energy and forces. The training uses the Adam optimizer
with a learning rate of 5e-4 and a learning rate scheduler which reduces by a factor of 0.5 and has a
patience of 50. The model is trained for 1100 epochs, with the test loss reported for the final epoch.
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H.3 PROTEIN DATASET

Fold dataset. We utilize the same dataset as that used by Hou et al. (2018); Wang et al. (2022a).
The dataset includes 16,292 proteins across 1,195 folds. To assess generalization performance, three
test sets are employed: Fold, where proteins from the same superfamily are excluded from training;
Superfamily, where proteins from the same family are not included in training; and Family, where
proteins from the same family are part of the training data. Among these, Fold poses the greatest
challenge, as its proteins differ the most from those in the training set. For this task, 12,312 proteins
are used for training, 736 for validation, 718 for Fold, 1,254 for Superfamily, and 1,272 for Family.

Reaction dataset. For the reaction classification task, 3D structures of 37,428 proteins corresponding
to 384 EC numbers are obtained from PDB (Berman et al., 2000), with EC annotations for each
protein retrieved from the SIFTS database (Dana et al., 2019). The dataset is divided into 29,215
proteins for training, 2,562 for validation, and 5,651 for testing. Each EC number is represented
across all three splits, and protein chains sharing more than 50% sequence similarity are grouped.

LBA dataset. Following (Jing et al., 2020), we perform ligand binding affinity predictions on a subset
of the commonly-used PDBbind refined set (Wang et al., 2004; Liu et al., 2015). The curated dataset
of 3,507 complexes is split into train/val/test splits based on a 30% sequence identity threshold to
verify the model generalization ability for unseen proteins. For a protein-ligand complex, we predict
the negative log-transformed binding affinity pK = − log10(K) in Molar units.

I HYPERPARAMETER DETAILS

I.1 NESTEDSQUARES

Table 9 reports the hyperparameters for each invariant GNN which are adjusted from the baseline
models. Additionally, we find that models are particularly sensitive to the cutoff which serves as a
soft threshold parameter in each of the models. We report the results from the best cutoff using a grid
search from 1 to 10. The chosen cutoff parameter is reported in Table 10.

hidden features num radial num spherical

DimeNet++ 128 6 7
SphereNet 256 6 7
ComENet 128 8 8

MPNN+SCHull 256 32 3

Table 9: Hyperparameter selection for the NestedSquares dataset.

Radial cutoff kNN (k = 3) Voronoi SCHull (ours)
MPNN 8 6 7 8

DimeNet++ 3 3 3 —
SphereNet 9 9 9 —
ComENet 8 8 7 —

Table 10: Cutoff hyperparameter in the NestedSquarse task for each model and graph connectivity.

I.2 MD17

Model and training hyperparameters for the MD17 task are listed in Table 11.

I.3 PROTEIN DATASET

Model and training hyperparameters search space for the protein tasks are listed in Table 12
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Hyperparameter Values/Search Space
Number of layers 4, 6
Hidden channels 256
Number of radial basis 32, 64
Cutoff 6, 8, 10
Epochs 1200
Batch size 64
Learning rate 5e-4
Learning rate scheduler steplr
Learning rate decay factor 0.5
Learning rate decay epochs 180
Weight decay rate 1e-12

Table 11: Model and training hyperparameters search space for MD17 tasks.

Hyperparameter Values/Search Space
React Fold LBA

Number of layers 3, 4, 5 3, 4, 5 3, 4, 5
Hidden channels 64, 128, 256 64, 128, 256 128, 192, 256
Cutoff 6, 8, 10 6, 8, 10 6, 8, 10
SCHull+Cutoff 6, 7, 8 6, 7, 8 6, 8
Dropout 0.2, 0.3, 0.5 0.2, 0.3, 0.5 0.2, 0.3
Epochs 500, 1000 500, 1000 300, 500
Batch size 16, 32 16, 32 8, 16, 32
Learning rate 1e-4, 5e-4 1e-4, 5e-4 5e-5, 1e-4, 2e-4
Learning rate scheduler steplr steplr steplr
Learning rate decay factor 0.5 0.5 0.5
Learning rate decay epochs 50, 100 100, 200 50, 100

Table 12: Model and training hyperparameters for protein-related datasets.
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