
Published as a conference paper at ICLR 2023

A DERIVATIONS

A.1 ANALYTIC SOLUTIONS TO LINEAR VAES

In this section, we present the analysis from Lucas et al. (2019) with additional details. Recall that
the linear VAE is defined as:

pθ(x|z) = N (Dz+ µ, σ2I)

qϕ(z|x) = N (E(x− µ),C),
(12)

where D is the decoder weight, E is the encoder weight, and C is the diagonal covariance matrix.
Also recall that the β-VAE objective is defined as:

Lβ(ϕ,θ) = Epd(x)[Eqϕ(z|x)[− log pθ(x|z)]] + βEpd(x)[DKL(qϕ(z|x), p(z))]. (13)

For linear VAEs, each component of the β-VAE objective can be expressed in closed form. For
simplicity, we assume a fixed identity covariance matrix I for the decoder as modifying β gives a
similar effect as changing the observation noise (Rybkin et al., 2020). We also assume that the data
covariance matrix is full rank. The second KL term can be expressed as:

DKL(qϕ(z|x), p(z)) =
1

2

(
− log detC+ (x− µ)⊤E⊤E(x− µ) + tr(C)− d

)
. (14)

The first term can be expressed as:

Eqϕ(z|x)[log pθ(x|z)] = Eqϕ(z|x)
[
−(Dz− (x− µ))⊤(Dz− (x− µ))/2− c

]
(15)

= Eqϕ(z|x)

[
−(Dz)⊤(Dz) + 2(x− µ)⊤Dz− (x− µ)⊤(x− µ)

2
− c

]
, (16)

where c = d/2 log 2π is a constant term. Because Dz ∼ N (DE(x− µ),DCD⊤), we can further
simplify the equation as:

Eqϕ(z|x)[log pθ(x|z)] =
1

2
(−tr(DCD⊤)− (x− µ)⊤E⊤D⊤DE(x− µ) (17)

+ 2(x− µ)⊤WV(x− µ)− (x− µ)⊤(x− µ))− c. (18)

After setting µ = µMLE (which is the global minimum for µ as discussed in Lucas et al. (2019)),
we take the gradient with respect to C and E to compute critical points of encoder weights and
covariance matrix. These gradients can be written as:

∂Lβ

∂C
(ϕ,θ) =

N

2

(
βC−1 − βI− diag(D⊤D)

)
. (19)

∂Lβ

∂E
(ϕ,θ) = N

(
D⊤S−D⊤DES− βES

)
, (20)

where S is the sample covariance matrix. By setting these gradients to equal to 0, the critical points
can be expressed as:

C⋆ = β(diag(D⊤D) + βI)−1. (21)

E⋆ = (D⊤D+ βI)−1D⊤, (22)

which recovers the true posterior mean and posterior covariance when the columns of D are orthog-
onal. Moreover, as the global minimum of the decoder weight coincides with the solution to the
probabilistic PCA (pPCA) (Dai et al., 2018; Lucas et al., 2019; Sicks et al., 2021), we can express the
optimal decoder weight as:

D⋆ = U(g(Λ− βI))
1/2R, (23)

where U corresponds to the first k eigenvectors of the sample covariance S with corresponding top
eigenvalues λ1 ≥ ... ≥ λk stored in the k × k diagonal matrix Λ. The matrix R is some rotation
matrix and the function g(x) = max(0, x) clips negative values to 0 and is applied elementwise.

15

Published as a conference paper at ICLR 2023

A.2 PROOF OF THEOREM 1

In this section, we show that the MR-VAE parameterization can represent the response functions
for linear VAEs. Throughout this section, we use η = log β for simplicity in notation. First, notice
that we can simplify the equation for the encoder response function by using the singular value
decomposition D = ASB⊤:

E⋆(η) = B(S2 + exp(η)I)−1SA⊤. (24)

Suppose we apply the MR-VAE parameterization to two-layer encoders Eψ(η) = E
(2)
ψ (η)E

(1)
ψ (η),

where each component can be expressed as:

E
(1)
ψ (η) = σE(v

(1)η + s(1))⊙row E
(1)
base (25)

E
(2)
ψ (η) = σE(v

(2)η + s(2))⊙row E
(2)
base, (26)

where σE(·) is the sigmoid activation function. Consider setting E
(1)
base = A⊤, v(1) = −1, and

s
(1)
i = 2 log(Sii) for all i in dimension of s(1). Then, each dimension of the scaling term can be

expressed as:

σE(v
(1)η + s(1))i =

1

1 + exp(η − 2 log(Sii))
=

S2
ii

S2
ii + exp(η)

. (27)

By further setting E
(2)
ψ (η) = BS−1, which can be achieved by setting both scaling parameters (v(2)

and s(2)) to 0 and setting E
(2)
base = 2BS−1, we recover the response function for the encoder weight:

E
(2)
ψ (η)E

(1)
ψ (η) = B(S2 + exp(η)I)−1SA⊤. (28)

The response function for the diagonal covariance can be expressed as:

C⋆(η) = exp(η)(diag(D⊤D) + exp(η)I)−1. (29)

Our hypernetwork parameterization corresponds to Cψ(η) = C
(2)
ψ (η)C

(1)
ψ (η), where each compo-

nent can be written as:

C
(1)
ψ (η) = σE(t

(1)η + p(1))⊙row C
(1)
base (30)

C
(2)
ψ (η) = σE(t

(2)η + p(2))⊙row C
(2)
base, (31)

We describe the procedure for constructing the diagonal matrix C
(1)
base: in the i-th dimension, if

diag(D⊤D)ii = 0, we set the corresponding diagonal entry to 2 and the scaling (hyper) parameters
to be t

(1)
i = p

(1)
i = 0.

Otherwise, if diag(D⊤D)ii ̸= 0, we set the diagonal entry to 1. We set t(1)i = 1 and p
(1)
i =

− log(diag(D⊤D)ii) for each dimension. Finally, by letting C
(2)
ψ (η) = I, we can achieve:

C
(2)
ψ (η)C

(1)
ψ (η) = exp(η)(diag(D⊤D) + exp(η)I)−1. (32)

Lastly, recall that the response function for decoder weight can be expressed as:

D⋆(η) = U(g(Λ− exp(η)I))
1/2R. (33)

For notational simplicity, we represent Λii = exp(ξi) for i = 1, ..., k using the assumption above
that the data covariance matrix is full rank. Then, the diagonal term in the response function can be
represented as:

(g(Λ− exp(η)I))
1/2
ii = max(0, (exp(ξi)− exp(η))

1/2) (34)

= exp(ξi)
1/2 max(0, 1− exp(−ξi) exp(η))

1/2 (35)

= exp(ξi)
1/2 max(0, 1− exp(η − ξi))

1/2. (36)

16

Published as a conference paper at ICLR 2023

Again, recall that we can use MR-VAE parameterization Dψ(η) = D
(2)
ψ (η)D

(1)
ψ (η). Specifically,

we have:
D

(1)
ψ (η) = σD(h(1)η + q(1))⊙row D

(1)
base (37)

D
(2)
ψ (η) = σD(h(2)η + q(2))⊙row D

(2)
base, (38)

We highlight that we use a different activation function σD(·) for representing the decoder weight as
described in Eqn. 7. We propose to set D(1)

base = R, h(1) = 1, q(1)
i = −ξi, and D

(2)
ψ (η) = UΛ

1/2 for
all i. Then, the response hypernetwork can be expressed as:

D
(2)
ψ (η)D

(1)
ψ (η) = U(g(Λ− exp(η)I))

1/2R. (39)

which matches the response function for the decoder weight.

B ADDITIONAL IMPLEMENTATION DETAILS

B.1 CONVOLUTION LAYERS

In this section, we present the hypernetwork parameterization for convolutional layers. Consider the i-
th layer of a convolutional VAE with Ci filters and kernel size Ki. We denote W(i,c) ∈ RCi−1×Ki×Ki

and b(i,c) ∈ R to be the weight and bias of the c-th filter, where c ∈ {1, ..., Ci}. We formulate the
response hypernetwork for the weight and bias as:

W
(i,c)
ψ (β) = σ(i)

(
w

(i,c)
hyper log β + b

(i,c)
hyper

)
⊙W

(i,c)
base (40)

b
(i,c)
ψ (β) = σ(i)

(
w

(i,c)
hyper log β + b

(i,c)
hyper

)
⊙ b

(i,c)
base , (41)

where w
(i,c)
hyper,b

(i,c)
hyper ∈ R. Observe that the proposed hypernetwork parameterization is similar to

that of fully-connected layers and only requires 2Ci additional parameters to represent the weight
and bias. In the forward pass, the convolutional response hypernetwork requires 2 additional
elementwise operations. Hence, MR-VAEs parameterization for convolutional layers also incurs a
small computation and memory overhead.

B.2 PYTORCH IMPLEMENTATION

We show the PyTorch implementation of the MR-VAE layer in Listing 1. The MR-VAE layer can be
viewed as pre-activations gating and can be introduced after linear or convolutional layers.

from torch import nn
import torch

class MRVAELayer(nn.Module):

def __init__(self, features: int, activation_fnc: nn.Module) -> None:
super().__init__()

self.features = features
self.hyper_block_scale = nn.Linear(1, self.features, bias=True)
self.activation_fnc = activation_fnc

def forward(self, inputs: torch.Tensor, betas: torch.Tensor) ->
torch.Tensor:

scale = self.hyper_block_scale(betas)
scale = torch.activation_fnc(scale)

if len(inputs.shape) == 4:
Unsqueeze for convolutional layers.
scale = scale.unsqueeze(-1).unsqueeze(-1)

return scale * inputs

Listing 1: MR-VAE Layer implemented in PyTorch.

17

Published as a conference paper at ICLR 2023

Dataset Architecture Number of Parameters Increase Percentage
β-VAE MR-VAE

MNIST & Omniglot
CNN 17.53 ×105 17.88 ×105 2.04%

ResNet 18.81 ×104 18.84 ×104 0.12%
NVAE 88.68 ×105 89.50 ×105 0.92%

CIFAR & SVHN CNN 40.46 ×105 40.81 ×105 0.88%
ResNet 78.96 ×104 78.98 ×104 0.02%

CelebA64 CNN 34.59 ×105 34.96 ×105 1.08%
ResNet 27.70 ×104 27.74 ×104 0.13%

Yahoo LSTM 88.21 ×104 93.51 ×104 6.01%

Table 1: An overview of the parameters required by β-VAE and MR-VAE.

B.3 MEMORY OVERHEAD FOR MR-VAE

In Table 1, we show the number of additional parameters MR-VAEs used in our experiment. The
memory required for training MR-VAEs is similar to that of training a single β-VAE model.

C EXPERIMENT DETAILS

This section describes the details of the experiments presented in Section 5. All experiments were
implemented using PyTorch (Paszke et al., 2019) and Jax (Bradbury et al., 2018) libraries and
conducted with NVIDIA P100 GPUs, except for NVAE models, which were conducted with NVIDIA
RTX A5000 GPUs.

C.1 LINEAR VAES

We used the MNIST (Deng, 2012) dataset for training linear VAEs. We used the Adam opti-
mizer (Kingma & Ba, 2014) and trained the network for 200 epochs with 10 epochs of learning
rate warmup and a cosine learning rate decay. The latent dimension was set to 32. We conducted
hyperparameter searches over learning rates {0.01, 0.003, 0.001, 0.0003, 0.0001, 0.00003, 0.00001}
with βs uniformly sampled between 0.01 and 10 on a log scale. We selected the learning rate that
achieved the lowest average training loss. The experiments were repeated 3 times with different
random seeds, and the mean is presented.

MR-VAEs were trained using the same training and architectural configurations as the baseline. We
performed a grid search on learning rates {0.01, 0.003, 0.001, 0.0003, 0.0001, 0.00003, 0.00001}
and selected the learning rate that achieved the best training loss at β = 1. We also repeated the
experiments 3 times with different random seeds.

C.2 IMAGE RECONSTRUCTION

We used binary static MNIST (Larochelle & Murray, 2011), Omniglot (Lake et al., 2015), CIFAR-
10 (Krizhevsky et al., 2009), SVHN (Netzer et al., 2011), and CelebA64 (Liu et al., 2015) datasets.

We used the Adam optimizer for CNN and ResNet (He et al., 2016) architectures for 200 epochs
with a batch size of 128 and a cosine learning rate decay. For NVAE architecture with binary images,
we used the Adamax optimizer for 400 epochs with a batch size of 256 and a cosine learning rate
decay. In the case of CelebA64 dataset, we use a batch size of 16. For all baseline models, we
conducted hyperparameter searches over learning rates {0.01, 0.003, 0.001, 0.0003, 0.0001, 0.00003,
0.00001} with β = 1, making choices based on the final validation loss. With the chosen set of
hyperparameters, we repeated the experiments over 10 βs uniformly sampled between 0.01 and 10 on

18

Published as a conference paper at ICLR 2023

Dataset Architecture ELBO Rate Distortion

MNIST

ResNet 89.63 29.17 60.46
CNN 96.35 18.33 78.03

MR-ResNet 87.89 27.07 60.82
MR-CNN 93.51 28.50 65.00

Omniglot

ResNet 111.07 34.98 76.09
CNN 114.73 34.11 80.62

MR-ResNet 107.78 34.36 73.41
MR-CNN 110.98 34.21 76.77

Table 2: We present the lowest test ELBO scores for β-VAE and MR-VAE on MNIST and Omniglot datasets.

a log scale with and without the KL warm-up. The experiments were repeated 3 times with different
random seeds, and the mean was presented.

We followed the same architectural configurations from Chadebec et al. (2022) for CNN and ResNet
architectures2. We also adopted the NVAE architecture and configurations from Vahdat & Kautz
(2020)3.

MR-VAEs were trained using the same training and architectural configurations as the baseline. We
performed a grid search on learning rates {0.01, 0.003, 0.001, 0.0003, 0.0001, 0.00003, 0.00001}
and selected the learning rate that achieved the best validation loss at β = 1. With different random
seeds, the experiment was repeated 3 times, and the mean was shown.

Note that, for NVAE architecture on the CelebA64 dataset, we observed instability in the initial stage
of training. To stabilize the early training stage, we used a warm-up stage for the initial 30% of the
training, where the KL weight remained fixed to a small constant.

In addition, we used the Yahoo (Answer) (Zhang et al., 2015) dataset and adopted the training
procedure from Hu et al. (2019). We trained the network for 200 epochs with a batch size of 32 using
the Adam optimizer. The learning rate was decayed by a factor of 2 when the validation loss did not
improve for 2 epochs. For all baseline methods, we performed hyperparameter searches over the
learning rates {0.01, 0.003, 0.001, 0.0003, 0.0001, 0.00003, 0.00001} with the KL warm-up and
β = 1 and selected configuration that achieved the lowest validation loss. With the chosen set of
hyperparameters, we repeated the experiments over 10 βs uniformly sampled between 0.01 and 10
on a log scale with and without the KL warm-up.

We also adopted the architectural configurations from Hu et al. (2019)4. LSTM models used the
embedding dimension of 256 and the hidden dimension of 256. In training MR-VAEs, we followed
the same configurations as in the baseline models. We performed a grid search on learning rates in
the range {0.01, 0.003, 0.001, 0.0003, 0.0001, 0.00003, 0.00001} and selected the learning rate that
achieved the best validation loss at β = 1. We report the mean across 3 different random seeds.

C.2.1 β-TCVAE

We used the dSprites (Matthey et al., 2017) dataset and followed the same training and architectural
configurations from Chen et al. (2018) 5. We trained the network for 50 epochs with the Adam
optimizer and a batch size of 2048. For the baseline method, we performed grid search over the
learning rates {0.01, 0.003, 0.001, 0.0003, 0.0001, 0.00003, 0.00001} with β = 1 and selected
configuration that achieved the lowest training loss. With the chosen training configuration, we
repeated the experiments over 10 βs uniformly sampled between 0.1 and 10 on a log scale. We report
the mean across 3 different random seeds.

2https://github.com/clementchadebec/benchmark_VAE
3https://github.com/NVlabs/NVAE
4https://github.com/asyml/texar-pytorch
5https://github.com/rtqichen/beta-tcvae

19

https://github.com/clementchadebec/benchmark_VAE
https://github.com/NVlabs/NVAE
https://github.com/asyml/texar-pytorch
https://github.com/rtqichen/beta-tcvae

Published as a conference paper at ICLR 2023

0 25 50 75 100

Rate

50

100

150

D
is

to
rt

io
n

Omniglot Dataset

Linear
MLP
MLP (shared weights)
Large MLP

0 25 50 75 100

Rate

50

100

150

D
is

to
rt

io
n

Encoder Change

Sigmoid Gating
Sqrt Gating
FiLM Layer

0 25 50 75 100

Rate

50

100

150

D
is

to
rt

io
n

Decoder Change

Sigmoid Gating
Sqrt Gating
FiLM Layer

Figure 9: (left) An ablation studying the effect of different architectural designs for the hypernetwork. (middle
and right) An ablation studying the effect of using different gating mechanisms on the hypernetwork activation.
The MR-VAEs were trained on the Omniglot dataset.

The encoder is composed of 2 fully-connected layers with a hidden dimension of 1200 and ReLU
activation functions. Similarly, the decoder consists of two fully-connected layers, but the Tanh
activation function is used. A latent dimension of 10 is used. We followed the same grid search for
training MR-VAEs and selected the learning rate that achieved the best training loss at β = 1. We
also report the mean across 3 different random seeds.

D ADDITIONAL EXPERIMENTS

We further investigate the effect of modifying the architecture and activations of MR-VAE architec-
tures. We used the ResNet encoder and decoder trained on the Omniglot dataset, following the same
setup from the image reconstruction experiment.

Ablations over Architecture Design. In MR-VAEs, we apply an affine transformation to the log β
to scale each layer’s pre-activations. Here, we investigate if more expressive architectural designs can
help in learning better rate-distortion curves. We repeated the experiment by changing the architecture
for the scaling function, where we used linear transformation (default), a 2-layer MLP (with and
without weight sharing on the first layer), and a 5-layer MLP. As shown in Figure 9, we observed that
increasing the capacity of the model does not improve the final performance on the rate-distortion
curve.

Ablations over Activation Function. Next, we investigated the effect of different design choices
for gating the pre-activations. We repeated the experiment with sigmoid gating (default for encoders),
sqrt gating (default for decoders), and FiLM (Perez et al., 2018) layer which scales and shifts the
pre-activations. As shown in Figure 9, while MR-VAE’s default choice performs slightly better
compared to other combinations, we observed that the choice of the gating mechanism does not
significantly impact the final performance on rate-distortion curves.

20

