
Nearly-Tight and Oblivious Algorithms for
Explainable Clustering: Full Version

Buddhima Gamlath∗
EPFL

buddhima.gamlath@epfl.ch

Xinrui Jia∗
EPFL

xinrui.jia@epfl.ch

Adam Polak∗
EPFL

adam.polak@epfl.ch

Ola Svensson∗
EPFL

ola.svensson@epfl.ch

Abstract

We study the problem of explainable clustering in the setting first formalized by
Dasgupta, Frost, Moshkovitz, and Rashtchian (ICML 2020). A k-clustering is said
to be explainable if it is given by a decision tree where each internal node splits
data points with a threshold cut in a single dimension (feature), and each of the k
leaves corresponds to a cluster. We give an algorithm that outputs an explainable
clustering that loses at most a factor of O(log2 k) compared to an optimal (not
necessarily explainable) clustering for the k-medians objective, and a factor of
O(k log2 k) for the k-means objective. This improves over the previous best upper
bounds of O(k) and O(k2), respectively, and nearly matches the previous Ω(log k)
lower bound for k-medians and our new Ω(k) lower bound for k-means. The
algorithm is remarkably simple. In particular, given an initial not necessarily
explainable clustering in Rd, it is oblivious to the data points and runs in time
O(dk log2 k), independent of the number of data points n. Our upper and lower
bounds also generalize to objectives given by higher `p-norms.

1 Introduction

An important topic in current machine learning research is understanding how models actually make
their decisions. For a recent overview on the subject of explainability and interpretability, see,
e.g., [13, 14]. Many good methods exist (e.g. [15]) for interpreting black-box models, so called
post-modeling explainability, but this approach has been criticized [16] for providing little insight
into the data. Currently, there is a shift towards designing models that are interpretable by design.

Clustering is a fundamental problem in unsupervised learning. A common approach to clustering
is to minimize the k-medians or k-means objectives, e.g., with the celebrated Lloyd’s [11] or k-
means++ [2] algorithms. Both objectives are also widely studied from a theoretical perspective, and, in
particular, they admit constant-factor approximation algorithms running in polynomial time [1,3,4,9].

In their recent paper [6], Dasgupta et al. were the first to study provable guarantees for explainable
clustering. They define a k-clustering to be explainable if it is given by a decision tree, where each
internal node splits data points with a threshold cut in a single dimension (feature), and each of the k
leaves corresponds to a cluster (see Figure 1).

∗Equal contribution

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

(a) Non-explainable clustering (b) Explainable clustering

x1 ≤ 0.4

x2 ≤ 0.6

(c) Threshold tree

Figure 1: Examples of an optimal non-explainable and a costlier explainable clustering of the same
set of points in R2, together with the threshold tree defining the explainable clustering.

This definition is motivated by the desire to have a concise and easy-to-explain reasoning behind
how the model chooses data points that form a cluster. See the original paper [6] for an extensive
discussion of motivations and a survey of previous (empirical) approaches to explainable clustering.

The central question to study in this setting is that of the price of explainability: How much do we
have to lose – in terms of a given objective, e.g., k-medians or k-means – compared to an optimal
unconstrained clustering, if we insist on an explainable clustering, and can we efficiently construct
such a clustering?

Dasgupta et al. [6] proposed an algorithm that, given an unconstrained (non-explainable) reference
clustering2, produces an explainable clustering losing at most a multiplicative factor of O(k) for the
k-medians objective and O(k2) for k-means, compared to the reference clustering. They also gave
a lower bound showing that an Ω(log k) loss is unavoidable, both for the k-medians and k-means
objective. Later, Laber and Murtinho [10] improved over the upper bounds in a low-dimensional
regime d ≤ k/ log(k), giving an O(d log k)-approximation algorithm for explainable k-medians and
an O(dk log k)-approximation algorithm for explainable k-means.

1.1 Our contributions

Improved clustering cost. We present a randomized algorithm that, given k centers defining a
reference clustering and a number p ≥ 1, constructs a threshold tree that defines an explainable clus-
tering that is, in expectation, worse than the reference clustering by at most a factor of O(kp−1 log2 k)
for the objective given by the `p-norm. That is O(log2 k) for k-medians and O(k log2 k) for k-means.

Simple and oblivious algorithm. Our algorithm is remarkably simple. It samples threshold cuts
uniformly at random (for k-medians; k-means and higher `p-norms need slightly fancier distributions)
until all centers are separated from each other. In particular, the input to the algorithm includes only
the centers of a reference clustering and not the data points.

As a consequence, the algorithm cannot overfit the data (any more than the reference clustering
possibly already does), and the same expected cost guarantees hold for any future data points not
known at the time of the clustering construction. Besides, the algorithm is fast; its running time does
not depend on the number of data points n. A naive implementation runs in time O(dk2), and in
Section 3.2, we show how to improve it to O(dk log2 k) time, which is near-linear in the input size
dk of the k reference centers.

Nearly-tight bounds. We complement our results with a lower bound. We show how to construct
instances of the clustering problem such that any explainable clustering must be at least Ω(kp−1)
times worse than an optimal clustering for the `p-norm objective. In particular, this improves the
previous Ω(log k) lower bound for k-means [6] to Ω(k) .

2A reference clustering can be obtained, e.g., by running a constant-factor approximation algorithm for a
given objective function. Then, the asymptotic upper bounds of the explainable clustering cost compared to the
reference clustering translate identically to the bounds when compared to an optimal clustering.

2

Table 1: Algorithms and lower bounds for explainable k-clustering in Rd. For a given objective
function, how large a multiplicative factor do we have to lose, compared to an optimal unconstrained
clustering, if we insist on an explainable clustering?

k-medians k-means `p-norm
A

lg
or

ith
m

s

O(k) O(k2) Dasgupta et al. [6]
O(d log k) O(kd log k) Laber and Murtinho [10]
O(log2 k) O(k log2 k) O(kp−1 log2 k) This paper
O(log k log log k) O(k log k log log k) Makarychev and Shan [12]
O(log k log log k) O(k log k) Esfandiari et al. [7]
O(d log2 d) Esfandiari et al. [7]

O(k1−2/d polylog k) Charikar and Hu [5]

L
ow

er
bo

un
ds Ω(log k) Ω(log k) Dasgupta et al. [6]

Ω(k) Ω(kp−1) This paper
Ω(k/log k) Makarychev and Shan [12]

Ω(min(d, log k)) Ω(k) Esfandiari et al. [7]
Ω(k1−2/d/ polylog k) Charikar and Hu [5]

In consequence, we give a nearly-tight answer to the question of the price of explainability. We
leave a log(k) gap for k-medians, and a log2(k) gap for k-means and higher `p-norm objectives. See
Table 1 for a summary of the upper and lower bounds discussed above and recent independent works
discussed in Section 1.3.

1.2 Technical overview

The theoretical guarantees obtained by Dasgupta et al. [6] depend on the number of clusters k and
the height of the threshold tree obtained H . Their algorithm loses, compared to the input reference
clustering, an O(H) factor for the k-medians cost and O(Hk) for k-means. These approximations
are achieved by selecting a threshold cut that separates some two centers and minimizes the number of
points that get separated from their centers in the reference clustering. This creates two children of a
tree node, and the threshold tree is created by recursing on each of the children. The height of the tree
H may need to be k − 1. For example, consider the data set in Rk consisting of the k standard basis
vectors (see Figure 2). Laber and Murtinho [10] replace the dependence on H with d, the dimension
of the data set, by first constructing optimal search trees for each dimension and then carefully using
them to guide the construction of the threshold tree. In our work, we obtain improved guarantees by
using randomized cuts that are oblivious to the data points and depend only on the reference centers,

x1 ≤ 0.5

x2 ≤ 0.5

· · ·

xk−1 ≤ 0.5

ek ek−1

· · ·

e2

e1

Figure 2: An optimal threshold tree for
the k standard basis vectors in Rk. Any
optimal threshold tree on this data set
has height k − 1.

in contrast to the above-mentioned two prior approaches,
which selected cuts based on the data points.

There are two components to achieving our improved guar-
antees that correspond with two aspects of the minimum
cut algorithm of [6]: the use of the minimum cut, and the
height of the threshold tree produced. The first observation
is that, for the `1-norm, we do not lose in the analysis by
taking a cut uniformly at random compared to always us-
ing the minimum cut. (The corresponding distribution for
higher `p-norms is proportional to the p-th power of the
distance to the closest center.) Indeed, using a random cut
makes us robust against specifically engineered examples,
such as the one that fools the minimum cut algorithm of [6]
(see Appendix A). In that example we add dimensions in
which a cut is minimum, but these minimum cuts produce
a tree of height Ω(k) whose cost is Ω(k) times larger than the optimum.

3

However, threshold trees of height Ω(k) are unavoidable in certain instances as seen in the example
with k standard basis vectors (Figure 2). This leads to our second observation that it is necessary to
use a tighter upper bound on the cost of reassigning a point since any height k − 1 threshold tree
produced on this example is actually optimal. Using the diameter definition in [6], the cost of each
cut is upper bounded by k while the actual distance between any two centers is at most 2, which is
also a valid upper bound for the reassignment cost. Hence, we use the maximum distance between
any two centers to upper bound the cost of misclassifying a point.

Limitations and further work. We conjecture that our k-medians algorithm is asymptotically
optimal. In particular, we believe the actual approximation ratio of our algorithm is 1 +Hk−1, where
Hn is the n-th harmonic number (recall that ln(n) ≤ Hn ≤ 1 + ln(n)). There are two potential
barriers in our current analysis that prevent us from demonstrating this optimality. The first is that
our upper bound on the cost increase of assigning a single point to a wrong center is not tight, and
secondly, our analysis may include the cost of the same point multiple times. Despite the further
developments mentioned in Section 1.3, it still remains to fully resolve the correct asymptotic price
of explainability.

Some potential directions to expanding our work include parallelizations, generalizing the notion of
explainability, and defining natural clusterability assumptions under which the price of explainability
is reduced. Constructing a threshold tree seems inherently sequential; it would be interesting to
explore parallelizations for faster implementation. Another direction would be to allow each node to
be a hyperplane in a chosen number of dimensions instead of only splitting along one feature. Finally,
it seems a non-trivial question to find a right clusterability assumption on the data points distribution –
that would allow us to overcome the existing lower bounds – because these lower bounds are in fact
very “clusterable” instances, in the traditional usage of this notion.

Societal impact. Our contributions are theoretical in nature and thus are not tailored to any specific
application. We show that a simple algorithm has good approximation guarantees while also having
a running time independent of the number of points in the data set. Moreover, this algorithm is
oblivious to the data points, which avoids introducing biases. However, our algorithms rely on a
reference clustering and may show existing biases of the original clustering.

1.3 Independent work

We note independent further developments by Makarychev and Shan [12]; Esfandiari, Mirrokni, and
Narayanan [7]; and Charikar and Hu [5].

Makarychev and Shan [12] showed O(log k log log k) and O(k log k log log k) upper bounds for
k-medians and k-means, respectively, thus improving over our bounds by a factor of log k/log log k.
Their k-medians algorithm is essentially the same as our modified Algorithm 1 (see Section 3.1.1), but
they provide a tighter analysis. Their k-means upper bound follows from combining their k-medians
algorithm with their insightful reduction from k-means to k-medians that loses a factor of O(k).
However, the k-means algorithm resulting from that combination is essentially the same as our
Algorithm 2. They also provide an Ω(k/log k) lower bound for k-means, which is slightly worse than
ours. Finally, they study the explainable k-medoids problem (i.e., k-medians with `2 norm), and
provide an O(log

3/2 k) upper bound and an Ω(log k) lower bound.

Esfandiari, Mirrokni, and Narayanan [7] also give an O(log k log log k) upper bound for k-medians.
Their algorithm is essentially the same as our (unmodified) Algorithm 1, and, again, they provide a
tighter analysis. They also give an O(k log k) upper bound for k-means, improving over the result of
Makarychev and Shan by a factor of log log k. Their k-means algorithm is similar to our Algorithm 2
but samples cuts from a different distribution. They also match our Ω(k) lower bound for k-means,
and improve the k-medians lower bound of Dasgupta et al. [6] to Ω(min(d, log k)).

Charikar and Hu [5] focus on explainable k-means and present an O(k1−2/d poly(d log k))-
approximation algorithm, which is better than any previous algorithm when d = O(log k/log log k) (in
particular, for any constant dimension d). Resorting to an O(k polylog k)-approximation algorithm
(e.g., [12]) when this is not the case, they obtain an O(k1−2/d polylog k) upper bound. They match it
with an Ω(k1−2/d/polylog k) lower bound, which is tight up to polylogarithmic factors.

4

2 Preliminaries

Following the notation of [6], we use bold variables for vector values and corresponding non-bold
indexed variables for scalar coordinates. Intuitively, a clustering is explainable because the inclusion
of a data point x = [x1, . . . , xd] to a particular cluster is “easily explained” by whether or not x
satisfies a series of inequalities of the form xi ≤ θ. These inequalities are called threshold cuts,
defined by a coordinate i ∈ [d] (denoting the set {1, 2, . . . , d}) and a threshold θ ∈ R. More precisely,
a threshold tree is a binary tree where each non-leaf node is a threshold cut (i, θ) which assigns
the point x of that node into the left child if xi ≤ θ and the right child otherwise. A clustering is
explainable if the clusters are in bijection to the leaves of a threshold tree with exactly k leaves that
started with all the data points at the root.

Given a set of points X = {x1,x2, . . . ,xn} ⊆ Rd and its clustering {C1, . . . , Ck},
⋃k
j=1 C

j = X ,
the k-medians cost of the clustering is defined in [6] as

cost1(C1, . . . , Ck) =

k∑
j=1

min
µ∈Rd

∑
x∈Cj

‖x− µ‖1 =

k∑
j=1

∑
x∈Cj

‖x−median(Cj)‖1.

The k-means cost is defined analogously with the square of the `2 distance of every point to mean(Cj).

For a set of centers U = {µ1, . . . ,µk} ⊆ Rd, a non-explainable clustering {C̃1, . . . , C̃k} of
X is given by C̃j = {x ∈ X | µj = arg minµ∈U ‖x − µ‖1}, and we write cost1(U) =

cost1(C̃1, . . . , C̃k). Note that cost1(U) =
∑
x∈X minµ∈U ‖x− µ‖1.

Given a threshold tree T , the leaves of T induce an explainable clustering {Ĉ1, . . . , Ĉk}, and we
write cost1(T) = cost1(Ĉ1, . . . , Ĉk). In the analyses, however, we often upper bound the cost of
each explainable cluster Ĉj using the corresponding reference center µj :

cost1(T) ≤
k∑
j=1

∑
x∈Ĉj

‖x− µj‖1.

These may not be optimal center locations, yet we are still able to obtain guarantees that are polylog
away from being tight.

We generalize the above to higher `p-norms, p ≥ 1, as follows

costp(C1, . . . , Ck) =

k∑
j=1

min
µ∈Rd

∑
x∈Cj

‖x− µ‖pp, costp(T) ≤
k∑
j=1

∑
x∈Ĉj

‖x− µj‖pp.

3 Explainable k-medians clustering

In this section we present our algorithm for explainable k-medians and its analysis. Recall that
our algorithm is oblivious to the data points: It determines the threshold tree using only the center
locations. The algorithm simply samples a sequence of cuts until it defines a threshold tree with each
center belonging to exactly one leaf. In what follows, we elaborate on this process in detail.

The algorithm’s input is a set of centers U = {µ1,µ2, . . . ,µk} ⊂ Rd. We consider cuts that intersect
the bounding box of U . Letting Ii = [minj∈[k] µ

j
i ,maxj∈[k] µ

j
i] be the interval between the minimum

and maximum i-coordinate of centers, the set of all possible cuts that intersect the bounding box
of U is AllCuts = {(i, θ) : i ∈ [d], θ ∈ Ii} . Our algorithm uses a stream of independent uniformly
random cuts from AllCuts. In particular, the probability density function of (i, θ) ∈ AllCuts is 1/L
where L =

∑
i∈[d] |Ii| is the sum of the side lengths of the bounding box of U .

The algorithm simply takes cuts from this stream until it produces a threshold tree. To this end, it
maintains a tentative set of tree leaves, each identified by a subset of centers, and continues until it has
k leaves of singleton sets. We say a cut splits a leaf if the cut properly intersects with the bounding
box of the corresponding subset of centers. In other words, a cut (i, θ) splits a leaf B if and only if
the two sets B− = {µ ∈ B : µi ≤ θ} and B+ = {µ ∈ B : µi > θ} are both non-empty. At the

5

beginning, the algorithm starts with a single leaf identified by U , the set of all centers. It then samples
a cut (i, θ) and checks if it splits any existing leaf. If so, it saves the cut, and for each leaf B that gets
split by the cut into B− and B+, adds B− and B+ as two new leaves rooted at B. These saved cuts
define the output threshold tree. We present the pseudo-code of this algorithm in Algorithm 1.

Algorithm 1: Explainable k-medians algorithm.

1 Input: A collection of k centers U = {µ1,µ2, . . . ,µk} ⊂ Rd.
2 Output: A threshold tree with k leaves.
3 Leaves← {U}
4 while |Leaves | < k do
5 Sample (i, θ) uniformly at random from AllCuts.
6 for each B ∈ Leaves that are split by (i, θ) do
7 Split B into B− and B+ and add them as left and right children of B.
8 Update Leaves.

9 return the threshold tree defined by all cuts that separated some B.

3.1 Cost analysis

We show that Algorithm 1 satisfies the following guarantees.
Theorem 1. Given reference centers U = {µ1,µ2, . . . ,µk}, Algorithm 1 outputs a threshold tree T
whose expected cost satisfies

E[cost1(T)] ≤ O(log(k) · (1 + log(cmax/cmin))) · cost1(U) ,

where cmax and cmin denote the maximum and minimum pairwise distance between two centers in U ,
respectively. Furthermore, with probability at least 1− 1/k, Algorithm 1 outputs a threshold tree T
from a distribution with E[cost1(T)] ≤ O(log2 k) · cost1(U).

The (more involved) proof of the furthermore statement is discussed in Section 3.1.1 and formally
proved in Appendix B. We remark that the success probability 1− 1/k can be made larger by only
slightly increasing the hidden constant in the cost guarantee. Furthermore, in Section 3.1.1, we give a
slight adaptation of the above algorithm that has an expected cost bounded by O(log2 k) · cost1(U).
The remaining part of this section is devoted to proving the upper bound on the expected cost of
Algorithm 1.

Proof outline. First, in Lemma 1, we show that a random cut in expectation separates cost1(U)/L
points from their closest centers. Indeed, note that the probability of separating a point x from its
center π(x) is at most ‖x − π(x)‖1/L, and on the other hand, cost1(U) =

∑
x∈X ‖x − π(x)‖1,

hence the bound follows from linearity of expectation. Each such separated point incurs a cost of
at most cmax. Next, in Lemma 2, we show that with good probability O(log(k) · L/cmax) random
cuts separate all pairs of centers that are at distance at least cmax/2 from each other. Morally, the
cost of halving cmax, which we will need to perform 1 + log(cmax/cmin) many times, is therefore
cost1(U)/L · cmax · O(log(k) · L/cmax) = O(log(k)) · cost1(U), and the bound follows (see
Lemma 3).

Formal analysis of the expected cost. We first bound the number of points that are separated from
their closest center by a random cut. This quantity is important as it upper bounds the number of
points whose cost is increased in the final tree due to the considered cut. Recall that L =

∑d
i=1 |Ii|

denotes the total side lengths of the bounding box of the input centers U . We also let fi(θ) be the
number of points separated from their closest center by the cut (i, θ).
Lemma 1. We have E(i,θ)[fi(θ)] ≤ cost1(U)/L where the expectation is over a uniformly random
threshold cut (i, θ) ∈ AllCuts.

Proof. For a point x ∈ X let π(x) denote the closest center in U . Then by definition,

cost1(U) =
∑
x∈X
‖x− π(x)‖1 =

d∑
i=1

∑
x∈X
|xi − π(x)i| .

6

Moreover, if we let fi(θ) be the number of points separated from their closest center by the cut (i, θ),
we can rewrite the cost of a fixed dimension i as follows:∑

x∈X
|xi − π(x)i| =

∑
x∈X

∫ ∞
−∞

1[θ between xi and π(x)i]dθ =

∫ ∞
−∞

fi(θ)dθ .

We thus have cost1(U) =
∑d
i=1

∫∞
−∞ fi(θ)dθ.

At the same time, if we let [ai, bi] denote the interval Ii, then 1
|Ii|
∫ bi
ai
fi(θ)dθ equals the number of

points separated from their closest center by a uniformly random threshold cut (i, θ) : θ ∈ Ii along
dimension i. Thus the expected number of points separated from their closest center by a uniformly
random threshold cut in AllCuts is

d∑
i=1

|Ii|
L
· 1

|Ii|

∫ bi

ai

fi(θ)dθ =
1

L

d∑
i=1

∫ bi

ai

fi(θ)dθ ≤
1

L

d∑
i=1

∫ ∞
−∞

fi(θ)dθ = cost1(U)/L ,

where we used fi(θ) ≥ 0 for the inequality.

The above lemma upper bounds the expected number of points whose cost increases from a uniformly
random threshold cut. We proceed to analyze how much this increase is, in expectation. Let Leaves(t)
denote the state of Leaves at the beginning of the t-th iteration of the while loop of Algorithm 1 and
let cmax(t) = maxB∈Leaves(t) maxµi,µj∈B ‖µi − µj‖1 denote the maximum distance between two
centers that belong to the same leaf at the beginning of the t-th iteration. With this notation we have
that Leaves(1) = {U} and that cmax(1) equals the cmax in the statement of Theorem 1. Observe
that cmax(t) ≥ cmax(t+ 1) and cmax(t) = 0 if |Leaves | = k (i.e., when each leaf contains exactly
one center). Understanding the rate at which cmax(t) decreases is crucial for our analysis because of
the following observation: Consider a leaf B ∈ Leaves(t) and a point x ∈ X that has not yet been
separated from its closest center π(x) ∈ B. If the threshold cut selected in the t-th iteration separates
x from π(x) then the cost of x in the final threshold tree is upper bounded by maxµ∈B ‖x− µ‖1,
which, by the triangle inequality, is at most

max
µ∈B
‖x− π(x)‖1 + ‖π(x)− µ‖1 ≤ ‖x− π(x)‖1 + cmax(t) . (1)

In other words, a point that is first separated from its closest center by the threshold cut selected in
the t-th iteration has a cost increase of at most cmax(t).
Lemma 2. Fix the the threshold cuts selected by Algorithm 1 during the first t− 1 iterations (this
determines the random variable Leaves(t) and thus cmax(t)). Let M = 3 ln(k) · 2L/cmax(t). Then

Pr[cmax(t+M) ≤ cmax(t)/2] ≥ 1− 1/k ,

where the probability is over the random cuts selected in iterations t, t+ 1, . . . , t+M − 1.

Proof. Consider two centers µi and µj that belong to the same leaf in Leaves(t). The probability that
a uniformly random threshold cut from AllCuts separates these two centers equals ‖µi − µj‖1/L.
Thus if the centers are at distance at least cmax(t)/2, the probability that they are not separated by
any of M independently chosen cuts is at most(

1− cmax(t)/2

L

)M
=

(
1− cmax(t)

2L

)3 ln(k)·2L/cmax(t)

≤ (1/e)3 ln(k) = 1/k3 .

There are at most
(
k
2

)
pairs of centers in the leaves of Leaves(t) at distance at least cmax(t)/2. By the

union bound, we thus have, with probability at least 1− 1/k, that each of these pairs are separated by
at least one of the cuts selected in iterations t, t+1, . . . , t+M−1. In that case, any two centers in the
same leaf of Leaves(t+M) are at distance at most cmax(t)/2 and so cmax(t+M) ≤ cmax(t)/2.

Equipped with the above lemmas we are ready to analyze the expected cost of the tree output by
Algorithm 1. Let (it, θt) denote the cut selected by Algorithm 1 in the t-th iteration. As argued above
in (1), cmax(t) upper bounds the cost increase of the points first separated from their closest center by
the t-th threshold cut. Hence,

E [cost1(T)] ≤ cost1(U) + E

[∑
t

cmax(t)fit(θt)

]
,

7

where the sum is over the iterations of Algorithm 1 (and recall that fi(θ) denotes the number of
points separated from their closest center by the cut (i, θ)). We remark that the right-hand side is an
upper bound (and not an exact formula of the cost) for two reasons: first, not every separated point
may experience a cost increase of cmax(t), and second, the right-hand side adds a cost increase every
time a cut separates a point from its closest center and not only the first time. Nevertheless, we show
that this upper bound yields the stated guarantee. We do so by analyzing the expected cost increase
of the cuts until cmax(t) has halved. Specifically, let

cost-increase(r) =
∑

t : cmax(t)∈(cmax/2r+1,cmax/2r]

cmax(t)fit(θt)

be the random variable that upper bounds the cost increase caused by the cuts selected during the
iterations t when cmax/2

r+1 < cmax(t) ≤ cmax/2
r. Then

E[cost1(T)] ≤ cost1(U) +
∑
r

E[cost-increase(r)] ,

where the sum is over r from 0 to 1 + blog2(cmax/cmin)c. The bound on the expected cost therefore
follows from the following lemma.
Lemma 3. For every r, E[cost-increase(r)] ≤ 12 ln(k) · cost1(U).

Let M = 3 ln(k) · 2L/cmax(t) as in Lemma 2. Using Lemma 1, one can upper bound the expected
cost of M uniformly random cuts in iterations t, t+ 1, . . . , t+M − 1 by 6 ln(k) · cost1(U) and M
cuts is very likely to halve cmax(t) as in Lemma 2. It is thus very likely that the cost of these M cuts
upper bounds cost-increase(r). The additional constant factor of 2 in the statement of the lemma
arises by considering the small “failure” probability of such a trial. The formal proof bounding the
expected cost of this geometric series can be found in Appendix B.1.

3.1.1 Upper bounding cost by a factor of O(log2 k)

Observe that our analysis of Algorithm 1 implies that the expected cost of the output tree is at most
O(log2(k) · cost1(U)) whenever cmax and cmin do not differ by more than a polynomial factor in
k. However, our current techniques fail to upper bound this expectation by a factor o(k) for general
cmax and cmin. To illustrate this point, consider the k-dimensional instance with a single point x at
the origin and k centers where the i-th center µi is located at the i-th standard basis vector scaled
by the factor 2i. In our analysis, we upper bound the cost of x with its maximum distance to those
centers that remain in the same leaf whenever x is separated from its closest center µ1. This yields
the following upper bound on the expected cost of x in the final tree

k∑
i=2

2i Pr[x is separated from µ1 and µi is the farthest remaining center] .

Due to the exponentially increasing distances, this is lower bounded by∑k
i=2 2i−1 Pr[x is separated from µ1 and µi is a remaining center]. Now note that the probability

in this last sum equals Pr[x is separated from µ1 before x is separated from µi] = 2/(2 + 2i). It
follows that any analysis of Algorithm 1 that simply upper bounds the reassignment cost of a point
with the maximum distance to a remaining center cannot do better than a factor of Ω(k).

We overcome this obstacle by analyzing a slight modification of Algorithm 1 that avoids these
problematic cuts that separate very close centers. Recall the notation used in the previous section:
Leaves(t) denotes the state of Leaves at the beginning of the t-th iteration of the while loop and
cmax(t) = maxB∈Leaves(t) maxµi,µj∈B ‖µi − µj‖1 denotes the maximum distance between two
centers that belong to the same leaf at the beginning of the t-th iteration. We now modify Algorithm 1
by replacing Line 5 “Sample (i, θ) uniformly at random from AllCuts” by

Sample (i, θ) uniformly at random from those cuts in AllCuts that do not separate
two centers that are within distance at most cmax(t)/k4.

This modification allows us to prove a nearly tight guarantee on the expected cost.
Theorem 2. Given reference centers U = {µ1,µ2, . . . ,µk}, modified Algorithm 1 outputs a
threshold tree T whose expected cost satisfies E[cost1(T)] ≤ O(log2 k) · cost1(U).

8

The above theorem implies the furthermore statement of Theorem 1. This follows by observing that
Algorithm 1 selects the same cuts as the modified version with probability at least 1− 1/k. This error
probability can be made smaller by not allowing cuts that separate centers within distance cmax(t)/k`

for an ` larger than 4. Due to space limitations, we give a more formal explanation of this implication
in Appendix B.2 and we prove Theorem 2 in Appendix B.3.

3.2 Implementation details

Since we only use cuts that split at least one leaf, the algorithm in fact only needs to sample cuts
conditioned on this event. Note that if we sample only the cuts that split at least one leaf, the while
loop in Line 4 of Algorithm 1 runs for at most k − 1 iterations. We now explain how to efficiently
sample cuts (Line 5), find the leaves split by a given cut (Line 6), and implement the split operation
(Lines 7–8).

We first show how to efficiently implement the split operation. For a cut (i, θ) that splits a given
leaf B into B− and B+, the split operation can be implemented in O(d ·min(|B−|, |B+|) · log |B|)
time as follows: In each leaf B, we maintain d binary search trees TB1 , . . . , T

B
d where TBi stores the

i-th coordinate of the centers in B. Now, given a cut (i, θ) and a leaf B that gets split by (i, θ), we
can find the number of centers in B that have a smaller or equal i-th coordinate than θ using TBi
in O(log |B|) time. Let b− be this number, and let b+ = |B| − b−. Suppose that b− ≤ b+. For the
other case, the implementation is analogous. In this case, we construct B− by initializing it with
d empty binary search trees and inserting the centers whose i-th coordinate is at most θ to each of
them. This takes O(d · b− · log |B|) time. For B+, we just reuse the binary search trees of B after
removing the centers that belong to B−. This also takes O(d · b− · log |B|) time. Let τ(k) denote the
running time of all splitting operations performed by the algorithm when starting with a single leaf
with k leaves. Then, τ(k) = τ(k − k′) + τ(k′) + O(d ·min(k − k′, k′) · log k) and by induction,
we conclude that τ(k) = O(dk log2 k).

To find the leaves that get separated by a cut, we employ the following data structure. For each
dimension i, we maintain a balanced interval tree T int

i . For each tentative leaf node with centers
B, we store the interval indicating the range of the i-th coordinate of B in T int

i . We update the
corresponding interval trees after each split operation, which amounts to removing at most one
interval and adding at most two intervals per node that gets split. Note that the added and removed
intervals for a single split operation for a fixed dimension can be computed in O(log k) time using the
previously described node binary search trees. Moreover, adding and removing intervals to and from
an interval tree with at most k intervals also takes O(log k) time. As we have O(k) split operations
in total, the time to maintain the interval trees is O(dk log k). Now, given a cut (i, θ), we can retrieve
all the leaves that get separated by (i, θ) in O(log(k1) + k2) time where k1 is the number of tentative
leaves and k2 is the number of tentative leaves that get separated by the cut. To retrieve such leaves,
we query the i-th interval tree to find all intervals that contain the value θ. Since we sample at most
k − 1 cuts from the conditioned distribution, the total time for this operation over all cuts and all
dimensions is O(dk log k).

What remains is to show that we can efficiently sample a uniform cut conditioned on the event that it
splits at least one leaf. To this end, in the interval trees described above, we also maintain the lengths
of the unions of intervals in each subtree. This length information can be updated in O(log k′) time
where k′ ≤ k is the number of intervals in an interval tree. Then in O(d) time, one can sample a
dimension i and in O(log k′) time, sample a suitable θ value.

4 Explainable k-means and general `p-norm clustering

In this section, we generalize Theorem 2 to the explainable k-clustering problems with assignment
cost defined in terms of the `p-norm, which includes the explainable k-means (p = 2) problem.

Recall that in Section 3, we sample cuts from the uniform distribution over AllCuts, and consequently,
the probability that a point x ∈ X is separated from its closest center π(x) is proportional to the
`1 distance between x and π(x). However, selecting cuts according to the uniform distribution can
be arbitrarily bad for higher p-norms even in one-dimensional space. For example, consider the
k-means (i.e. p = 2) problem with d = 1 where the cost of assigning a point x to a center µ is
defined as ‖x − µ‖22. Suppose we have two centers µ1 = −1 and µ2 = D > 1, and fix one data

9

point x = 0. The closest center to x is µ1 and hence the original cost is 1. However, the expected
cost of a uniformly random cut is ((D · 12 + 1 ·D2)/(1 +D) = D which can be arbitrarily large.

To avoid such drastic costs, we sample cuts from a generalized distribution. Ideally, we would like
to sample cuts analogously to the case of k-medians so that the probability that we separate a point
x from its closest center π(x) is proportional to ‖x − π(x)‖pp. However, sampling from such a
distribution seems very complicated if at all possible. Instead, we sample from a slightly different
distribution: Namely, for a p-norm where the cost of assigning a point x to a center y is ‖x− y‖pp, we
sample cuts (i, θ) from the distribution where the probability density function of (i, θ) is proportional
to minj∈[k] |µji − θ|p−1, the (p − 1)-th power of the minimum distance to a center along the i-th
dimension. We call this distribution Dp.

Using samples from Dp with a modified version of Algorithm 1 yields Theorem 3. We defer the
proof of Theorem 3 to Appendix C.
Theorem 3. For every p ≥ 1, there exists a randomized algorithm that when given input centers
U = {µ1,µ2, . . . ,µk}, outputs a threshold tree T whose expected cost satisfies

E[costp(T)] ≤ O(kp−1 log2 k) · costp(U).

5 Lower bound

In this section we show how to construct an instance of the clustering problem such that any
explainable clustering has cost at least Ω(kp−1) times larger than the optimal non-explainable
clustering for the objective function given by `p norm, for every p ≥ 1. In particular, for p = 2, this
entails an Ω(k) lower bound for (explainable) k-means.

Let m be a prime. Our hard instance is in Rd for d = m · (m − 1) and the set of dimensions
corresponds to the set of all linear functions over Zm with non-zero slope. That is, we associate
the i-th dimension with the function fi : x 7→ (aix + bi) mod m, where ai = 1 + bi/mc and
bi = i mod m. Consider k = m centers µ1, . . . ,µk such that the i-th coordinate of the j-th center is
given by µji = fi(j). For each center µj we create a set of 2d pointsBj , each point differing from the
center in exactly one dimension by either −1 or +1, i.e., Bj = {µj + c · ei | c ∈ {−1, 1}, i ∈ [d]},
where ei denotes the standard basis vector in the i-th dimension. Then, our hard instance is just⋃
j∈[k]Bj .

Since every point is at distance exactly 1 from its closest center, the cost of the optimal clustering OPT
is equal to the total number of points n = 2dk (regardless of the `p norm). We prove, in Appendix D,
that:

Claim 1. Any two centers are at the same distance δ = Θ(d1/pk) from each other.
Claim 2. Any nontrivial threshold cut, i.e., one that separates some two centers, separates also some

two points from the same Bj .

It follows that, in any explainable clustering, already the first threshold cut (from the decision tree’s
root) forces some two points from the same set Bj to eventually end up in two different leaves, and
hence at least one of the k leaves has to contain two points from two different Bj’s. The distance
between these two points, by the triangle inequality, is at least δ − 2, and therefore the cost of the
explainable clustering is at least Ω(δp) = Ω(dkp), which is Ω(kp−1) · OPT.

Acknowledgments and Disclosure of Funding

This research was supported by the Swiss National Science Foundation projects 200021-184656
“Randomness in Problem Instances and Randomized Algorithms” and 185030 “Lattice Algorithms
and Integer Programming.”

References
[1] Sara Ahmadian, Ashkan Norouzi-Fard, Ola Svensson, and Justin Ward. Better guarantees for k-means and

euclidean k-median by primal-dual algorithms. SIAM Journal on Computing, 49(4), 2020.

10

[2] David Arthur and Sergei Vassilvitskii. k-means++: the advantages of careful seeding. In Proceedings of
the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2007, pages 1027–1035.
SIAM, 2007.

[3] Jaroslaw Byrka, Thomas W. Pensyl, Bartosz Rybicki, Aravind Srinivasan, and Khoa Trinh. An improved
approximation for k-median and positive correlation in budgeted optimization. ACM Transactions on
Algorithms, 13(2):23:1–23:31, 2017.

[4] Moses Charikar, Sudipto Guha, Éva Tardos, and David B. Shmoys. A constant-factor approximation
algorithm for the k-median problem. Journal of Computer and System Sciences, 65(1):129–149, 2002.

[5] Moses Charikar and Lunjia Hu. Near-optimal explainable k-means for all dimensions. In Proceedings of
the 2022 ACM-SIAM Symposium on Discrete Algorithms, SODA 2022. SIAM, 2022. To appear.

[6] Sanjoy Dasgupta, Nave Frost, Michal Moshkovitz, and Cyrus Rashtchian. Explainable k-means and
k-medians clustering. In Proceedings of the 37th International Conference on Machine Learning, ICML
2020, volume 119 of Proceedings of Machine Learning Research, pages 7055–7065. PMLR, 2020.

[7] Hossein Esfandiari, Vahab Mirrokni, and Shyam Narayanan. Almost tight approximation algorithms for
explainable clustering. In Proceedings of the 2022 ACM-SIAM Symposium on Discrete Algorithms, SODA
2022. SIAM, 2022. To appear.

[8] Michael L. Fredman, János Komlós, and Endre Szemerédi. Storing a sparse table with o(1) worst case
access time. Journal of the ACM, 31(3):538–544, 1984.

[9] Tapas Kanungo, David M. Mount, Nathan S. Netanyahu, Christine D. Piatko, Ruth Silverman, and Angela Y.
Wu. A local search approximation algorithm for k-means clustering. Computational Geometry: Theory
and Applications, 28(2-3):89–112, 2004.

[10] Eduardo Sany Laber and Lucas Murtinho. On the price of explainability for some clustering problems.
In Proceedings of the 38th International Conference on Machine Learning, ICML 2021, volume 139 of
Proceedings of Machine Learning Research, pages 5915–5925. PMLR, 2021.

[11] Stuart P. Lloyd. Least squares quantization in PCM. IEEE Transactions on Information Theory, 28(2):129–
136, 1982.

[12] Konstantin Makarychev and Liren Shan. Near-optimal algorithms for explainable k-medians and k-means.
In Proceedings of the 38th International Conference on Machine Learning, ICML 2021, volume 139 of
Proceedings of Machine Learning Research, pages 7358–7367. PMLR, 2021.

[13] Christoph Molnar. Interpretable Machine Learning. 2019. https://christophm.github.io/
interpretable-ml-book/.

[14] W. James Murdoch, Chandan Singh, Karl Kumbier, Reza Abbasi-Asl, and Bin Yu. Definitions, methods,
and applications in interpretable machine learning. Proceedings of the National Academy of Sciences,
116(44):22071–22080, 2019.

[15] Marco Túlio Ribeiro, Sameer Singh, and Carlos Guestrin. "Why should I trust you?": Explaining the
predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 2016, pages 1135–1144. ACM, 2016.

[16] Cynthia Rudin. Stop explaining black box machine learning models for high stakes decisions and use
interpretable models instead. Nature Machine Intelligence, 1(5):206–215, 2019.

11

https://christophm.github.io/interpretable-ml-book/
https://christophm.github.io/interpretable-ml-book/

A The minimum cut algorithm loses Ω(k) factor for k-medians

We give an example where the minimum cut algorithm of [6] produces a threshold tree with cost
Ω(k) times the cost of an optimal clustering in the `1-norm. The idea is to start with the lower bound
example in Section 5 since any two centers are “far apart”. By adding a dimension for each center in
which fewer edges are cut, the minimum cut will make linearly many cuts that split only one center.
Combined with the large distance to reassign a point to the wrong center, the result is the minimum
cut algorithm losing an Ω(k) factor. In the `1 norm, it suffices to map half of the coordinate values to
-1 and the other half to +1 and still maintain the “large” distance between centers. The remainder of
this section is a formal description of the instance.

Take the lower bound example from Section 5 and increase the dimension by k. Now the points are
in Rd+k with d + k coordinates (recall that d = m(m − 1) and k = m with m prime). First, we
describe the k centers U ′ = {µ′1, . . . ,µ′k} as a mapping from the centers U = {µ1, . . . ,µk} in
Section 5. For the first d coordinates, µ′ji = µji mod 2. For the last k coordinates, center µ′j has a
0 in every coordinate d+ i, 1 ≤ i ≤ k, except coordinate d+ j which is a 1.

The reasoning behind this mapping is that the family of functions fi in Section 5 is the standard
construction of a family of pairwise independent hash functions [8]. In particular, if fa,b(x) =
(ax+ b) mod m and ha,b(x) = fa,b(x) mod 2, then for x 6= y, ha,b(x) = ha,b(y) with probability
at most 1/2 when a and b are chosen uniformly at random from {0, 1, . . . ,m−1}, a 6= 0. Recall that
fi(x) = (aix+bi) mod m where ai, bi range over all elements in {1, 2, . . . ,m−1}, {0, . . . ,m−1},
respectively, and µji = fi(j). Fix any pair of centers µj1 ,µj2 where j1 6= j2. Note that picking
i ∈ [d] uniformly at random is equivalent to picking ai, bi ∈ {0, 1, . . . ,m − 1}, a 6= 0, uniformly
at random due to the definition of ai, bi. We have µ′j1i = (µj1i mod 2) = (µj2i mod 2) = µ′j2i with
probability at most 1/2 over the uniformly random choice of i, so any pair of centers are the same on
at most 1/2 of the coordinates. Hence, our new centers U ′ are at pairwise distance Θ(d).

Now we define the remaining points. Let ei be the standard (d+ k)-dimensional i-th basis vector.
Similar to Section 5, we have a set B′j for each center µ′j with 2d points where each point differs
from µ′j on one of the first d coordinates by ±1. Additionally, we want (k − 1)/2 points to differ
on one of the last k coordinates. To this end, define B′j = {µ′j + c · ei | c ∈ {−1, 1}, i ∈
[d]} ∪ {µ′j − ed+j}(k−1)/2, where {µ′j − ed+j}(k−1)/2 denotes a multiset of (k − 1)/2 copies of
the point µ′j − ed+j .
In particular, our construction has the following properties:

1. The distance between any pair of centers is Θ(d).

2. A cut (i, θ) in any dimension i, 1 ≤ i ≤ d, and θ ∈ (0, 1) splits some two centers and the
number of points separated is equal to the number of centers.

3. A cut (i, θ) in any dimension i, d+ 1 ≤ i ≤ d+ k, and θ ∈ (0, 1) splits some two centers
and separates ≈ k/2 points.

Property (2) holds because for any dimension 1 ≤ i ≤ d and for each center c, ci is either 1, in which
case there is exactly one point at c − ei, or 0, in which case there is exactly one point at c + ei.
Note that this further implies that, when (after separating some centers) x centers are remaining,
the number of points separated by a cut of type (2) will be equal to x. Then the cuts in (3) will
be minimum for ≈ k/2 cuts of all minimum cuts required to separate all centers since each cut
in (3) separates exactly one center from the remaining centers. Hence we have that the minimum
cut algorithm of [6] will construct a threshold tree with Ω(k) height by making some Ω(k) cuts in
dimensions d+ 1 through d+ k.

To see that the minimum cut algorithm loses a Ω(k) factor, note that the optimal clustering has a
value of 2dk + (k − 1)k/2 = Θ(k3). The first term in the sum is because each of 2d points in each
cluster differs from the center by ±1 in exactly one of the first d coordinates and the second term
is because (k − 1)/2 of the points in each cluster differ by −1 from the center in one of the last k
coordinates. On the other hand, an algorithm that always makes a minimum cut incurs a cost of
Θ(dk2) to reassign ≈ k/2 points to the wrong center for ≈ k/2 centers, just for those cuts of type
(2). This gives an overall cost of Ω(dk2) for the threshold tree produced. Since d = Θ(k2) we have
that the minimum cut algorithm is Ω(k) away from the cost of an optimal clustering.

12

B Omitted proofs of Section 3

B.1 Upper bounding cost increase of a round

Here we give the formal proof of Lemma 3, restated below. Recall that

cost-increase(r) =
∑

t : cmax(t)∈(cmax/2r+1,cmax/2r]

cmax(t)fit(θt)

is the random variable that upper bounds the cost increase caused by the cuts selected during the
iterations t when cmax/2

r+1 < cmax(t) ≤ cmax/2
r.

Lemma 3. For every r, E[cost-increase(r)] ≤ 12 ln(k) · cost1(U).

Proof. Let t be the first iteration when cmax(t) ≤ cmax/2
r and let M = 3 ln(k) · 2L/cmax(t) as in

Lemma 2. In the following, we use costM to denote the random variable that equals the cost increase
caused by adding M uniformly random cuts after the t-th iteration. Then

E[costM] ≤M · cmax(t) · E(i,θ)[fi(θ)] ≤M · cmax(t) · cost1(U)/L = 6 ln(k) · cost1(U) ,

where the first inequality holds because cmax(t) is monotonically decreasing and the second inequality
is by Lemma 1. At the same time, if we let H denote the event that cmax(t) has halved after adding
these M cuts, i.e., that cmax(t + M) ≤ cmax(t)/2, then Pr[H] ≥ 1 − 1/k by Lemma 2. We now
upper bound the expectation of cost-increase(r) by considering “trials” of M cuts until one of these
succeeds in halving cmax(t). Indeed, split the sequence of random cuts selected by the algorithm after
iteration t into such trials A1, . . . , A` where each Aj consist of M cuts, and A` is the first successful
trial in the sense that selecting (only) those cuts after iteration t would cause cmax(t) to halve. Then
we must have that cmax(t) has halved also after adding all the cuts in the ` trials. It follows that
cost-increase(r) is upper bounded by the cost increase caused by the cuts in A1, A2, . . . , A`. We
can thus upper bound E[cost-increase(r)] by the expected cost of these trials until one succeeds:

∞∑
i=0

Pr[H] · Pr[¬H]i · (E [costM | H] + i · E [costM | ¬H]) ,

where we use E[costM | H] and E[costM | ¬H] for the expected costs of a successful and unsuc-
cessful trials, respectively. By standard calculations (as for the geometric distribution), this upper
bound simplifies to E [costM | H] + Pr[¬H]

Pr[H] E [costM | ¬H]. This can be further rewritten as

1

Pr[H]
· (Pr[H] · E[costM | H] + Pr[¬H] · E[costM | ¬H]) =

E[costM]

Pr[H]
≤ 12 ln(k) · cost1(U) ,

where we used that Pr[H] ≥ 1− 1/k ≥ 1/2.

B.2 Theorem 2 implies furthermore statement of Theorem 1

Recall that the difference between Algorithm 1 and the modified version is that Algorithm 1 samples
cuts uniformly at random whereas the modified version only adds a random cut if it does not separate
two centers that are within distance cmax(t)/k4.

Algorithm 1 adds k − 1 cuts to its tree. We now argue that these k − 1 cuts are with probability at
least 1− 1/k sampled from the same distribution as the k − 1 cuts added by the modified version.
This then implies the furthermore statement of Theorem 1 since Theorem 2 says that the expected
cost of the modified algorithm is O(log2 k) · cost1(U). To this end, consider the i-th such cut and let
t be the iteration when the (i− 1)-st cut was added to the tree. Then when the i-th cut is added there
must be two centers in the same leaf at distance cmax(t). So the probability that two centers within
distance cmax(t)/k4 are separated by the i-th cut (which is a uniformly random cut among all cuts
that would separate at least two centers in the same leaf) is at most 1/k4. There can be at most

(
k
2

)
such pairs and so by the union bound, we can conclude that, with probability at least 1− 1/k2, the
i-th cut of Algorithm 1 does not separate any such nearby centers. We can thus view the distribution
from which Algorithm 1 samples the i-th cut as follows: With probability p ≤ 1/k2 it samples a
uniformly random cut that separates two centers within distance cmax(t)/k4 and with remaining

13

probability it samples a uniformly random cut that does not separate any such centers, i.e., from the
same distribution that the modified algorithm samples the i-th cut from. Applying the union bound
over the k − 1 cuts then yields the furthermore statement of Theorem 1. Finally, we remark that the
same arguments imply a larger success probability if applied to the modified algorithm that only adds
cut that do not separate centers within distance cmax(t)/k` for some ` ≥ 4.

B.3 Upper bounding expected cost of modified Algorithm 1

We prove Theorem 2, i.e., that modified Algorithm 1 returns a threshold tree whose expected cost is
O(log2 k) · cost1(U). The proof is similar to the cost analysis in Section 3.1 with the main difference
being that here we are more careful in bounding the cost when considering different “rounds” of
the algorithm. In the analysis it will be convenient to take the following viewpoint of the modified
algorithm: it samples a uniformly random cut and then discards it if it separates two centers within
distance cmax(t)/k4. While the number of iterations may increase with this viewpoint, the output
distribution is the same as the modified algorithm in that, in each iteration, a cut is sampled uniformly
at random among those that do not separate any centers within distance cmax(t)/k4. In the following,
we refer to this as the sample-discard algorithm and we prove Theorem 2 by showing that the
sample-discard algorithm outputs a tree whose expected cost is O(log2 k) · cost1(U).

Let (it, θt) denote the (uniformly random) cut selected in the t-th iteration of the sample-discard
algorithm and recall the following notation: Leaves(t) denotes the state of Leaves at the beginning of
the t-th iteration of the while-loop and cmax(t) = maxB∈Leaves(t) maxµi,µj∈B ‖µi − µj‖1 denotes
the maximum distance between two centers that belong to the same leaf at the beginning of the t-th
iteration. We start by observing that Lemma 2 readily generalizes to the modified version.
Lemma 4. Fix the the threshold cuts selected by the sample-discard algorithm during the first
t − 1 iterations (this determines the random variable Leaves(t) and thus cmax(t)). Let M =
3 ln(k) · 4L/cmax(t). Then

Pr[cmax(t+M) ≤ cmax(t)/2] ≥ 1− 1/k ,

where the probability is over the random cuts selected in iterations t, t+ 1, . . . , t+M − 1.

Proof. The proof is similar to that of Lemma 2 but some care has to be taken as certain cuts are now
discarded.

Consider two centers µi and µj that belong to the same leaf in Leaves(t). Further suppose that
cmax(t)/2 ≤ ‖µp − µq‖1 ≤ cmax(t). We have that any cut (i, θ) that separates these two centers is
considered (i.e., not discarded) by the sample-discard algorithm after the t-th iteration unless (i, θ)
also separates two centers within distance cmax(t)/k4. Here we used that cmax(·) is monotonically
decreasing and so the set of cuts that are discarded if sampled is only decreasing in later iterations.
We can thus obtain the lower bound cmax(t)/(4L) on the probability that a uniformly random cut
separates µp and µq by subtracting

1

L

d∑
i=1

∫ ∞
−∞

1
[
θ separates two centers within distance cmax(t)/k4

]
dθ ≤ 1

L

(
k

2

)
cmax(t)

k4

from
1

L

d∑
i=1

∫ ∞
−∞

1[θ between µpi and µqi] dθ ≥
1

L
cmax(t)/2 .

The proof now proceeds in the exact same way as that of Lemma 2. Indeed, if the centers are at
distance at least cmax(t)/2, the probability that they are not separated by any of M independently
chosen cuts is at most(

1− cmax(t)

4L

)M
=

(
1− cmax(t)

4L

)3 ln(k)·4L/cmax(t)

≤ (1/e)3 ln(k) = 1/k3 .

There are at most
(
k
2

)
pairs of centers in the leaves of Leaves(t) at distance at least cmax(t)/2. By the

union bound, we thus have, with probability at least 1− 1/k, that each of these pairs are separated by
at least one of the cuts selected in iterations t, t+1, . . . , t+M−1. In that case, any two centers in the
same leaf of Leaves(t+M) are at distance at most cmax(t)/2 and so cmax(t+M) ≤ cmax(t)/2.

14

Now, similar to Section 3.1, we can upper bound the expected cost of the constructed threshold tree
T by

E [cost1(T)] ≤ cost1(U) + E

[∑
t

cmax(t)fit(θt)1[(it, θt) was added to the tree]

]
,

where the sum is over the iterations. We remark that, in contrast to Section 3.1, we have strengthened
the upper bound by only considering those cuts that were actually added to the threshold tree by the
modified algorithm. This refinement is necessary for obtaining the improved guarantee. We now
analyze the sum in the expectation by partitioning it into 1 + blog2(cmax/cmin)c rounds. Specifically
for r ∈ {0, 1 . . . , blog2(cmax/cmin)c}, we let

cost-increase′(r) =
∑

t:cmax(t)∈(cmax/2r+1,cmax/2r]

cmax(t)fit(θt)1[(it, θt) was added to the tree]

be the cost of the cuts selected during the iterations t when cmax/2
r+1 < cmax(t) ≤ cmax/2

r.

To upper bound E[cost-increase′(r)] we use activer(i, θ) ∈ {0, 1} to denote the indicator variable
of those cuts that separate two centers within distance cmax/2

r and do not separate any two centers
within distance cmax/(2

r+1k4).
Lemma 5. For a round r,

E[cost-increase′(r)] ≤ 24 ln(k) ·
d∑
i=1

∫ ∞
−∞

fi(θ) activer(i, θ) dθ .

Before giving the proof of this lemma, let us see how it implies Theorem 2. For this, note that a cut
(i, θ) only has activer(i, θ) = 1 for at mostO(log(k4)) many values of r. Indeed, let c be the distance
between the closest centers that (i, θ) separates. Then any round r for which activer(i, θ) = 1 must
satisfy cmax/(2r+1k4) ≤ c ≤ cmax/2r. Hence, we have

cost1(T) ≤ cost1(U) +
∑
r

E[cost-increase′(r)]

≤ cost1(U) +
∑
r

24 ln(k) ·
d∑
i=1

∫ ∞
−∞

fi(θ) activer(i, θ) dθ

≤ cost1(U) +O(log2 k) ·
d∑
i=1

∫ ∞
−∞

fi(θ) dθ

= O(log2 k) · cost1(U) .

In other words, we proved that the sample-discard algorithm outputs a tree T with E[cost1(T)] ≤
O(log2 k) · cost1(U), which implies Theorem 2 since modifed Algorithm 1 and the sample-discard
algorithm have the same output distribution. It remains to prove the lemma.

Proof of Lemma 5. Consider the first iteration t such that cmax(t) ≤ cmax/2
r. Further suppose that

cmax(t) > cmax/2
r+1 since otherwise cost-increase′(r) = 0 and the statement is trivial. We proceed

to upper bound E[cost-increase′(r)] as follows. First note that the cost of a random cut sampled in
an iteration t′ such that cmax/2

r+1 ≤ cmax(t′) ≤ cmax(t) equals

cmax(t′)

L

d∑
i=1

∫ ∞
−∞

fi(θ)1[(i, θ) was added to the tree] dθ .

The cut (i, θ) can be added to the tree only if it does not separate any centers within distance
cmax(t′)/k4 ≥ cmax/(2

r+1k4) and it must separate two centers within distance at most cmax(t′) ≤
cmax/2

r. In other words, any cut that is added to the tree must have activer(i, θ) = 1. We can thus
upper bound the above cost of a single cut by

cmax(t)

L

d∑
i=1

∫ ∞
−∞

fi(θ) activer(i, θ) dθ , (2)

15

where we also used that cmax(t′) ≤ cmax(t).

The proof now follows arguments that are again similar to those in Section 3.1. Select M =
12 ln(k) · L/cmax(t) as in Lemma 4. We upper bound E[cost-increase(r)] by adding “trials” of M
cuts until cmax(·) goes below cmax/2

r+1. (Strictly speaking this may not happen after a multiple of
M cuts but considering more cuts may only increase the cost of our upper bound.) Let H be the event
that the following M cuts causes cmax(·) to drop below cmax/2

r+1. By Lemma 4, Pr[H] ≥ 1− 1/k.
Furthemore, the expected cost of M cuts is M times (2) which equals

12 ln(k) ·
d∑
i=1

∫ ∞
−∞

fi(θ) activer(i, θ) dθ .

The statement now follows from the same “geometric distribution” calculations as in the proof of
Lemma 3.

C Omitted proofs of Section 4

We now prove Theorem 3 (restated below for convenience) by showing how to modify Algorithm 1
to get the desired guarantee on the expected cost.
Theorem 3. For every p ≥ 1, there exists a randomized algorithm that when given input centers
U = {µ1,µ2, . . . ,µk}, outputs a threshold tree T whose expected cost satisfies

E[costp(T)] ≤ O(kp−1 log2 k) · costp(U).

To prove Theorem 3, we consider a generalized version of Algorithm 1 where we sample threshold
cuts from the distribution Dp introduced in Section 4. Recall that Dp is defined such that the p.d.f. of
a cut (i, θ) is proportional to the (p− 1)-th power of the minimum distance from θ to a projection of
a center in the i-th dimension.

We start by introducing some notation and making the definition of Dp precise. For a dimension
i ∈ [d], let µ−i = minj∈[k] µ

j
i and µ+

i = maxj∈[k] µ
j
i . For a dimension i ∈ [d] and two coordinates

x, y ∈ R, let Ii(x, y) be the set of consecutive intervals along the i-th dimension delimited by the
coordinates x and y themselves and the projections of the centers in U that lie between x and y.
For example, consider the 2-dimensional instance with four centers µ1, . . . ,µ4 shown in Fig. 3.
On the horizontal axis, two coordinates x and y are marked along with the projections of the four
centers µ1

1, µ
2
1, µ

3
1, and µ4

1. Here, I1(x, y) consists of the three consecutive intervals [x, µ4
1], [µ4

1, µ
2
1],

and [µ2
1, y].

2

1x yµ4
1 µ2

1µ1
1 µ3

1

µ1

µ4

µ2
µ3

Figure 3: Intervals defined by projecting points onto a coordinate axis.

Observe that, by the definition of Ii(x, y), we have |x− y| =
∑

[a,b]∈Ii(x,y) |b− a|.

Let
Iall =

⋃
i∈[d]

{
(i, [a, b]) : [a, b] ∈ Ii(µ−i , µ

+
i)
}

denote the collection of all dimension–interval pairs that are delimited by the projections of the
centers onto the respective dimensions. We define

Lp =
∑

(i,[a,b])∈Iall

|b− a|p.

16

With the introduced notation, the distribution Dp can be formally described as follows: We first
select a dimension i and an interval [a, b] ∈ Ii(µ−i , µ

+
i) along with dimension i (i.e., we select a

dimension–interval pair (i, [a, b]) ∈ Iall) with probability |b − a|p/Lp. Then we pick θ ∈ [a, b]
randomly such that the p.d.f. θ is

Pa,b(θ) :=
p · 2p−1

(b− a)p
min(θ − a, b− θ)p−1.

Another key component of the design and analysis of the generalized algorithm is a pseudo-distance
function. For two points x,y ∈ Rd, Let

I(x,y) =
⋃
i∈[d]

{(i, [a, b]) : [a, b] ∈ Ii(xi, yi)}.

We then define the pseudo-distance between x and y as

dp(x,y) =
∑

(i,[a,b])∈I(x,y)

|b− a|p.

Note that the p-th power of the `p distance, ‖x − y‖pp, between two points x and y is defined as∑
i∈[d] |xi − yi|p. It is easy to see that ‖x− y‖pp ≥ dp(x,y) since

|xi − yi|p =

 ∑
[a,b]∈Ii(xi,yi)

|a− b|

p

≥
∑

[a,b]∈Ii(xi,yi)

|a− b|p

for each dimension i. For p = 1, we have equality.

A key observation now is that, if we sample a cut from Dp, the probability that it separates two
centers µg and µh is proportional to their pseudo-distance dp(µg,µh).

C.1 The algorithm for `p-norms with p ≥ 1.

We now present the generalized algorithm. The only difference from the modified version of
Algorithm 1 is how we sample random cuts at Line 5. Recall from Section 3 that we defined
Leaves(t) to denote the state of Leaves at the beginning of the t-th iteration. We define c′p,max(t)
as the maximum pseudo-distance between any pair of centers in a leaf in Leaves(t). Formally,
c′p,max(t) = maxB∈Leaves(t) maxµi,µj∈B dp(µ

i,µj). Let c′p,max = c′p,max(1).

Now, in the sampling step (Line 5), we draw samples from Dp. However, we discard the cut if it
separates any two centers in a leaf whose pseudo-distance is at most c′p,max(t)/k4. Note that this is
a generalization of the sample-discard algorithm from Appendix B.3. We present the pseudo-code
in Algorithm 2.

Algorithm 2: Generalized explainable clustering algorithm for higher `p-norms.

1 Input: A collection of k centers U = {µ1,µ2, . . . ,µk} ⊂ Rd.
2 Output: A threshold tree with k-leaves.
3 Leaves← {U}
4 while |Leaves | < k do
5 Sample a cut (i, θ) from Dp
6 if (i, θ) separates two centers that are closer than c′p,max(·)/k4 in pseudo-distance then
7 Discard the cut.
8 else
9 for each B ∈ Leaves that are split by (i, θ) do

10 Split B into B− and B+ and add them as left and right children of B.
11 Update Leaves.

12 return the threshold tree defined by all cuts that separated some B.

Following the lines of Appendix B.3, we now upper bound the expected cost of Algorithm 2.

17

Lemma 6. Fix the threshold cuts selected by Algorithm 2 during the first t − 1 iterations. Let
M = 3 · 4 · ln(k) · Lp/c′p,max(t). Then

Pr[c′p,max(t+M) ≤ c′p,max(t)/2] ≥ 1− 1/k,

where the probability is over the random cuts selected in iterations t, t+ 1, . . . , t+M − 1.

Proof. We begin by introducing a few more notations that are useful in the analysis. For an iteration t,
let TooClose(t) be the set of pairs of centers (µg,µh) that satisfy dp(µg,µh) ≤ c′p,max(t)/k4. In
other words, TooClose(t) contains pairs of centers that the algorithm is not allowed to separate at the
t-th iteration. Note that for any (µg,µh) ∈ TooClose(t), both µg and µh will be in the same leaf in
Leaves(t). Let

Ibad(t) =
⋃

(µg,µh)∈TooClose(t)

I(µg,µh)

be the set of dimension–interval pairs (i, [a, b]) such that making a cut in interval [a, b] along
dimension i will separate a pair of centers in TooClose. Observe that a cut that is made outside of
Ibad(t) will not separate any pair of centers in TooClose.

Consider a leaf B ∈ Leaves(t) and two centers µg and µh in B such that c′p,max(t)/2 ≤
dp(µ

g,µh) ≤ c′p,max(t).

Note that ∑
[a,b]∈Ibad(t)

|b− a|p ≤
∑

(µg′ ,µh′)∈TooClose(t)

∑
(i,[a,b])∈I(µg′ ,µh′)

|b− a|p

=
∑

(i,[a,b])∈I(µg′ ,µh′)

dp(µ
g′ ,µh

′
)

≤
(
k

2

)
c′p,max(t)

k4
≤
c′p,max(t)

4
.

In the last inequality, we use that k ≥ 2.

Hence, the probability that a cut selected at the t-th iteration separates µg and µh is at least

dp(µ
g,µh)

Lp
−
∑

[a,b]∈Ibad(t)
|b− a|p

Lp
≥
c′p,max(t)

2Lp
−
c′p,max(t)

4Lp
≥
c′p,max(t)

4Lp
.

The proof now follows by replacing cmax(t) with c′p,max(t) and L with Lp in the remaining part of
the proof of Lemma 4.

In the following analysis, we use the Hölder’s inequality stated below:
Lemma 7 (Hölder’s inequality). For two real numbers u and v such that 1/u+ 1/v = 1 and two
positive real number sequences y1, . . . , ym and z1, . . . , zm, it holds that

∑
i∈[m]

yizi ≤

∑
i∈[m]

yui

1/u∑
i∈[m]

zvi

1/v

.

In particular, setting y1 = y2 = · · · = ym = 1, u = p/(p− 1) and v = p for some p, and taking the
p-th power on both sides, it holds that∑

i∈[m]

zi

p

≤ mp−1
∑
i∈[m]

zpi .

We now upper bound the expected cost. Recall that π(x) denotes the closest center in U to a point
x ∈ X and that costp(U) is defined as

costp(U) =
∑
x∈X
‖x− π(x)‖pp =

∑
x∈X

∑
i∈[d]

|xi − π(x)i|p.

To bound the cost of the output clustering in the k-medians setting, we used the triangle inequality.
For general p-th power of p-norms, we use the following generalized triangle inequality:

18

Lemma 8. Consider three points x,y, z ∈ Rd. We have ‖z−x‖pp ≤ 2p−1
(
‖z − y‖pp + ‖y − x‖pp

)
.

Proof. Expanding ‖ · ‖pp as a summation over d dimensions, it is sufficient to prove that for any three
real numbers x, y, z ∈ R, |z − x|p ≤ 2p−1(|z − y|p + |y − x|p). Without loss of generality, assume
that z ≥ x. If y ≤ x or y ≥ z, the proof follows trivially because we have |z − x| ≤ |z − y| or
|z − x| ≤ |y − z|, respectively. Now suppose that x ≤ y ≤ z. Let a = y − x and b = z − y. Since
a+ b = z− x, we simply need to prove that (a+ b)p ≤ 2p−1(ap + bp) which follows from Hölder’s
inequality.

Recall that we defined c′p,max(t) and c′p,max earlier using the pseudo-distance function dp. We now
define cp,max(t) and cp,max similarly, but using the p-th power of the `p norm: Namely, cp,max(t) =
maxB∈Leaves(t) maxµi,µj∈B ‖µi − µj‖pp and cp,max = cp,max(1). We again use (it, θt) to denote
the cut selected by Algorithm 2 in the t-th iteration and fi(θ) to denote the number of points x ∈ X
that are separated from π(x) by a cut (i, θ).

For a point x ∈ X , suppose that it is assigned to some center µ in the final threshold tree. If
µ = π(x), the cost contribution of x in the final clustering is the same as that in the original
clustering. Suppose µ 6= π(x) and suppose that x was separated from π(x) at iteration t. Then,
using Lemma 8, we conclude that the cost of assigning x to µ, i.e., ‖x− µ‖pp, is upper bounded by

2p−1
(
‖x− π(x)‖pp + ‖π(x)− µ‖pp

)
≤ 2p−1

(
‖x− π(x)‖pp + cp,max(t)

)
.

Let UsedCuts be the set of cuts used to split some leaf in Line 10 of Algorithm 2. Now using the
above observation, we can upper bound the expected cost of the output tree, E[costp(T)], by

costp(T) ≤ 2p−1

(
costp(U) +

∞∑
r=0

E[cost-increase(r)]

)
where

cost-increase(r) =
∑

t:
c′p,max

2r+1 ≤c′p,max(t)≤
c′p,max

2r

cp,max(t) · fit(θt) · 1[(it, θt) ∈ UsedCuts].

Note that in the last expression, the summed terms use cp,max(t) whereas the condition of the
summation uses c′p,max(t). Note that

cost-increase(r) ≤
∑

t:
c′p,max

2r+1 ≤c′p,max(t)≤
c′p,max

2r

kp−1c′p,max(t) · fit(θt) · 1[(it, θt) ∈ UsedCuts]

≤ kp−1
c′p,max

2r
·

∑
t:

c′p,max

2r+1 ≤c′p,max(t)≤
c′p,max

2r

fit(θt) · 1[(it, θt) ∈ UsedCuts].

The first inequality is by Hölder’s inequality (applied independently in each dimension in the
computation of respective dp and ‖ · ‖pp values). The second inequality simply uses the condition of
the summation.

We now upper bound the expected value of cost-increase(r). Let Iact(r) be the set of dimension–
interval pairs in I that do not separate any pair of centers that are closer than c′p,max/(k

42r+1) in
pseudo-distance but separate at least one pair of centers that are closer than c′p,max/2

r in pseudo-
distance. We prove the following lemma which is analogous to Lemma 5 in Appendix B.3.

Lemma 9. For a round r, E[cost-increase(r)] is

O
(
kp−1 · log k

)
·

 ∑
(i,[a,b])∈Iact(r)

|b− a|p
∫ b

a

Pa,b (θ) fi(θ)dθ

 .

19

Proof. We consider “trials” of M consecutive iterations in round r where

M = 12 · 2r+1 ln(k) · Lp/c′p,max.

We perform independent trials until c′p,max(·) at the end of a trial goes below c′p,max/2
r+1.

Consider one trial and let s be the starting iteration of the trial. Note that we have

M ≥ 3 · 4 · ln(k) · Lp/c′p,max(s)

since c′p,max(s) ≥ c′p,max/2
r+1. Thus, by Lemma 6, afterM iterations, round r ends with probability

at least 1− 1/k ≥ 1/2. (Note that round r may end before all M iterations of a trial are completed.
In such trials, we assume that we discard the additional cuts that are made after the round ends.)

Let UB` =
∑t′+M−1
s=t′ fis(θs) · 1[(is, θs) ∈ UsedCuts] and observe that

cost-increase(r) ≤ kp−1
c′p,max

2r
·
∑
`

UB` (3)

where the sum is over all trials we perform in round r.

We first upper bound each term UB` and then use the expectation of a geometric random variable to
upper bound the expected value of

∑
` UB`. We have

E[UB`] ≤
t′+M−1∑
s=t′

E [fis(θs) · 1[(is, θs) ∈ UsedCuts]]

≤
t′+M−1∑
s=t′

1

Lp

∑
(i,[a,b])∈Iact(r)

|b− a|p
∫ b

a

Pa,b (θ) fi(θ)dθ. (4)

Note that we only sum over dimension–interval pairs in Iact(r) as cuts made outside of this set will
be discarded. To elaborate, the dimension–interval pair in which a cut (i, θ) is made can be outside of
Iact(r) for two reasons:

1. Because it separates two centers that are closer than c′p,max/(k
42r+1) ≤ c′p,max(t′)/k4.

Then it will get discarded in Line 7.

2. Because it does not separate two centers that are closer than c′p,max/2
r. Such a cut will not

split any leaves in Line 9.

Consequently, for all (is, θs) ∈ UsedCuts, we have θs ∈ [a, b] for some interval [a, b] such that
(is, [a, b]) ∈ Iact(r).

Now, since the summed terms in (4) no longer depend on the summed index s, we now have

E[UB`] ≤
M

Lp

∑
(i,[a,b])∈Iact

|b− a|p
∫ b

a

Pa,b (θ) fi(θ)dθ

=
12 · 2r+1 ln(k)

c′p,max

∑
(i,[a,b])∈Iact

|b− a|p
∫ b

a

Pa,b (θ) fi(θ)dθ.

Now, considering that round r ends after a trial with probability at least 1/2, using the expected value
of a geometric distribution, we conclude that

E

[∑
`

UB`

]
≤ 24 · 2r+1 ln(k)

c′p,max

∑
(i,[a,b])∈Iact(r)

|b− a|p
∫ b

a

Pa,b (θ) fi(θ)dθ.

The proof of the lemma then follows by combining this with the bound in (3).

With Lemma 9 in hand, we now prove Theorem 3.

20

Proof of Theorem 3. Using Lemma 9, we can upper bound
∑∞
r=0 E[cost-increase(r)] as follows:

∞∑
r=0

E[cost-increase(r)]

= O
(
kp−1 · log k

)
·
∞∑
r=0

∑
(i,[a,b])∈Iact(r)

|b− a|p
∫ b

a

Pa,b (θ) fi(θ)dθ

= O
(
kp−1 · log k

)
·

∑
(i,[a,b])∈I

∞∑
r=0

1[(i, [a, b]) ∈ Iact(r)] ·

(
|b− a|p

∫ b

a

Pa,b (θ) fi(θ)dθ

)

= O
(
kp−1 · log k

)
·

∑
(i,[a,b])∈I

|b− a|p
∫ b

a

Pa,b (θ) fi(θ)dθ ·

(∞∑
r=0

1[(i, [a, b]) ∈ Iact(r)]

)
.

We now claim that for any dimension–interval pair in (i, [a, b]) ∈ I
∞∑
r=0

1[(i, [a, b]) ∈ Iact(r)] =
∣∣{r : (i, [a, b]) ∈ Iact(r)}

∣∣ = O(log k). (5)

Namely, fix some dimension–interval pair (i, [a, b]) ∈ I. Let c be the smallest pseudo-distance
between any pair of centers that are separated if a cut (i, θ) such that θ ∈ [a, b] is made. Then (i, [a, b])
is in Iact(r) only if c ≤ c′p,max/2

r and c′p,max/2
r+1 ≤ k4c, or equivalently, log(c′p,max/2ck

4) ≤
r ≤ log(c′p,max/c) which yields (5). Thus we have

∞∑
r=0

E[cost-increase(r)]

= O
(
kp−1 · log2 k

)
·

∑
(i,[a,b])∈I

(
|b− a|p

∫ b

a

Pa,b (θ) fi(θ)dθ

)

= O
(
kp−1 · log2 k

)
·

∑
(i,[a,b])∈I

(
|b− a|p

∫ b

a

p2p−1
min(θ − a, b− θ)p−1

|b− a|p
fi(θ)dθ

)

= O
(
kp−1 · log2 k

)
· (p2p−1) ·

∑
(i,[a,b])∈I

∫ b

a

min(θ − a, b− θ)p−1fi(θ)dθ. (6)

Now to conclude the proof of Theorem 3, let cost′p(U) =
∑
x∈X dp(x, π(x)) which is the cost of

U defined in terms of the pseudo-distances. Recall that ‖x − y‖pp ≥ dp(x,y) and hence we have
costp(U) ≥ cost′p(U) where the equality holds if p = 1. We then have

costp(U) ≥ cost′p(U) =
∑
x∈X

dp(x, π(x)) =
∑
x∈X

∑
i∈[d]

∑
[a,b]∈Ii(xi,π(x)i)

|a− b|p

=
∑
x∈X

∑
i∈[d]

∑
[a,b]∈Ii(xi,π(x)i)

∫ b

a

p(θ − a)p−1dθ

≥
∑
x∈X

∑
(i,[a,b])∈I

∫ b

a

p ·min(θ − a, b− θ)p−1 · 1[θ is between xi and π(x)i] dθ (7)

= p
∑

(i,[a,b])∈I

∫ b

a

min(θ − a, b− θ)p−1fi(θ) dθ. (8)

The inequality in (7) above needs an explanation. First notice that, by the definition of I, summing
over (i, [a, b]) ∈ I is the same as summing over i ∈ [d] and [a, b] ∈ Ii(µ−i , µ

+
i) . Fix some point x

and dimension i, and w.l.o.g. assume that xi ≤ π(x)i. Then each interval [a, b] ∈ Ii(µ−i , µ
+
i) falls

into one of the following categories:

21

1. b ≤ xi or π(x))i ≤ a. The contribution from such intervals are zero in both sides of the
inequality in (7).

2. xi ≤ a ≤ b ≤ π(x)i. The contribution from such intervals to the left hand side of (7) is at
least as the contribution to the right hand side because of the min function.

3. a < xi < b. Note that
∫ b
a

(θ − a)p−1dθ =
∫ b
a

(b − θ)p−1dθ. Hence, in this case, the
contributions to both sides of (7) are equal if xi ≥ (a+ b)/2. Otherwise, the contribution to
the L.H.S. is higher.

4. a < π(x) < b. This case is analogous to Item 3.

The inequality in (7) follows by applying this observation to each interval in I and each point in X .

The theorem statement then follows by combining bounds (6) and (8).

C.2 Implementation details

Note that Algorithm 2 differs from Algorithm 1 in the sampling step and the new sample discarding
step. Recall that the implementation details of Algorithm 1 is presented in Section 3.2. In this section,
assuming that we can sample a θ ∈ [a, b] with p.d.f. Pa,b(θ) from a given interval [a, b] in Θ(1) time,
we show how to efficiently implement the sampling step of Algorithm 2. In particular, we show how
to select the dimension–interval pair (i, [a, b]) with probability proportional to |b− a|p. Once the cut
is sampled, the discarding step can be implemented by simulating the splitting operation and ignoring
the cut if it separates two centers that are too close.

Suppose that for each dimension i, we maintain a data structure Si that stores the intervals in
Ii(µ−i , µ

+
i) that are not yet split by a cut. There are k − 1 disjoint intervals in Ii(µ−i , µ

+
i), and we

assume they are ordered by the left coordinate and indexed [a1, b1], . . . , [ak−1, bk−1]. Additionally,
each Si supports the following operations:

1. Initialize with all intervals in Ii(µ−i , µ
+
i) in O(k log k) time.

2. Remove an interval in Ii(µ−i , µ
+
i) in O(log k) time.

3. Given two indices `, r ∈ [k − 1], answer the query for
∑r
j=` |bj − aj |p1[(aj , bj) ∈ Si] in

O(log k) time.

We can implement Si as a segment tree.

Now we can sample an interval from S1, . . . , Sd as follows in O(d log k) time: We first query
(1, k− 1) in each tree, aggregate the results, and pick a dimension i with the correct probability. Then
we select an interval from Si with the correct probability by employing a binary-search like algorithm.
To elaborate, we first query it for (1, b(k−1)/2c) and (b(k−1)/2c)+1, k−1) and use the results to
randomly decide if the index of the sampled interval should be in the sub-range {1, . . . , b(k− 1)/2c}
or {b(k − 1)/2c) + 1, . . . , k − 1}. Then we recursively apply the same procedure on the selected
sub-range of indices until we end up with only one interval. A crude runtime analysis gives O(log2 k)
running time for the recursive sampling as there are O(log k) queries and each query takes O(log k)
time. However we can modify the segment tree such that the partial sums maintained in the segment
tree coincide with our queries so that each query can be answered in constant time.

D Omitted proofs of Section 5

Proof of Claim 1. Fix two different centers µj1 , µj2 , j1 6= j2. Their distance δ satisfies

δp =
∑
i∈[d]

∣∣fi(j1)− fi(j2)
∣∣p =

m−1∑
a=1

m−1∑
b=0

∣∣(aj1 + b) mod m− (aj2 + b) mod m
∣∣p.

For a ∈ {1, . . . , p− 1}, let x(a) = (aj1 − aj2) mod m. Observe that∣∣(aj1 + b) mod m− (aj2 + b) mod m
∣∣ ∈ {x(a),m− x(a)},

22

and whether it is x(a) or m− x(a) depends on b, with it being x(a) for exactly m− x(a) values of b
and m− x(a) for the remaining x(a) values of b. Hence,

δp =

m−1∑
a=1

(m− x(a)) · x(a)p + x(a) · (m− x(a))p.

Since j1 6≡ j2 (mod m), we have
{
x(a) | a ∈ {1, . . . ,m− 1}

}
= {1, . . . ,m− 1}, and

δp =

m−1∑
i=1

(m− i) · ip + i · (m− i)p = 2 ·
m−1∑
i=1

(m− i) · ip = Θ(mp+2) = Θ(dkp).

Proof of Claim 2. Let the cut be (i, θ). It must be that 0 ≤ θ < m − 1, because otherwise the cut
would not separate any two centers. Note that there exists a center µj with µji = bθc. Indeed,
consider j = (bθc − bi) · a−1i mod m, using the fact that ai and m are coprime. To finish the proof
observe that the cut separates point (µj + ei) ∈ Bj from all other points in Bj .

23

	Introduction
	Our contributions
	Technical overview
	Independent work

	Preliminaries
	Explainable k-medians clustering
	Cost analysis
	Upper bounding cost by a factor of O(log^2 k)

	Implementation details

	Explainable k-means and general lp-norm clustering
	Lower bound
	The minimum cut algorithm loses (k) factor for k-medians
	Omitted proofs of Section 3
	Upper bounding cost increase of a round
	Theorem 2 implies furthermore statement of Theorem 1
	Upper bounding expected cost of modified Algorithm 1

	Omitted proofs of Section 4
	The algorithm for lp-norms with p >= 1.
	Implementation details

	Omitted proofs of Section 5

