
APPENDIX

.1 PSEUDOCODE OF REWEIGHTOOD

The general working algorithm of ReweightOOD framework is given in Algorithm 1. Moreover, the
loss formulation optimizes maximizing the cosine similarity between positive pairs and minimizing
the cosine similarity between negative pairs. The loss is weighted by the weighting mechanism as
shown in the algorithm.

Algorithm 1: Training Loop for the ReweightOOD framework
Data: Training data: X , Y (labels)
Result: Trained model parameters: fθ

1 Initialize model parameters fθ and projection head gθ ;
2 Define learning rate α;
3 Define linear transformation constant mw, cw,mb, cb;
4 Define the number of epochs N ;
5 for epoch← 1 to N do
6 for each (xi, yi) in X,Y do
7 Apply random augmentations xi = RandomAugment(xi);
8 Compute encoded representation hi = fθ(gθ(xi));
9 Transform to hyperspherical embeddings ĥi = L2 Normalize(hi);

10 similarity matrix = embeddings @ embeddings.transpose(1, 0) ;
11 label matrix = label.unsqueeze(1) == label.unsqueeze(0) ;
12 within class matrix = label matrix.triu(diagonal=1) ;
13 between class matrix = label matrix.logical not().triu(diagonal=1);
14 similarity matrix = similarity matrix.view(-1) ;
15 within class matrix = within class matrix.view(-1);
16 between class matrix = between class matrix.view(-1);
17 sjw = similarity matrix[within class matrix] ;
18 sib = similarity matrix[between class matrix];
19 wj

w = sigmoid(mw · sw + cw) ;
20 wi

b = sigmoid(mb · sb + cb) ;

21 loss = log
(∑n

i=1 exp(w
i
b · sib/τ)

)
− log

(∑m
j=1 exp(w

j
w · sjw/τ)

)
;

22 Compute gradients with respect to model parameters ;
23 Update learnable parameters: θ ← θ − α∇Li;

24 return Trained model parameters fθ;

.2 ABLATION ON LINEAR TRANSFORMATION

To investigate the effect of linear transformation prior to sigmoid weighting, we compare the use of
linear transformation with the use of the original cosine similarity range for both within-class and
between-class similarity. The results in Table 1 (FPR metric) and Table 2 (AUROC metric) show
that the use of linear transformation as opposed to just using original cosine similarity enhances the
performance of OOD detection.

Table 1: Ablation on use of linear transformation in the weighting of (sw, sb) and OOD detection
performance in terms of FPR metric.

Method OOD Dataset
MNIST iSUN LSUN LSUN-r SVHN Texture Places365 Average

Without linear transformation (Original range) 64.47 77.14 34.46 75.42 17.54 33.40 80.72 54.74
Without linear transformation in sw weighting 68.79 56.80 22.18 56.49 12.61 37.82 78.79 47.64
Without linear transformation in sb weighting 48.67 74.53 39.23 70.48 14.83 31.86 77.65 51.04
(ReweightOOD) Ours 19.24 57.56 19.59 56.31 8.39 28.72 78.70 38.36
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Table 2: Ablation on use of linear transformation in weighting of (sw, sb) and OOD detection
performance in terms of AUROC metric.

Method OOD Dataset
MNIST iSUN LSUN LSUN-r SVHN Texture Places365 Average

Without linear transformation (Original range) 84.16 81.75 90.47 83.01 96.16 92.47 75.85 86.27
Without linear transformation in sw weighting 87.98 88.35 95.67 88.92 97.72 92.62 76.52 89.68
Without linear transformation in sb weighting 89.00 82.85 90.47 84.26 96.95 92.85 77.94 87.76
(ReweightOOD) Ours 96.86 87.54 96.86 88.23 98.31 94.11 76.01 90.91

.3 STABILITY OF REWEIGHTOOD

We perform 3 independent trials using ResNet18 network to verify strong performance of
ReweightOOD in comparison to baseline with CIFAR100 datasets. The OOD detection perfor-
mance metrics in FPR metrics in the form of mean±std presented in Table 3 verifies effectiveness of
our approach.

Table 3: OOD detection performance across 3 independent trials using ResNet18 trained with CI-
FAR100 datasets in FPR metric.

ID dataset OOD Dataset
MNIST iSUN LSUN LSUN-r SVHN Texture Places365 Average

Baseline 72.58±7.01 74.95±14.62 46.05±7.58 72.00±13.79 25.08±1.70 42.33±3.08 71.56±2.18 57.79±5.53

(ReweightOOD) Ours 16.84±5.99 68.05±8.10 24.06±9.71 67.21±8.11 9.01±2.03 27.36±2.76 79.59±2.08 41.73±2.56

.4 ADDITIONAL CIFAR100 RESULTS

The OOD detection performance in various OOD datasets obtained with DenseNet architecture
trained with the CIFAR-100 dataset in terms of FPR metric is summarized in Table 4. The superior
performance of ReweightOOD is evident from the presented results.

Table 4: OOD detection performance using CIFAR-100(ID) with DenseNet architecture in terms of
FPR.

Method OOD Dataset
MNIST iSUN LSUN LSUN-r SVHN Texture Places365 Average FPR ↓

Baseline 37.32 39.66 35.63 46.58 11.15 20.43 82.45 39.03
SupCon 26.97 61.00 30.60 70.02 9.93 22.13 89.34 44.28
(ReweightOOD) Ours 10.39 24.45 36.86 29.96 14.26 18.53 85.08 31.36

.5 CIFAR10 RESULTS

For CIFAR10 (ID) experiments, the comparison of our method with various non-contrastive as well
as contrastive approaches is presented in Table 5. In the non-contrastive approach, We compare our
approach with posthoc methods such as MSP (Hendrycks & Gimpel, 2017), ODIN (Liang et al.,
2017), Mahalanobis (Lee et al., 2017), DICE Sun & Li (2022) and Energy (Liu et al., 2020) as well
as training-time regularization approaches such as GODIN (Hsu et al., 2020) and LogitNorm (Wei
et al., 2022). In contrastive approaches, we compare with ProxyAnchor (Kim et al., 2020), CSI (Tack
et al., 2020), SSD+ (Sehwag et al., 2021), KNN+ (Sun et al., 2022), and CIDER (Ming et al.,
2023). In contrastive approaches, we compare our method with ProxyAnchor (Kim et al., 2020),
CSI (Tack et al., 2020), SSD+ (Sehwag et al., 2021), KNN+ (Sun et al., 2022), and CIDER (Ming
et al., 2023).We use default hyperparameters provided in the original work whenever required. Our
approach leads to the best performance in both metrics. We can observe that the majority of the
methods work well since it is a relatively easier task because of the smaller number of classes
in comparison to CIFAR100. However, our approach still outperforms the current approaches on
average FPR and AUROC metrics.
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Table 5: Mean OOD detection performance for CIFAR-10 (ID) with ResNet-18.
Method

OOD Dataset AverageMNIST iSUN LSUN LSUN-r SVHN Texture Places365

FPR↓ AUROC↑ FPR↓ AUROC↑ FPR↓ AUROC↑ FPR↓ AUROC↑ FPR↓ AUROC↑ FPR↓ AUROC↑ FPR↓ AUROC↑ FPR↓ AUROC↑

Without Contrastive Learning
MSP 45.93 93.02 47.42 92.07 30.90 95.49 45.77 92.78 46.76 92.33 52.82 90.44 55.05 89.03 46.38 92.17
ODIN 20.45 95.37 24.96 93.32 16.33 95.93 22.64 94.31 51.00 84.36 41.93 87.35 50.17 84.35 32.50 90.71
Mahalanobis 77.84 88.43 30.44 94.67 79.41 86.19 30.54 94.80 64.60 90.21 36.05 93.29 58.53 88.42 53.92 90.86
Energy 23.77 95.20 36.45 91.65 13.04 97.36 33.91 92.78 33.16 92.49 41.77 90.26 42.63 89.15 32.11 92.70
DICE 12.57 97.63 73.46 80.54 12.37 97.29 72.14 81.75 30.48 93.93 58.81 82.55 64.32 78.87 46.31 87.51
GODIN 5.53 98.77 12.48 97.55 6.55 98.64 10.73 97.88 14.39 97.62 20.59 96.05 40.89 90.24 15.88 96.68
LogitNorm 3.16 99.16 23.87 96.23 0.47 99.83 20.84 96.72 13.71 97.63 27.94 95.10 30.29 94.92 17.18 97.08

With Contrastive Learning
ProxyAnchor 7.77 98.72 26.13 96.09 4.26 98.99 21.36 96.54 1.04 99.80 9.68 98.44 19.20 96.51 12.78 97.87
CSI 4.20 98.32 45.36 92.33 20.62 97.07 47.07 92.16 4.58 99.02 14.66 97.66 58.67 88.71 27.88 95.04
SSD+ 2.74 99.34 54.62 93.16 5.04 99.05 52.17 93.55 0.45 99.90 9.08 98.49 24.15 96.22 21.18 97.10
KNN+ 4.95 99.09 21.23 96.53 4.52 99.16 21.83 96.44 1.74 99.64 8.88 98.48 21.28 96.43 12.06 97.97
CIDER 31.03 94.97 13.67 97.36 4.07 99.26 14.40 97.31 2.85 99.54 18.55 97.15 30.27 95.17 16.41 97.25

Baseline 10.25 98.37 18.12 96.99 8.51 98.59 17.20 97.14 1.43 99.75 9.11 98.51 24.04 96.07 12.67 97.92
(ReweightOOD) Ours 10.99 97.92 10.85 98.00 3.42 99.23 10.99 97.94 1.03 99.82 9.75 98.47 22.72 95.97 9.96 98.19

.6 COMPATIBILITY WITH MAHALONOBIS DISTANCE CIFAR EXPERIMENTS.

The OOD detection score using Mahalanobis distance using CIFAR-10 experiments is shown in
Table 6 and Table 7. Also, the OOD detection performance using CIFAR-100 experiments in terms
of the AUROC metric is also shown in Table 8. Experiments are performed using the ResNet-
18 network. The results presented show that our approach consistently remains superior in OOD
detection performance.

Table 6: Compatibility with MDS using CIFAR-10 (ID) in terms of FPR metric.
Method iSUN LSUN LSUN-r SVHN Texture Places365 Average FPR

ProxyAnchor 55.83 4.42 51.43 0.14 13.37 24.60 24.96
SSD+ 46.60 2.56 42.16 0.28 8.67 22.23 20.42

CIDER 53.32 17.17 51.27 0.86 22.30 45.06 31.66

(ReweightOOD) Ours 30.67 6.26 26.91 0.10 8.59 22.64 15.86

Table 7: Compatibility with MDS using CIFAR-10 (ID) in terms of AUROC metric.
Method iSUN LSUN LSUN-r SVHN Texture Places365 Average FPR

ProxyAnchor 92.48 99.10 93.19 99.95 97.92 96.08 96.45
SSD+ 93.90 99.36 94.46 99.93 98.56 96.36 97.10

CIDER 93.74 97.77 93.86 99.80 96.56 93.70 95.91

(ReweightOOD) Ours 95.65 98.80 96.07 99.96 98.50 96.31 97.55

Table 8: Compatibility with MDS using CIFAR-100 (ID) in terms of AUROC metric.
Method MNIST iSUN LSUN LSUN-r SVHN Texture Places365 Average AUROC ↑

ProxyAnchor 76.32 75.41 90.23 75.81 98.47 87.08 82.66 83.71
SSD+ 76.80 83.85 89.91 85.19 95.70 88.22 80.86 85.79

CIDER 75.78 79.17 95.98 79.38 97.99 90.10 80.30 85.53

(ReweightOOD) Ours 87.59 86.30 96.68 86.79 98.81 91.01 81.70 89.84

.7 OOD DETECTION PERFORMANCE IN IMAGENET DATASET IN TERMS OF AUROC
METRICS.

Further OOD detection performance in ImageNet100 experiments in terms of AUROC is presented
in Table 9. Finetuning pretrained ResNet50 model with our approach leads to the superior AU-
ROC metric in comparison to baseline and SupCon loss formulations. This shows the potential of
ReweightOOD to be used in the fine-tuning context too.

.8 IMPLEMENTATION PLATFORM

All the experiments were performed on NVIDIA A100 GPU with PyTorch deep learning library
(version: 1.8).
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Table 9: OOD detection performance in large-scale experiments (ImageNet-100) in terms of AU-
ROC by fine-tuning pretrained ResNet50.

Method iNaturalist SUN Textures Places SSB Hard Ninco Openimage Average AUROC ↓
Baseline 99.15 99.35 99.12 98.56 92.17 94.46 98.47 97.32
SupCon 99.15 99.35 99.12 98.56 92.17 95.46 98.47 97.32

(ReweightOOD) Ours 99.36 99.26 99.45 98.49 92.29 95.16 98.81 97.55

.9 DATASETS

.9.1 ID DATASETS

CIFAR-10, CIFAR-100 and ImageNet-100 are three ID datasets used in our experiments.

CIFAR CIFAR-10 is one of the most commonly used datasets for benchmarking computer vi-
sion performance, especially for classification tasks. It contains 10 categories of images. There are
50,000 training and 10,000 testing samples totalling 60,000 samples. CIFAR-100 is a very sim-
ilar dataset to CIFAR-10 but consists of 100 classes. It contains the same number of images as
CIFAR-10, however number of images per category is smaller. The CIFAR images exhibit a square
resolution with a width of 32 pixels.

ImageNet100 ImageNet-100 dataset is a subset of ImageNet dataset. ImageNet-100 consists of
images from 100 randomly sampled categories from the original ImageNet dataset. The images of
the ImageNet100 dataset are trained in the square resolution with a width of 224 pixels.

.9.2 OOD DATASETS

We use the following OOD datasets: MNIST, iSUN, LSUN-R, LSUN-C, Places365, SVHN, Tex-
ture, iNaturalists, NINCO, OpenImage, and Semantic Shift Benchmark (SSB).
MNIST MNIST dataset consists of 70,000 grayscale images. Each image represents a handwritten
digit ranging from 0 to 9 in a resolution of 28x28 pixels. MNIST dataset consists of 60,000 training
10,000 testing images.
SVHN SVHN is a real-world digit recognition dataset obtained from house numbers in Google
Street View images. It is similar to MNIST images but the difficulty of recognition for machine
learning algorithms is a more harder.
LSUN LSUN datasets are curated for the purpose of scene understanding. It has three variations.
Places365 Places365 is also another large-scale scene dataset developed for training deep-learning
models to understand scenes.
Texture The Textures dataset contains images of various textures which are unique images apart
from widely available object or scene images.
iNaturalist iNaturalist contains images of the natural world. It has 13 super-categories and 5,089
sub-categories covering various aspects of natural realms such as plants, insects, birds, mammals,
etc.
NINCO The NINCO (No ImageNet Class Objects) dataset comprises 64 OOD classes, encompass-
ing a total of 5879 samples. These OOD classes were thoughtfully chosen to ensure the complete
absence of categorical overlap with any of the 1000 classes found in ImageNet-1K. Subsequently,
a rigorous individual inspection of each sample was conducted to verify the absence of any objects
from the ID categories.
SSB SSB is a dataset for open-set recognition, category discovery, out-of-distribution detection, etc.
The SSB is intended to isolate semantic novelty from other forms of distributional shifts. It contains
easy and hard split, but we make use of hard split.
OpenImage-O OpenImage-O is curated by selecting images on an individual basis from the test set
of OpenImage-V3, which, in turn, was taken from the vast repository of Flickr without the impo-
sition of a predetermined list of class names or tags. This dataset is manually annotated and has a
diverse distribution.

In all OOD datasets, samples duplicating in ID datasets are removed wherever needed hence obtain-
ing subset the subset different from ID.
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