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1 FURTHER PERSPECTIVES ON T-SNE, UMAP, PACMAP, AND VARIANTS

As mentioned in Section 1 (Introduction) of the main paper, a large plethora of dimensional-
ity reduction methods exists and an excellent repository for more information is e.g. https:
//jlmelville.github.io/smallvis/. In this paper, following recent literature, the main
algorithms are considered to be t-SNE (van der Maaten, 2014), and UMAP (McInnes et al., 2020),
and we include the empirically motivated PacMap (Wang et al., 2021). For context, TriMap (Amid
& Warmuth, 2019) and LargeVis (Tang et al., 2016) are discussed below. The t-SNE theory has been
outlined in Section 2 of the main paper.

In the paper introducing UMAP, McInnes et al. (2020) argues that t-SNE should be considered the
current state-of-the-art at that time, and mentions computational scalability as a main benefit of
UMAP versus t-SNE. The main aspect with respect to computational scalability for UMAP versus
t-SNE is that the simplical set theory shows that for UMAP normalization over pairwise similarities
(probabilities in t-SNE) is not needed, as opposed to t-SNE. This illustrates the importance of the
sound theoretical foundation of UMAP. As further described in (McInnes et al., 2020), UMAP’s
simplical set cross-entropy cost function resembles in several ways the LargeVis (Tang et al., 2016)
cost function. LargeVis also avoids normalization in the embedding space, albeit from a more
heuristic point of view, but not in the input space where a procedure similar to the one used in
Barnes-Hut t-SNE (van der Maaten, 2014) is used. Avoiding normalization in the embedding space
is key to the negative sampling strategy employed in LargeVis and which is key to its computational
scalability, also an integral component in the UMAP optimization. LargeVis is not included in
the experimental part of this paper to avoid clutter, but is an influential algorithm in the t-SNE
family. McInnes et al. (2020) and Wang et al. (2021), for instance, have both extensive comparative
experiments sections also involving LargeVis.

A motivation for Wang et al. (2021) is to discuss preservation of local structure versus global struc-
ture. They propose a heuristic method, PacMap, which is intended to strike a balance between
TriMap (Amid & Warmuth, 2019) (better at preserving global structure) and t-SNE/UMAP (local
structure). TriMap is is a triplet loss-based method. Wang et al. (2021) argues that TriMap is the
first successful triplet constraint method (as opposed to (Hadsell et al., 2006; van der Maaten &
Weinberger, 2012; Wilber et al., 2015)) but claims that without PCA initialization ”TriMap’s global
structure is ruined”. PacMap is based on a study of the principles behind attractive and repulsive
forces and finds that forces should be exerted on further points and sets up a heuristically designed
procedure for treating near pairs, mid-near pairs, and non-neighbors.

Understanding t-SNE versus UMAP, in particular, from a theoretical perspective, has gained interest
in the recent years. Damrich & Hamprecht (2021) studies the interplay between attractive and
repulsive forces in UMAP in detail and comes to the conclusion that UMAP is actually not exactly
optimizing the cost function put forth in (McInnes et al., 2020). Bohm et al. (2020) studies the whole
attraction-repulsion spectrum and find cases where UMAP may diverge.

Kobak & Linderman (2021) show that UMAP’s initialization (Laplacian eigenmaps (Belkin &
Niyogi, 2003)) is very important for UMAP’s results and claims that t-SNE can be improved by
a similar initialization. Wang et al. (2021) also studies initialization, and claim that both UMAP
but also TriMap are very dependent on initialization. A further comment on a relationship between
t-SNE and Laplacian eigenmaps is provided in Section 2 of this Supplementary material. Draganov
et al. (2023) argues that the normalization aspect is basically the key difference between t-SNE and
UMAP, and suggests a way to toggle between the two approaches.
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In this paper, sampling is also demonstrated (Figure 8 in the main paper, Section 3 in this Supple-
mentary), sharing some similarity to the sampling strategies invoked in e.g. LargeVis and UMAP.

It should also be mentioned that dimensionality reduction methods inspired by the t-SNE approach
by alternative divergences to the Kullback-Leibler over joint pairwise probabilities have been stud-
ied to some degree (Bunte et al., 2012; Naryan et al., 2015; Huang et al., 2022). However, these
works have not discussed projective properties of divergence measures and have not contributed to
understanding the aspect of normalization.

2 PROPOSITIONS WITH COMMENTS

For the benefit of the reader, the well-known Kullback-Leibler-based t-SNE relation from the main
paper, which van der Maaten & Hinton (2008) builds on, is proved:

argmin
z1,...,zn∈Rd

KL(P ||Q) = argmin
z1,...,zn∈Rd

∑
i,j

pij log
pij
qij

= argmin
z1,...,zn∈Rd

∑
i,j

pij log qij . (1)

Proof.

argmin
z1,...,zn∈Rd

KL(P ||Q) = argmin
z1,...,zn∈Rd

∑
i,j

pij log
pij
qij

(2)

= argmin
z1,...,zn∈Rd

∑
i,j

pij log pij︸ ︷︷ ︸
constant

−
∑
i,j

pij log qij . (3)

= argmin
z1,...,zn∈Rd

−
∑
i,j

pij log qij . (4)

Proposition 1. [Minimizing KL(P ||Q) and the role of normalization]. Let qij =
q̃ij∑

n,m
q̃nm

. Then

argmin
z1,...,zn∈Rd

KL(P ||Q) = argmin
z1,...,zn∈Rd

−
∑
i,j

pij log q̃ij + log
∑
n,m

q̃nm. (5)

Proof.

argmin
z1,...,zn∈Rd

KL(P ||Q) = argmin
z1,...,zn∈Rd

−
∑
i,j

pij log qij (6)

= argmin
z1,...,zn∈Rd

−
∑
i,j

pij log
q̃ij∑

n,m
q̃nm

(7)

= argmin
z1,...,zn∈Rd

−


∑
i,j

pij log q̃ij −
∑
i,j

pij︸ ︷︷ ︸
=1

log
∑
n,m

q̃nm

 (8)

= argmin
z1,...,zn∈Rd

−
∑
i,j

pij log q̃ij + log
∑
n,m

q̃nm. (9)
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Comment to Proposition 1. Deriving the t-SNE cost function without first expressing qij
1 in a

particular form (t-distribution (Cauchy distribution) or Gaussian) shows a general property of the
cost function which has received little or no attention in the previous literature. The t-SNE cost
function is by the above result expressed by two terms where the first term relates the normalized
pij to unnormalized q̃ij . The second term only involves the unnormalized q̃ij .

From this expression, an interesting aspect of the t-SNE cost function, which seems not to have
been discussed much in the literature, is an intrinsic connection to Laplacian eigenmaps (Belkin &
Niyogi, 2003).

In Laplacian eigenmaps, the aim is to find a low-dimensional embedding z1, . . . ,zn ∈ Rd from
x1, . . . ,xn ∈ RD. It is assumed that some similarity measure can be defined in the input space,
pairwise over xi and xj , which can be denoted wij . The Laplacian cost function is essentially∑

i,j wij ||zi−zj ||2 to be minimized over z1, . . . ,zn ∈ Rd, however given orthogonality constraints
on z1, . . . ,zn ∈ Rd to avoid trivial minima. Since for t-SNE, q̃ij is a function of ||zi − zj ||2 for
both the t-distribution (Cauchy distribution) and the Gaussian, there is a close link between t-SNE
and Laplacian eigenmaps. For instance, for q̃ij = [1 + ||zi − zj ||2]−1, the first term becomes∑

i,j wij log ||zi−zj ||2 and for the Gaussian the corresponding term becomes
∑

i,j wij ||zi−zj ||2
up to a proportionality constant (this was also pointed out in (Trosten et al., 2023)). By letting wij =
pij the link becomes obvious. In t-SNE, there are no orthogonality constraints on z1, . . . ,zn ∈ Rd.
Instead, trivial solutions are avoided by the constraint posed by

∑
n,m q̃nm.

Recently, Cai & Ma (2022) provided an elaborate spectral analysis concluding that t-SNE is con-
nected to Laplacian eigenmaps. By the above analysis, this is evident from the form of the t-SNE
cost function itself.
Proposition 2. [Gradient of KL(P ||Q)]

∂

∂zi
KL(P ||Q) = −4

∑
j

(pij − qij) q̃ij(zj − zi). (10)

Proof.

∂

∂zi
KL(P ||Q) =

∂

∂zi
−
∑
i,j

pij log q̃ij + log
∑
n,m

q̃nm︸ ︷︷ ︸
def
=C

. (11)

The following derivation resembles (van der Maaten & Hinton, 2008). Note that if zi changes, the
only pairwise distances that change are dij and dji where dij = ||zi − zj ||. Hence, the gradient of
the cost function C with respect to zi is given by

∂

∂zi
C =

∑
j

(
∂C

∂dij
+

∂C

∂dji

)
(zi − zj) = 2

∑
j

∂C

∂dij
(zi − zj). (12)

Furthermore
∂C

∂dij
= −

∑
k,l

pkl
∂

∂dij
log q̃kl +

∂

∂dij
log
∑
n,m

q̃nm (13)

= −
∑
k,l

pkl
1

q̃kl

∂

∂dij
q̃kl +

1∑
n,m

q̃nm

∑
n,m

∂

∂dij
q̃nm. (14)

The gradient is only non-zero for k = i, l = j and for n = i, m = j, yielding

∂C

∂dij
= −pij

1

q̃ij

∂

∂dij
q̃ij +

1∑
n,m

q̃nm

∂

∂dij
q̃ij . (15)

1In the original SNE paper (Hinton & Roweis, 2002) the Gaussian distribution was used qij =
exp(−κ||zi − zj ||2)/

∑
n,m exp(−κ||zn − zm||2). The argument in (van der Maaten & Hinton, 2008)

was that the t-distribution helps mitigate the so-called crowding problem. It is possible to formulate the joint
probabilities as functions of other distance functions than the Euclidean or in terms of similarity measures.
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Note that for q̃ij =
[

1
1+||zi−zj ||2

]
, which is the t-distribution, or alternatively for q̃ij =

exp(−κ||zi − zj ||2), the Gaussian distribution, we have

∂

∂dij
q̃ij = 2q̃2ij . (16)

Hence,

∂C

∂dij
= 2

−pij q̃ij +
1∑

n,m
q̃nm

q̃2ij

 = 2 (−pij + qij) q̃ij , (17)

since qij =
q̃ij∑

n,m
q̃nm

. Finally, this yields

∂

∂zi
C =

∂

∂zi
KL(P ||Q) = −4

∑
j

(pij − qij) q̃ij(zj − zi). (18)

Proposition 3. [Minimizing CS(Pm||Qm) with respect to z1, . . . ,zn ∈ Rd]

argmin
z1,...,zn∈Rd

CS(P̃m||Q̃m) = argmin
z1,...,zn∈Rd

− log
∑
j

p̃j q̃j +
1

2
log
∑
j

q̃2j . (19)

Proof.

argmin
z1,...,zn∈Rd

CS(Pm||Qm) (20)

= argmin
z1,...,zn∈Rd

− log

∑
j

p̃j q̃j∑
j

p̃2j

 1
2

︸ ︷︷ ︸
independent of z

(∑
j

q̃2j

) 1
2

(21)

= argmin
z1,...,zn∈Rd

− log
∑
j

p̃j q̃j +
1

2
log
∑
j

q̃2j . (22)

(23)

Proposition 4. [Gradient of CS(Pm||Qm)]

∂

∂zi
CS(Pm||Qm) = −4

∑
j

 p̃j∑
j′

p̃j′ q̃j′
− q̃j∑

j′
q̃2j′

 q̃2ij(zj − zi). (24)

Proof.

argmin
z1,...,zn∈Rd

CS(Pm||Qm) = argmin
z1,...,zn∈Rd

− log
∑
j

p̃j q̃j +
1

2
log
∑
j

q̃2j (25)

(26)

There are several ways to proceed. Here, it is chosen to start by expressing CS(Pm||Qm) explicitly
into cross-product terms p̃jk′ q̃jk. For convenience, the derivation is split into two parts.

∂

∂zi
− log

∑
j

p̃j q̃j = − 1∑
j′

p̃j′ q̃j′

∂

∂zi

∑
j

p̃j q̃j = − 1∑
j′

p̃j′ q̃j′

∂

∂zi

∑
j

∑
k′,k

p̃jk′ q̃jk. (27)
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Look first at the case j ̸= i. Then ∂
∂zi

∑
k′,k

p̃jk′ q̃jk will have non-zero terms for k = i, hence

∂

∂zi

∑
k′,k

p̃jk′ q̃jk =
∑
k′

p̃jk′
∂

∂zi
q̃ji = p̃j

∂

∂zi
q̃ji. (28)

For j = i,

∂

∂zi

∑
k′,k

p̃ik′ q̃ik =
∑
k

(∑
k′

p̃ik′

)
∂

∂zi
q̃ik =

∑
k

p̃k
∂

∂zi
q̃ik. (29)

Hence,

∂

∂zi

∑
j

∑
k′,k

p̃jk′ q̃jk =
∑
j,j ̸=i

2p̃j
∂

∂zi
q̃ij . (30)

Note that for q̃ij =
[

1
1+||zi−zj ||2

]
, which is the t-distribution, or alternatively for q̃ij =

exp(−κ||zi − zj ||2), the Gaussian distribution, we have

∂

∂zi
q̃ij = 2q̃2ij(zj − zi) (31)

Thus

∂

∂zi
− log

∑
j

p̃j q̃j = −4
1∑

j′
p̃j′ q̃j′

∑
j,j ̸=i

p̃j q̃
2
ij(zj − zi). (32)

Alternatively,

∂

∂zi
− log

∑
j

p̃j q̃j = − 1∑
j′

p̃j′ q̃j′

∂

∂zi

∑
i

p̃iq̃i = − 1∑
j′

p̃j′ q̃j′

∑
j

p̃j
∂

∂zi
q̃j (33)

and then work with q̃j =
∑
k′

q̃jk′ . For the second part, consider

∂

∂zi

1

2
log
∑
j

q̃2j =
1

2

1∑
j′

q̃2j′

∂

∂zi

∑
i

q̃2i =
1

2

1∑
j′

q̃2j′

∂

∂zi

∑
j

∑
k′,k

q̃jk′ q̃jk. (34)

and work in a similar fashion as above from there, or express

∂

∂zi

1

2
log
∑
j

q̃2j =
1

2

1∑
j′

q̃2j′

∂

∂zi

∑
i

q̃2i =
1

2

1∑
j′

q̃2j′

∑
j

2q̃j
∂

∂zi
q̃j (35)

and insert q̃j =
∑
k′

q̃jk′ . This gives

∂

∂zi

1

2
log
∑
j

q̃2j = 4
1∑

j′
q̃2j′

∑
j,j ̸=i

q̃j q̃
2
ij(zj − zi). (36)

Hence, when taken together:

∂

∂zi
CS(Pm||Qm) = −4

∑
j,j ̸=i

 p̃j∑
j′

p̃j′ q̃j′
− q̃j∑

j′
q̃2j′

 q̃2ij(zj − zi). (37)
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Proposition 5. [The map CS divergence is projective]. Let z = m(x) + ε and assume p(x) =
p̃(x)
Zp

and q(z) = q̃(z)
Zq

where p̃(x) and q̃(z) are unnormalized with Zp and Zq as the respective
normalization constants. Then

CS(p(x)||q(z)) = CS(p̃(x)||q̃(z)). (38)

Proof.

CS(p(x)||q(z)) (39)

= − log

∫ ∫ p̃(x)
Zp

q̃(z)
Zq

f(x, z)dxdz(∫ ∫ ( p̃(x)
Zp

)2
f(x, z)dxdz

) 1
2
(∫ ∫ ( q̃(z)

Zq

)2
f(x, z)dxdz

) 1
2

(40)

= − log

1
ZpZq

∫ ∫
p̃(x)q̃(z)f(x, z)dxdz(

1
Z2

p

∫ ∫
p̃2(x)f(x, z)dxdz

) 1
2
(

1
Z2

q

∫ ∫
q̃2(z)f(x, z)dxdz

) 1
2

(41)

= − log

∫ ∫
p̃(x)q̃(z)f(x, z)dxdz(∫ ∫

p̃2(x)f(x, z)dxdz
) 1

2
(∫ ∫

q̃2(z)f(x, z)dxdz
) 1

2

(42)

= CS(p̃(x)||q̃(z)). (43)

Proposition 6. [Minimizing ĈS(p(x)||q(z)) with respect to z1, . . . ,zn ∈ Rd]

argmin
z1,...,zn∈Rd

ĈS(p(x)||q(z)) = argmin
z1,...,zn∈Rd

− log
∑
j

p̃(xj)q̃(zj) +
1

2
log
∑
j

q̃2(zj). (44)

Proof.

argmin
z1,...,zn∈Rd

CS(p(x)||q(z)) (45)

= argmin
z1,...,zn∈Rd

− log

∑
j

p̃(xj)q̃(zj)∑
j

p̃2(xj)

 1
2

︸ ︷︷ ︸
independent of z

(∑
j

q̃2(zj)

) 1
2

(46)

= argmin
z1,...,zn∈Rd

− log
∑
j

p̃(x)q̃(zj) +
1

2
log
∑
j

q̃2(zj). (47)

(48)

Proposition 7. [Gradient of ĈS(p(x)||q(z))]

∂

∂zi
ĈS(p(x)||q(z)) = −

∑
j

 p̃(xj)∑
j′

p̃(xj′)q̃(zj′)
− q̃(zj)∑

j′
q̃2(zj′)

 ∂

∂zi
q̃(zj). (49)

Proof.

argmin
z1,...,zn∈Rd

CS(p(x)||q(z)) = argmin
z1,...,zn∈Rd

− log
∑
j

p̃(xj)q̃(zj) +
1

2
log
∑
j

q̃2(zj). (50)
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The derivation is split into two parts. First,

∂

∂zi
− log

∑
j

p̃(xj)q̃(zj) = − 1∑
j′

p̃(xj′)q̃(zj′)

∑
j

p̃(xj)
∂

∂zi
q̃(zj). (51)

Second,

∂

∂zi

1

2
log
∑
j

q̃2(zj) =
1

2

1∑
j′

q̃2(zj′)

∑
j

∂

∂zi
q̃2(zj) =

1

2

1∑
j′

q̃2(zj′)

∑
j

2q̃(zj)
∂

∂zi
q̃(zj). (52)

Taken together, thus

∂

∂zi
ĈS(p(x)||q(z)) = −

∑
j

 p̃(xj)∑
j′

p̃(xj′)q̃(zj′)
− q̃(zj)∑

j′
q̃2(zj′)

 ∂

∂zi
q̃(zj). (53)

Proposition 8. [Gradient of ĈS(p(x)||q(z)) with kernel smoothing]. Let ˆ̃q(zj) =
∑

k κz(zj−zk)

and ˆ̃p(xj) =
∑

k κp(xj − xk) for shift-invariant kernel functions κz(·) and κp(·). Then

∂

∂zi
ĈS(p(x)||q(z)) = −4

∑
j

 p̃j∑
j′

p̃j′ q̃j′
− q̃j∑

j′
q̃2j′

κ2
z(zj − zi)(zj − zi). (54)

Proof. A shift-invariant kernel function satisfies κ(zj − zi) = κ(dij) where dij = ||zj − zi||2.
Hence, similar to the derivation for Proposition 2, we will have

∂

∂zi
ĈS(p(x)||q(z)) = −

∑
j

 p̃(xj)∑
j′

p̃(xj′)q̃(zj′)
− q̃(zj)∑

j′
q̃2(zj′)

 ∂

∂zi
q̃(zj) (55)

= −
∑
j

 p̃(xj)∑
j′

p̃(xj′)q̃(zj′)
− q̃(zj)∑

j′
q̃2(zj′)

(∂q̃(zj)

∂dij
+

∂q̃(zj)

∂dji

)
(zj − zi) (56)

= −
∑
j

 p̃(xj)∑
j′

p̃(xj′)q̃(zj′)
− q̃(zj)∑

j′
q̃2(zj′)

 2
∂q̃(zj)

∂dij
(zj − zi). (57)

Note that ∂q̃(zj)
∂dij

=
∂κz(zj−zi)

∂dij
= 2κ2(zj − zi)) for κz(zj − zi)) =

[
1

1+||zi−zj ||2

]
, which is the

t-distribution, or alternatively for κz(zj − zi)) = exp(−κ||zi − zj ||2), the Gaussian distribution.
Taken together,

∂

∂zi
ĈS(p(x)||q(z)) = −4

∑
j

 p̃j∑
j′

p̃j′ q̃j′
− q̃j∑

j′
q̃2j′

κ2
z(zj − zi)(zj − zi). (58)

Proposition 9. [Cauchy-Schwarz (CS) t-SNE is a special case of MAP IT]. Let pjk′ be the prob-
ability for the joint event xj ∩ xk′ . Let qjk′ be the probability for the joint event zj ∩ zk. If
(xj ∩ xk′) ∩ (zj ∩ zk) ∈ ∅, then

CS(Pm||Qm) = CS(P ||Q). (59)
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Figure 1: Illustration of CS t-SNE as a special case of MAP IT.

Proof. We have

CS(Pm||Qm) = − log

∑
j

pjqj(∑
j

p2j

) 1
2
(∑

j

q2j

) 1
2

(60)

= − log

∑
j

∑
k′,k

pjk′qjk(∑
j

∑
k′,k

pjk′pjk

) 1
2
(∑

j

∑
k′,k

qjk′qjk

) 1
2

. (61)

It suffices to look at the numerator since the terms in the denominator are related normalization
quantities.

If (xj ∩ xk′) ∩ (zj ∩ zk) ∈ ∅ then Prob((xj ∩ xk′) ∩ (zj ∩ zk)) = pjk′qjk = 0 (assuming
independence) for k′ ̸= k. Hence ∑

j

∑
k′,k

pjk′qjk =
∑
j,i

pjiqji (62)

for k′ = k = i.

Comment to Proposition 9. The illustration in Fig. 1 brings further perspective to this result.

The black filled circle denotes node j. Nodes within the stapled circle are assumed to be relatively
near and nodes n outside this circle are assumed to be distant in the sense that pjn is neglible for
each such node n. For MAP IT, pjk′ is also multiplied by probabilities qjk and qjl in addition to qjk′

for nodes k and l close to k′. This is not the case for CS t-SNE.

In practise, this means that MAP IT models that the event (xj∩xk′) could induce the event (zj∩zk)
if k′ and k are close.

8
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3 ADDITIONAL RESULTS AND ANALYSIS

MNIST. MNIST2 is a data set of 28×28 pixel grayscale images of handwritten digits. There are 10
digit classes (0 through 9) and a total of 70000 images. Here, 2000 images are randomly sampled.
Each image is represented by a 784-dimensional vector. Figure 1 and Figure 3 in the main paper
show that MAP IT produces a MNIST visualization with much better separation between classes
compared to alternatives and that the embedding is robust with respect to initial conditions.

MAP IT’s free parameter is the number of nearest neighbors k to go into the computation of p̃jNxi

and q̃jNxi
. Figure 2 in this Supplementary shows representative embedding results for the subset

of MNIST for different values of k. As in all dimensionality reduction methods, the visualization
results depend on k. For MNIST, for k = 7 and for k = 10, the class structure appears. For k = 12
and up classes seem to be much compressed. For most data sets, a value for k between 5 and 15 seem
to yield reasonable results. However, the impact of this hyperparameter should be further studied in
future work.

Figure 8 in the main paper shows the result of an initial experiment to scale up MAP IT by a cer-
tain sampling procedure. The proposed sampling procedure is not the same as the one employed
in LargeVis and UMAP. In those methods, attractive forces and repulsive forces are separated.
The number of points to go into the computation of repulsive forces are then sampled, so-called
negative sampling. When creating Figure 8 in the main paper, forces have been separated into at-
tractive/repulsive forces resulting from nearest neighbors versus attractive/repulsive forces coming
from non-neighbors. Hence, the proposed MAP IT sampling is different. Experimentally, it was
observed that if the number of non-neighbor forces were downsampled for instance to 50 percent,
then a multiplication of the attractive/repulsive forces for non-neighbors by a factor two basically
reproduced the original embedding. A downsampling of non-neighbor forces to 25 percent followed
by a multiplication factor of four reproduced the original embedding. Similarly, downsampling of
non-neighbor forces to 12.5 percent followed by a multiplication factor of eight reproduced the orig-
inal embedding. This is illustrated in Figure 3 for MNIST with k = 10. In (a)-(c), the sampling is
down to 50, 25, and 12.5 percent, respectively, and each of the four subfigures show the embedding
after invoking a multiplication factor of 1, 2, 4 and 8 over the non-neighbor forces, respectively. The
boxes indicates that the original embedding is in essence recreated (compare e.g. to Figure 2 (c)).
For Figure 8 in the main paper, where only 3k non-neighbor forces are sampled, which means that
ca 1.52 percent of non-neighbors are used in the sampling, the factor used is 66 (ca 1/0.0152).

Learning rates (USPS). In all experiments the MAP IT learning rate has been set to 50 over 1000
iterations. Of course, changing these choices will to some degree change the embedding. These
choices have however been observed to result in quite stable MAP IT results over a range of diverse
data sets. Figure 4 shows the MAP IT cost as a function of iterations for different values of learning
rates performed over a subset of the USPS data set (Hull, 1994). A random subset of the digits 3,
6, and 9 constitute the classes. For each learning rate η of 25, 50 and 100 three runs of MAP IT are
performed and in each case the curve of cost versus iterations is shown. For this particular data set,
low cost function values are obtained quicker for η = 100 (leftmost group of curves), compared to
η = 50 (middle group of curves) and η = 25 (rightmost group of curves). When approaching 1000
iterations all curves have settled at low cost function values. Further studies of the interplay between
learning rate, iterations, and various design choices for the MAP IT optimization are left for future
work.

Coil 20. This data set (Nene et al., 1996) consists of 1440 greyscale images consisting of 20
objects under 72 different rotations spanning 360 degrees. Each image is a 128x128 image which we
treat as a single 16384 dimensional vector for the purposes of computing distance between images.
Visualizations of Coil-20 were shown in the main paper in Figure 4. Enlarged visualizations of Coil
20 are shown in Figures 5, 6, 7 and 8.

Visual Concepts. Images corresponding to three different visual concepts are visualized. SIFT
(Lowe, 1999) descriptors represented by a 1000-dimensional codebook for each visual concept are
downloaded from the ImageNet data base (image-net.org) (Deng et al., 2009). The visual con-
cepts used are strawberry, lemon and australian terrier. The concepts are represented by 1478, 1292
and 1079 images, respectively. The images within each category differ very much, as can be seen

2MNIST, Newsgroups, ”Frey faces” are obtained from http://cs.nyu.edu/∼roweis/data.html.
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(a) k = 5. (b) k = 7. (c) k = 10. (d) k = 12?.

Figure 2: MAP IT for a subset of MNIST for different values of k.

(a) 50 percent downsampling. (b) 25 percent downsampling. (c) 12.5 percent downsampling.

Figure 3: Each subfigure (a)-(c) show the visualization/embedding for different subsampling sce-
narios and for a factor 1, 2, 4, and 8, respectively, on non-neighbor attractive/repulsive forces in the
MAP IT calculation.

e.g. for australian terrier at image-net.org/synset?wnid=n02096294. A crude approach
is taken here. Each image is represented by the overall frequency of codewords present for the SIFT
descriptors contained in the image. Hence, each image is represented as a 1000-dimensional vector.
The local modeling strength of the SIFT descriptors are lost this way, and one cannot expect the
resulting data set to contain very discriminative features between the concepts. Visualizations of the
visual concepts were shown in the main paper in Figure 5. Enlarged visualizations of Coil 20 are
shown in Figures 9, 10, 11 and 12.

Figure 4: Illustration of MAP IT learning rates
and number of iterations for a subset of USPS.

Newsgroups. Visualizations of words from
Newsgroups were shown in the main paper in
Figure 6. Enlarged visualizations of News-
groups as word clouds are shown in Figures 13,
14, 15 and 16.

Frey faces. Visualizations of the Frey faces
were shown in the main paper in Figure 7.
Enlarged visualizations of the Frey faces are
shown in Figures 17, 18, 19 and 20.

Together with the experiments and analysis in
the main paper, these additional MAP IT re-
sults and analysis illustrate the potential of this
new method to provide visualizations which
in many cases are markedly different from
the current state-of-the-art alternative with bet-
ter class discrimination and reasonable em-
beddings overall, from a theoretical approach
which is fundamentally different and which
highlights both a viewpoint from the perspec-
tive of alignment of marginal probabilities as
well as a dual viewpoint via continuous densities enabled by kernel smoothing. The role of normal-
ization follows directly from the theory.
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Figure 5: t-SNE embedding of Coil 20.

Figure 6: UMAP embedding of Coil 20.
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Figure 7: PacMap embedding of Coil 20.

Figure 8: MAP IT embedding of Coil 20.
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Figure 9: t-SNE embedding of visual concepts.

Figure 10: UMAP embedding of visual concepts..
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Figure 11: PacMap embedding of visual concepts..

Figure 12: MAP IT embedding of visual concepts..
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Figure 13: t-SNE embedding of words from Newsgroups.

Figure 14: UMAP embedding of words from Newsgroups.

15



Under review as a conference paper at ICLR 2024

Figure 15: PacMap embedding of words from Newsgroups.

Figure 16: MAP IT embedding of words from Newsgroups..
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Figure 17: t-SNE embedding of Frey faces.

Figure 18: UMAP embedding of Frey faces.
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Figure 19: PacMap embedding of Frey faces.

Figure 20: MAP IT embedding of Frey faces.
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