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ABSTRACT

The federated learning (FL) client selection scheme can effectively mitigate global
model performance degradation caused by the random aggregation of clients with
heterogeneous data. Simultaneously, research has exposed FL’s susceptibility to
backdoor attacks. However herein lies the dilemma, traditional client selection
methods and backdoor defenses stand at odds, so their integration is an elusive
goal. To resolve this, we introduce Grace, a resilient client selection framework
blending combinational class sampling with data augmentation. On the client side,
Grace first proposes a local model purification method, fortifying the model’s
defenses by bolstering its innate robustness. After, local class representations
are extracted for server-side client selection. This approach not only shields be-
nign models from backdoor tampering but also allows the server to glean insights
into local class representations without infringing upon the client’s privacy. On
the server side, Grace introduces a novel representation combination sampling
method. Clients are selected based on the interplay of their class representations,
a strategy that simultaneously weeds out malicious actors and draws in clients
whose data holds unique value. Our extensive experiments highlight Grace’s ca-
pabilities. The results are compelling: Grace enhances defense performance by
over 50% compared to state-of-the-art (SOTA) backdoor defenses, and, in the best
case, improves accuracy by 3.19% compared to SOTA client selection schemes.
Consequently, Grace achieves substantial advancements in both security and ac-
curacy.

1 INTRODUCTION

Federated learning (FL) (McMahan et al. (2017)) has emerged as a novel distributed learning frame-
work in which clients collaboratively train a high-performance machine learning model, coordinated
by a centralized server, without sharing or exchanging private data. However, randomly aggregating
local models with heterogeneous data can significantly degrade the global model’s performance. Ex-
isting studies (Goetz et al. (2019); Cho et al. (2020); Nishio & Yonetani (2019); Yang et al. (2021b))
have found that selecting local models for aggregation based on the characteristics of clients’ lo-
cal models or data, i.e., using a heuristic client selection method instead of random selection, can
effectively address the challenges posed by data heterogeneity.

Existing client selection studies can be divided into two categories: sample feature-based (Yang et al.
(2021b); Fraboni et al. (2021); Balakrishnan et al. (2022); Zhang et al. (2023c)) and model feature-
based methods (Cho et al. (2020); Han et al. (2023); Tang et al. (2022); Nagalapatti & Narayanam
(2021); Yan et al. (2023)). Sample feature-based methods require clients to provide the server with
information about the number of samples in their local training set or the distribution of sample
categories. Clients with larger training sets or more balanced category distributions are then selected
for aggregation. However, it is challenging for the server to verify the truthfulness of the number
or distribution of samples provided by the clients. Consequently, current research has shifted focus
to model feature-based approaches. This method selects representative and diverse local models for
aggregation based on their losses, gradients, or parameters, aiming to enhance the generalization of
the global model.
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In addition, existing FL research has highlighted the vulnerability of Federated Learning (FL) to
backdoor attacks (Hongyi et al. (2020); Bhagoji et al. (2019); Eugene et al. (2020); El Mahdi et al.
(2018); Zhang et al. (2023a)), prompting the development of various defenses against such attacks.
These defenses can be categorized into two main types: client-side (Zhu et al. (2023); Sun et al.
(2021)) and server-side (Huang et al. (2023a); Han et al. (2023); Lycklama et al. (2023); Xie et al.
(2021)). Client-side defenses aim to detect backdoor-related parameters in the local model that the
server sends to the client, and then perturb or clip these parameters to defend against backdoor
attacks. However, due to the diversity of client data and the large parameter space of the model,
accurately identifying backdoor-related parameters remains a challenging task. As a result, server-
side defenses have become the primary focus. These defenses work by comparing the similarity
between the parameters of local models, identifying those that resemble most models as benign, and
excluding dissimilar local models from the aggregation process to mitigate backdoor attacks.

However, we observe a conflict between existing client selection strategies and backdoor attack
defenses. Specifically, the goal of client selection is to choose diverse local models, i.e., to select
clients with unique data to participate in aggregation, thereby enhancing the generalization of the
global model. In contrast, backdoor attack defense aims to exclude local models that differ from the
majority, focusing on aggregating similar local models to mitigate backdoor threats. Local models
trained on backdoor samples are challenging to identify and exclude within a client selection scheme
based on model features. Additionally, clients with unique data characteristics may be mistakenly
classified as malicious in server-side backdoor defenses. Consequently, existing backdoor defense
mechanisms are challenging to integrate with client selection schemes. If the backdoor defense is not
applied during the client selection process, local models embedded with backdoors will participate
in global model aggregation, leading to vulnerabilities in the global model.

In response, we introduce Grace, a robust federated learning client selection with combinatorial class
representations and data augmentation. Grace selects clients for aggregation using class represen-
tations instead of model features, which allows for excluding malicious clients while also selecting
clients with unique data features. Given the challenge of excluding malicious models with 100%
accuracy, we enhance the robustness of the local model internally on the client side. This method
not only defends against attacks but also improves the accuracy of the global model. Grace is the
first solution that defends against backdoor attacks without sacrificing model accuracy; instead, it
enhances it, marking a significant breakthrough. Our contribution can be summarized as follows:

• We propose a local model purification method. First, we apply data augmentation tech-
niques to construct augmented datasets, which are used to fine-tune the local initial models,
enhancing their robustness. Next, we employ representation learning and mutual informa-
tion to learn local class representations and align them with global class representations.
This improves local model performance while also supporting server-side client selection.
This approach not only ensures that the local models of benign clients remain free from
backdoors but also allows the server to learn class representations of local samples without
compromising client privacy.

• We propose a representation combinatorial sampling method. We first establish a metric
to quantify the global class representation loss for each client and apply a combinatorial
confidence upper bound algorithm to sample clients, excluding those with significant global
class representation losses. After, an expert product technique is used to generate global
class representations, which guide the learning of local class representations. This method
effectively excludes malicious clients while selecting high-quality clients.

• We conduct a series of experiments to evaluate the effectiveness of Grace. Our experi-
mental results demonstrate that Grace outperforms existing client selection methods across
various heterogeneous settings. Moreover, Grace surpasses existing defenses under dif-
ferent attack scenarios and non-IID settings. Finally, ablation studies and hyperparameter
analyses further validate the effectiveness of Grace’s individual components.

2 RELATED WORK

Client selection. In prior literature, various endeavors have been undertaken to enhance client
selection in FL. Methods such as Clustered (Fraboni et al. (2021)) rely on the number of client
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samples for selection. However, this metric may not be appropriate, as clients could utilize a sub-
stantial amount of repetitive data, leading to potential overfitting of local models. Other approaches,
including those by (Cho et al. (2020); Goetz et al. (2019); Tang et al. (2022)), select clients based
on higher local losses. Nevertheless, this criterion doesn’t guarantee a reduction in the final global
model’s losses. Nagalapatti & Narayanam (2021) introduces the assumption of a validation set for
server-side validation of local model performance. However, obtaining a dataset that accurately
models the global data distribution is often unrealistic. Researchers later identified a correlation
between client diversity and gradients/parameters. Balakrishnan et al. (2022) selected clients by
maximizing a submodule facility position function defined in the gradient space. CriticalFL (Yan
et al. (2023)) analyzed parameter importance at different stages of FL for client selection. In re-
cent work, Fed-CBS (Zhang et al. (2023c)) argues that the client selection process should not only
consider diversity but also account for category imbalance.

Backdoor attack. In the context of FL, backdoor attacks (Hongyi et al. (2020); Bhagoji et al.
(2019); Eugene et al. (2020); Chulin et al. (2020)) aim to manipulate global model predictions by
exploiting compromised clients embedding backdoors. For instance, Eugene et al. (2020) introduced
a scaling attack wherein the attacker utilizes a combination of backdoors and clean training samples
to train its local model. Subsequently, the attacker scales the local model update before transmitting
it to the server. In our research, we introduce a strategic backdoor attack, leveraging state-of-the-art
attack techniques (Eugene et al. (2020); Zhang et al. (2023a); Chulin et al. (2020)), to assess the
resilience of our defense mechanism.

Backdoor defense. In response to the increasing threat of poisoning attacks, current defense
strategies involve restricting, removing updates, or adding noise to the norm. Notable defenses
include SparseFed (Panda et al. (2022)), which addresses poisoning attacks by selectively updat-
ing the most relevant weights in an aggregation model. DeepSight (Rieger et al. (2022)) tackles
backdoor attacks in FL by clustering the depth model of the last layer to filter outliers. CRFL (Xie
et al. (2021)) employs clipping and smoothing to establish certified robustness against backdoor at-
tacks. FLAME (Nguyen et al. (2022b)) adopts a weak Differential Privacy (DP) and dynamically
clipped boundaries, effectively mitigating backdoor attacks while maintaining high accuracy on the
main task. FEDCPA (Han et al. (2023)) evaluates the normality of local models and aggregates up-
dates using weighted averaging, neutralizing the impact of potential malicious updates. GAS (Liu
et al. (2023)) seeks to overcome the curse of dimensionality by partitioning high-dimensional gradi-
ents into low-dimensional subvectors, identifying trustworthy subvectors, and aggregating them to
resolve the gradient heterogeneity problem. While these server-side defenses presume a lower num-
ber of malicious clients compared to benign clients during each global aggregation round, recent
endeavors focus on enhancing the client’s capability to defend against backdoor attacks during local
training. FL-WBC (Sun et al. (2021)) and LeadFL (Zhu et al. (2023)) optimize the Hessian matrix
to diminish the impact of backdoor features. FLIP (Eugene et al. (2020)) constructs and trains back-
door triggers against each other to counter backdoors. Lockdown (Huang et al. (2023b)) restricts
client access to only a subset of model parameters, preventing toxic submodels from poisoning all
parameters of the global model. Although effective in limiting backdoor impact, this method also
diminishes the generalization performance of the global model.

3 BACKGROUND AND THREAT MODEL

Federated learning. In a traditional FL setup, N clients collaborate to train a global model. Each
client i (1 ≤ i ≤ N) has its own data distribution p(xi,yi) and a dataset Di consisting of Ni data
points {(x(k)i ),y(k)i }Ni

k=1 covering ci classes, with y(k)i ∈ ci being its corresponding label. It is usually
assumed that the data distribution p(xi,yi) varies among the clients. Next, we denote the set of data
from the N clients as x = {x1,x2, · · · ,xN} and the corresponding set of labels as c = {c1,c2, · · · ,cN}.
The global objective function to be minimized by AS is:

f (w) :=
1
N

N∑
i=1

fi(w), (1)

where fi(w) := 1
|Ni|

∑
(x(k)j ,y(k)j )∈Di

ℓ(w;x(k)j ,y(k)j )). According to the framework of representation

learning, we divide the local model into a feature extractor (body) and a classifier (head), denoted

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

as wi = [wb
i ;w(h)

i ]. Initially, we learn a low-dimensional representation z of the original data xi with
distribution p(z|xi;w(b)

i ) parameterized by w(b)
i . After extracting z, we train a classifier to generate

a prediction of z with a predictive distribution p̂(yi|z;wh
i ) parameterized by w(h)

i . Thus, for regres-
sion or classification tasks where the loss function is typically chosen to be a negative logarithmic
prediction, the local objective of the client i can be expressed as:

fi(wi) = Ep(xi,yi)

[
− logEp(z|xi)[p̂(yi|z)]

]
(2)

To simplify the notation, we omit w(h)
i and w(b)

i . Without loss of generality, we consider p(xi|z) =
N (z|µ(xi),Σ(xi)), where N denotes a normal distribution and w(b)

i produces both the mean µ and
the covariance matrix Σ of z. With the representation distribution explicitly modeled, we can easily
constrain this known representation distribution.

Threat model. We assume that server will honestly follow the learning protocol. Clients are
then classified into two categories: honest and malicious. Honest clients honestly execute the FL
protocol, whereas malicious clients attempt to corrupt the global model by launching poisoning
attacks locally. We consider the attacks outlined in previous studies (Chulin et al. (2020); Gu et al.
(2017); Barni et al. (2019); Zhang et al. (2022)), assuming that the attacker can manipulate a group of
compromised clients. To execute a backdoor attack, the attacker initially selects a backdoor trigger
and a target class. Subsequently, in the t-th round (t=1,2,...,T ) of communication, the compromised
clients integrate triggers into a portion of local training data and reassign them as target classes.
In SOTA backdoor attacks (Chulin et al. (2020); Gu et al. (2017); Barni et al. (2019); Zhang et al.
(2022)), the attacker employs these training samples containing triggers to implant a backdoor into
the compromised client’s local model, thereby targeting the global model.

4 METHODOLOGY

Existing mainstream client selection methods and backdoor attack defenses select clients for aggre-
gation based on model features. However, there is an inherent conflict between these two strategies.
To address this issue, we select clients for aggregation based on data class representations rather
than model features. Additionally, we incorporate data augmentation techniques to defend against
attacks while enhancing local model performance, instead of using perturbation or clipping tech-
niques that could degrade the local model’s performance. Specifically, we first design a local model
purification method on the client side that uses data augmentation techniques to alter the parameter
distributions of local initial models, thereby protecting benign local models from backdoors. This
method continuously changes the parameter distributions on the client side through data augmen-
tation. When a few malicious local models are present during aggregation, their attack effects are
weakened by benign models, making it difficult for them to impact the global model significantly.
Next, we employ representation learning to capture class representations of local data for server-side
client sampling. By identifying and selecting local models based on class representations rather than
the models themselves, this approach avoids the curse of dimensionality and improves the propor-
tion of benign models in the aggregated model. We then introduce a combination sampling method
for class representations on the server side using upper confidence methods to minimize the loss
of global class representations. Backdoor attacks tend to misclassify trigger-inserted samples as
specific classes, causing their class representations to deviate significantly from the global class rep-
resentation compared to benign models. Therefore, models are selected for aggregation based on the
difference between local and global class representations. This method not only excludes malicious
clients from participating in aggregation but also allows combining clean class representations to
reduce the loss of global class features. The workflow is shown in Fig. 1.

4.1 LOCAL MODEL PURIFICATION

It is challenging for servers to aggregate only benign models with 100% accuracy. As a result, the
global model and global representation can be contaminated to some extent. Especially in the later
stages of training, even a single backdoored model can compromise the global model. This com-
promised global model is then sent to clients in subsequent rounds, causing benign local models

4
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Figure 1: Overview of Grace. The client first downloads the global model from server. Once the
client receives the global model, it begins by applying the local initial model purification method
to eliminate the impact of the backdoor in the initial model. Following this, the client learns the
local class representation and model using local representation learning algorithm. After complet-
ing the local training, the client uploads the local class representations and model updates to AS.
Upon receiving these updates, server first selects the clients to participate in the aggregation using
representation combination sampling. It then aggregates the selected clients’ contributions to update
the global model and global class representations.

to become gradually poisoned as well. Existing defenses attempt to identify backdoor-related pa-
rameters during local training, subsequently perturbing or clipping them. However, due to the vast
local model parameter space, these defenses often mistakenly identify many benign parameters as
malicious, leading to a significant degradation in local model performance. To address this issue, we
propose a local initial model purification method to ensure that the local models of benign clients
remain unaffected by backdoors while also improving their accuracy. Specifically, we first use data
augmentation techniques to purify the initial local model and then apply local conditional mutual
information (CMI) constraints to guide the learning of local class representations.

Initial model purification. Typically, an attacker creates x′ by making trivial modifications (i.e.,
adding a trigger δ ) to the clean data x. The backdoor is inserted by training the model to learn the
mapping x′ → y′. Here, (x′,y′) represents the toxic data. If we can change the mapping from x′ → y′
to x′ → y, we can obtain a reliably clean model instead of a backdoor-infected one. This is because,
in this case, the model treats δ as an augmented feature and x′ as augmented clean data. In summary,
by using y instead of y′, we can turn the backdoor insertion process into a data augmentation process.
Ideally, fine-tuning the backdoor model with toxic data paired with its corresponding ground truth
labels (i.e., (x′,y)) as augmented data can eliminate the backdoor. However, in reality, since we
cannot get the actual backdoor triggers, we relax this process using data augmentation. Specifically,
we create an augmented dataset using existing data augmentation techniques, such as Mixup (Zhang
et al. (2018)). For Mixup, we can perform x̃i, j = λxi + (1− λ )x j and ỹi, j = λyi + (1− λ )y j for
λ ∈ [0,1]. Here, ỹi, j denotes a linear combination of the one-hot vectors corresponding to yi and y j.
The loss is defined as:

ℓmix(θ ,Dval) =
1

N2
val

Nval∑
i, j=1

Eλ∼Dλ
ℓ(ỹi, j, fθ (x̃i, j)) (3)

where Dλ is a distribution on [0,1]. In this work, we adopt the widely used Dλ -Beta distribution,
Beta(α,β ), where α,β > 0.

We observe that applying high-intensity local purification to the initial local model in each round
does not effectively eliminate the impact of backdoor attacks and significantly degrades the perfor-
mance of the main task. This situation can be likened to the human learning process: just as a child
needs to learn to crawl before walking and running, skipping the crawling stage can impede knee
development and adversely affect the child’s ability to walk. Similarly, the server-client communica-
tion process reflects the stages of the global model’s growth. In the early stages of communication,
the global model is not yet stable. If data augmentation is employed too early, prompting the global
model to learn mixed features, it may forget the data’s primary features, resulting in a decline in main
task accuracy that is difficult to recover. To mitigate this issue, we control the purification intensity
by adjusting the number of local purification rounds. Specifically, we define N pi = ri, where ri rep-
resents the number of client-server communication rounds. When the client-server communication
is in its early stages, the global model remains relatively weak, so we reduce the purification inten-
sity, allowing the model to learn from augmented data over fewer rounds. As the communication
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rounds increase, we gradually escalate the purification intensity, enabling the global model to adapt
to learning more complex features. Our experimental analysis compares uniform purification with
an increasing progressively purification intensity and shows that the global model achieves optimal
performance when N pi = ri.

Local representation learning. To enable the server to recognize benign models, clients need to
learn the class representations of their local data during local training. Inspired by Zhang et al.
(2023b), we accomplish this process based on conditional mutual information (CMI) representation
learning. Specifically, we enforce a constraint on local client updates, limiting the discrepancy
between each client’s local CMI Ii(z;xi|yi) and the global CMI I(z;x|yi). The local (global) CMI
quantifies the correlation between local (global) features and the input data xi given a specific label
yi. By integrating this information-theoretic constraint, the local class representation loss is defined
as Zhang et al. (2023b):

ℓCMI
i = I(z;x|yi)− Ii(z;xi|yi)

= Ep(x,yi)Ep(x|xi,yi)[KL[p(z|x) ∥ p(z|xi)],
(4)

where KL[p(z|x) ∥ p(z|xi)] represents the Kullback-Leibler (KL) divergence, indicating the class-
level feature alignment between p(z|x) and p(z|xi) for a given label yi. Eq. 4 effectively limits the
KL divergence between p(z|x) and p(z|xi), ensuring that the stochastic representations of the joint
and individual posteriors within the class remain consistent across clients.

In optimization theory, the L2-norm of a model parameter is frequently used to measure model
complexity. Similarly, we introduce an L2R on the class representation, rather than on the network
parameters. This serves to constrain the complexity of the class representation and further enhance
the stability of the local class representation. The regularizer is expressed as Nguyen et al. (2022a):

ℓL2R
i = Epi(x)

[
Ep(z|x)[||z||22]

]
≈ 1

Ni

Ni∑
n=1

||z(n)i ||22, (5)

where z(n)i is a single sample from p(z|x(n)i ).

Thus, the local optimization objective for client i is

ℓi = fi +α
L2RℓL2R

i +α
CMIℓCMI

i . (6)

4.2 REPRESENTATION COMBINATION SAMPLING

Global class representation loss. Accurately identifying malicious clients has always been a chal-
lenging problem in defending against backdoor attacks in FL. Existing defenses typically detect dis-
tinctiveness introduced by backdoor data from a model perspective. However, due to the curse of
dimensionality and model complexity, these defenses often struggle to identify backdoor models ef-
fectively. To address this issue, we design a metric called Global Class Representation Loss (GCRL)
to select benign models for aggregation based on class representations, rather than relying on the
model perspective. The specific definition is as follows:

GCRL(M)≜
C∑

c=1

KL[pn(z)||p(z)]. (7)

It is worth noting that we design GCRL with the same loss function as the local class representa-
tion loss. This design allows Grace to defend against backdoor attacks while also selecting local
models that enhance FL performance for aggregation. First, let’s explain why GCRL is effective in
defending against backdoors. GCRL measures the difference between local and global class repre-
sentations. For benign models, their local class representations are more similar to the global class
representations, resulting in a smaller difference. However, malicious clients have the additional
task of embedding backdoors, causing their class representations to consistently differ from those
of benign models during training. This leads to a larger difference between the class representations
of malicious clients and the global class representation. Therefore, using GCRL in the aggregation
process effectively excludes malicious models. Next, let’s discuss why GCRL can improve FL per-
formance. For a benign client, a smaller difference between its local and global class representations
suggests that the client’s local data is more balanced and that it has learned most of the class features.
Existing studies indicate that imbalances in local data classes degrade FL performance. Therefore,
using GCRL as a criterion for selecting benign clients helps improve the overall performance of FL.
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Combination sampling. To identify the most representative dataset DM, we aim to determine the
optimal subset M∗ by minimizing the GCRL, defined as follows:

M∗ ≜ argminM⊆{1,2,··· ,N}GCRL(M). (8)

The primary challenge lies in computational complexity. To search the exact optimal M∗, it’s neces-
sary to iterate through all possible scenarios to identify the lowest GCRL value. The computational
complexity scales as O

((N
M

)
×M2

)
, which becomes impractical as N grows large.

To handle the computational challenge, rather than treating M as a fixed set, we consider it as a
sequence of random variables M = {S1,S2, · · · ,Si, · · · ,SM}, each with a probability assignment. Es-
sentially, if M tends to have lower class representation loss, it should be more likely to be sampled.

Our strategy involves sequential element generation in M. Initially, we sample c1 based on the
probability P(S1 = s1). Subsequently, we sample s2 considering the conditional probability P(S2 =
s2|S1 = s1) to form M2 = {s1,s2}. This process continues, iteratively selecting clients, until we
construct M = {S1,S2, · · · ,SM}. In the following, we’ll define appropriate conditional probabilities
to align with our expectations in choosing clients.

We use Tk to denote the number of times a client k is selected. When the client k is selected in a
communication round, Tk increments by 1; otherwise, Tk remains unchanged. Our approach draws
inspiration from the combined upper confidence boundary (CUCB) algorithm (Chen et al. (2013))
and prior researches (Zhang et al. (2023c); Yang et al. (2021a)). The probability of selecting the first
client in the t-th round of communication is determined by:

P(S1 = s1) ∝
1

[GCRL(M1)]γ1
+λ

√
3ln t
2Ts1

,γ1 > 0. (9)

In the above equation, λ plays a crucial role in balancing exploitation and exploration. The second
term amplifies the likelihood of selecting clients that haven’t been sampled in previous communica-
tions. Following the selection of S1, the probability of sampling the second client is formulated as:

P(S2 = s2|S1 = s1) ∝

1
[GCRL(M1)]

γ2

1
[GCRL(M1)]

γ1 +λ

√
3ln t
2Ts1

,γ2 > 0. (10)

The probability of selecting the i-th client, where 2 < i ≤ M, is defined as follows:
P(Si = si|Si−1 = si−1, · · · ,S2 = s2,S1 = s1)

∝
[GCRL(Mi−1)]

γi−1

[GCRL(Mi)]γi
,γi−1,γi > 0.

(11)

In this sampling process, the ultimate probability of selecting M is denoted as P(S1 = s1,S2 =
s2, · · · ,SM = sM) = P(S1 = s1)× P(S2 = s2|S1 = s1) · · · × P(SM = sM|SM−1 = sM−1), · · · ,S2 =
s2,S1 = s1 ∝

1
[GCRL(M)]γM . Given that γM > 0, this aligns with our objective that M with a lower

value GCRL should have a higher sampling probability. The client has to align its local class repre-
sentation with clean global class representation. It raises a critical question: How can AS obtain a
comprehensive global class representation p(z|x) of each class without direct access to the client’s
raw data? Since clients are reluctant to disclose the raw data, we introduce the product of experts
(PoE) (Hinton (2002)), which decomposes the joint posterior into a product of individual posteriors.

p(z|x) = p(z|x1, · · · ,xm) ∝ τ p(z)
m∏

i=1

p(z|xi), (12)

where τ =
∏M

i=1 p(xi)
p(x1,··· ,xm)

indicates the degree of independence among clients, and p(z) represents a prior
distribution, often modeled as a spherical Gaussian.

Using PoE, a straightforward analytical solution arises when p(z|xi) takes the form of a diagonal
Gaussian distribution. Thus, we can obtain the product of Gaussian experts, which consists of mean
µ = (µ0Σ

−1
0 +

∑
i∈M µiΣ

−1
i )(Σ−1

0 +
∑

i∈M Σ
−1
i )−1 and covariance Σ = (Σ−1

0 +
∑

i∈M Σ
−1
i )−1, where

p(z|xi)∼N (µi,Σi) and p(z)∼N (µ0,Σ0).
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5 EXPERIMENT

Attack method. We assess our defense against three data-level backdoor attacks and an advanced
backdoor attack, following Lockdown’s (Huang et al. (2023b)) attack setup. The data-level attacks
include BadNets (Gu et al. (2017)), DBA (Chulin et al. (2020)), and Sinusoidal (Barni et al. (2019)).
Additionally, the advanced backdoor attack is Neurotoxin (Zhang et al. (2022)). Further details can
be found in Appendix A.3.
Defense baseline. We compare Grace with nine baselines, namely FedAvg (McMahan et al.
(2017)) without any defense, FLAME (Nguyen et al. (2022b)), FLTrust (Cao et al. (2021)), RFA
(Pillutla et al. (2022)), FedCPA (Han et al. (2023)), LeadFL (Zhu et al. (2023)) and Lockdown
(Huang et al. (2023b)). FedAvg serves as an undefended baseline to evaluate the effect of defense
on global model accuracy. All approaches are implemented based on open-source code.
Selection baseline. We utilize randomly selected FedAvg as our baseline and compare Grace with
three SOTA selection schemes: DivFL (Balakrishnan et al. (2022)), FedCBS (Zhang et al. (2023c)),
and Fed-cucb (Yang et al. (2021b)).
Evaluation metrics. We primarily use the primary task accuracy (ACC) and the attack success
rate (ASR) of the global model as evaluation metrics. To assess the effectiveness of excluded, we
measure the proportion of malicious models (PMM) participating in aggregation and the accuracy
of poison samples (PACC) as clean labels. All experiments are conducted using two Nvidia 4090
GPUs. Due to the space limit, we moved a detailed description of the experiment setup and addi-
tional results to the Appendix.

5.1 MAIN EVALUATION

Defense effectiveness. In our main evaluation, we utilize CIFAR-10 as the default dataset and
BadNets as the default attack for assessing the performance of defenses against backdoor attacks.

The defense effectiveness results for communication rounds are depicted in Fig. 2. Grace exhibits
the strongest robustness in both IID and non-IID attack settings. Specifically, the ASR of Grace
(indicated by the red line) consistently approaches 0% in both settings, while its ACC remains
consistently above 80% after 100 rounds. In Figs. 2(b) and (d), Grace exhibits a 100% ASR in the
initial rounds due to the RCS method requiring each client to participate in aggregation once at the
start of training. Consequently, there are certain rounds with a higher number of attackers, leading to
a 100% ASR. However, after all clients have participated in aggregation, the ASR tends to stabilize,
particularly in the IID setting, where it remains close to 0%. Compared to FedAvg, Grace reduces the
ASR by 98% in IID settings and by 93% in non-IID settings. Besides, the learning curves of existing
defenses for both ACC and ASR show significant fluctuations, indicating instability. Specifically,
in Figs. 2(b) and (d), the ASR learning curves of existing defenses vary widely, ranging from 0 to
100, with more pronounced instability in non-IID settings. In the IID setting, only FedCPA’s ASR
approaches that of Grace; however, FedCPA’s ACC shows substantial fluctuations in the non-IID
setting, indicating a lack of stability.

(a) ACC in IID setting (b) ASR in IID setting (c) ACC in non-IID setting (d) ASR in non-IID setting
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Figure 2: ACC and ASR under different defense.

Selection effectiveness. For evaluating the performance of the client selection scheme, which in-
cludes the comparison term of feature distribution skew, we utilize FEMNIST, while all other evalu-
ations are conducted using CIFAR-10. To evaluate the effectiveness of the selection, we set the num-
ber of malicious clients to 0. We assess Grace under IID and five heterogeneous settings: quantity-
based labeling imbalance (Label#C2), distribution-based labeling imbalance (non-IID), noise-based
feature imbalance (Feature-N), real-world feature imbalance (Feature-R), and quantity imbalance
(Quantity). Feature-R is constructed using the FEMNIST dataset, while CIFAR-10 is used for all
other cases. As shown in Table 1, the non-IID and Label#C2 settings are more complex than the
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other partitioning methods, making federated learning more challenging. In particular, under the
Label#C2 setting, the ACC of FedAvg is only 54.83%. In comparison to existing solutions, Grace
exhibits superior ACC in more complex settings. Specifically, Grace improves ACC by 11.24%
and 17.31% over FedAvg for the non-IID and Label#C2 settings, respectively. Additionally, Grace
achieves optimal ACC across four heterogeneous settings, while FedCBS attains optimal ACC in
only two settings.

To demonstrate that Grace’s selection strategy can effectively exclude malicious models during ag-
gregation, we present PMM included in each round of aggregation under two complex heteroge-
neous settings: non-IID and Label#C2. Among existing backdoor defense schemes, only FLAME
selectively aggregates benign clients. Additionally, to highlight the limitations of using existing
client selection methods for defending against backdoor attacks, we show the PMM included in
each round of aggregation for these methods. As shown in Fig. 3, the PMM in the FLAME scheme
gradually rises to 0.6, indicating that identifying malicious clients based solely on the similarity
of local model parameters is not reliable. For existing client selection schemes such as Fed-cucb,
Fed-CBS, and DivFL, the proportion of malicious clients fluctuates around 0.4, which corresponds
to the preset ratio of malicious clients to the total number of clients. In contrast, Grace maintains
a proportion of malicious clients below 0.2 in most rounds, demonstrating its ability to efficiently
exclude malicious models during aggregation.

Table 1: ACC(%) under different data partitioning
methods
Partitioning FedAvg Fed-cucb DivFL Fed-CBS Grace

IID 86.17 86.82 87.54 88.41 88.66
non-IID 74.33 75.46 82.63 83.41 86.00

Lable#C2 54.83 55.73 67.84 69.32 72.14
Feature-N 83.16 82.51 84.98 85.63 85.46
Feature-R 87.51 88.35 89.16 90.25 89.86
Quantity 87.37 87.45 89.98 90.05 90.45
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Figure 3: Excluded effectiveness.

Defense effectiveness under varying attacker ratio. As shown in the Fig. 4, Grace’s ASR is
significantly lower than existing defenses for different attacker ratios. Meanwhile, Grace’s ACC is
significantly higher than FedAvg, which is not achieved by existing defenses. Notably, the variations
in Grace’s ACC and ASR are minimal even as the attacker ratio increases, demonstrating Grace’s
robustness. We then observe the existing defenses, whose ACC fluctuates significantly as the number
of attackers increases in the non-IID setting. Besides, the ASR of the existing defenses, both in the
IID and non-IID settings, shows jumps as the number of attackers changes. This further highlights
the advancement of Grace.

(a) ACC in IID setting (d) ASR in non-IID setting(c) ACC in non-IID setting(b) ASR in IID setting
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Figure 4: ACC and ASR under different attacker ratio.

Defense effectiveness under varying poison ratio As depicted in Table 2, Grace’s ASR is sig-
nificantly lower than the existing defenses, and its ACC is significantly higher than the existing
defenses for varying poisoning rates. Furthermore, Grace’s ACC and ASR remain stable as the poi-
soning rate increases, demonstrating its robustness to different levels of poisoning. As the poisoning
rate increases, the ACC of FedAvg exhibits a declining trend. Its decline is attributed to the reduc-
tion in benign data, which diminishes the accuracy of the local model, consequently leading to a
decrease in the ACC of the global model. Grace’s ACC also shows this pattern, but the decline in
Grace is very slight, less than 1%. In contrast, the ACC of existing defenses does not follow this pat-
tern because their defensive processes tend to sacrifice ACC. Existing defenses do not exhibit a clear
pattern of ASR change as the poisoning rate increases, indicating their difficulty in accurately iden-
tifying malicious parameter spaces or models, leading to inconsistent performance. Moreover, in
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IID settings, only FLAME and LeadFL consistently reduce ASR below 50%. However, in non-IID
settings, none of the existing defenses consistently achieve an ASR below 50%.

Table 2: Defense effectiveness under different poison ratio p

Methods
(IID)

ACC(%) ↑ ASR(%) ↓
p=0.1 p=0.3 p=0.5 p=0.8 p=0.1 p=0.3 p=0.5 p=0.8

FedAvg (McMahan et al. (2017)) 78.82 78.43 78.18 75.66 100 99.99 99.99 97.48
Lockdown (Huang et al. (2023b)) 76.94 76.16 76.50 75.62 48.92 58.57 74.91 88.61

FedCPA (Han et al. (2023)) 78.23 76.52 77.39 75.88 93.79 91.03 12.21 97.05
RFA (Pillutla et al. (2022)) 78.65 78.16 77.91 75.38 78.00 82.97 94.88 85.41
LeadFL (Zhu et al. (2023)) 75.22 76.07 76.14 74.01 42.7 36.1 31.13 32.8
FLTrust (Cao et al. (2021)) 74.76 68.85 73.46 73.14 52.9 22.7 77.01 38.9

FLAME (Nguyen et al. (2022b)) 73.38 73.43 73.81 74.72 25.32 29.71 37.72 44.46
Grace 88.77 88.58 88.62 88.36 1.33 1.21 1.24 1.47

Methods
(non-IID)

ACC(%) ↑ ASR(%) ↓
p=0.1 p=0.3 p=0.5 p=0.8 p=0.1 p=0.3 p=0.5 p=0.8

FedAvg (McMahan et al. (2017)) 74.22 73.21 73.41 71.43 100 100 82.52 97.99
Lockdown (Huang et al. (2023b)) 72.66 73.27 72.91 70.95 52.14 67.72 81.79 89.26

FedCPA (Han et al. (2023)) 68.21 66.02 51.38 33.65 85.93 33.12 46.18 78.13
RFA (Pillutla et al. (2022)) 62.73 59.44 59.83 56.19 59.62 54.38 95.85 99.6
LeadFL (Zhu et al. (2023)) 71.96 73.06 71.41 70.13 53.11 61.83 77.50 71.67
FLTrust (Cao et al. (2021)) 65.33 68.91 66.97 66.63 31.00 43.30 59.31 51.90

FLAME (Nguyen et al. (2022b)) 68.26 67.09 68.85 64.20 46.7 58.20 41.17 52.98
Grace 85.93 85.86 85.83 85.64 4.41 4.21 4.95 6.53

Defense effectiveness under different data partitioning methods. In addition to utilizing the
Dirichlet distribution for client data partitioning, we delve into other strategies to partition client
data in a manner that is more closely with practical scenarios. Detailed descriptions of these methods
are provided in the Appendix A.4. The results are shown in Table 3. They demonstrate that Grace
achieves SOTA defense under various data partitioning strategies, consistently maintaining defense
performance below 5%. We observe that the ACC of FedAvg drops to 52.34% in the Label#C=2
setting, while the ACCs of existing defenses are all below 45%. Compared to FedAvg, Grace shows
an improvement of 19.55% in ACC. Although existing defenses like Foolsgold, RFA, and FLTrust
reduce ASR to 0% under the Label#C=2 setting, their ACCs are below 30%.

Table 3: Defense effectiveness under different data partitioning methods

Methods ACC(%) ↑ ASR(%) ↓
IID non-IID Label#C=2 Quantity IID non-IID Label#C=2 Quantity

FedAvg (McMahan et al. (2017)) 78.18 73.41 52.34 86.91 99.99 82.52 99.81 100.0
Lockdown (Huang et al. (2023b)) 76.50 72.91 51.91 85.79 74.91 81.79 61.31 83.20

FedCPA (Han et al. (2023)) 77.39 51.38 19.34 85.19 12.21 46.18 50.44 97.15
RFA (Pillutla et al. (2022)) 77.91 59.83 17.41 86.62 94.88 95.85 0 97.67
LeadFL (Zhu et al. (2023)) 76.14 71.41 51.41 84.50 31.13 77.50 69.04 45.22
FLTrust (Cao et al. (2021)) 73.46 66.97 26.04 62.12 77.01 59.31 0 23.92

FLAME (Nguyen et al. (2022b)) 73.81 68.85 37.38 59.33 37.72 41.17 19.8 16.80
Grace 88.62 85.83 71.89 89.64 1.24 4.95 4.37 2.94

6 CONCLUSION

In this study, we propose a client selection method that supports backdoor attack defense, address-
ing the conflict between existing client selection strategies and backdoor defenses. Specifically, we
propose a local model purification method on the client side to enhance the robustness of the local
models against attacks. On the server side, we develop representation combination sampling meth-
ods to select clients for aggregation based on local data class representations, effectively excluding
malicious clients while also identifying high-quality ones. Our experimental results demonstrate
that Grace not only achieves SOTA defense but also improves the performance of the global model,
marking a significant advancement over existing defenses that tend to degrade model performance.
Looking ahead, we acknowledge the potential for attackers to optimize their strategies based on data
representations, underscoring the need for further investigation in our future research endeavors.
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Robustness of secure federated learning. In 2023 IEEE Symposium on Security and Privacy (SP),
pp. 453–476. IEEE, 2023.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial intelli-
gence and statistics, pp. 1273–1282. PMLR, 2017.

Lokesh Nagalapatti and Ramasuri Narayanam. Game of gradients: Mitigating irrelevant clients in
federated learning. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35,
pp. 9046–9054, 2021.

A Tuan Nguyen, Philip Torr, and Ser Nam Lim. Fedsr: A simple and effective domain generalization
method for federated learning. Advances in Neural Information Processing Systems, 35:38831–
38843, 2022a.

Thien Duc Nguyen, Phillip Rieger, Huili Chen, Hossein Yalame, Helen Möllering, Hossein Ferei-
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A IMPLEMENTATION DETAILS

A.1 ARCHITECTURE OF GLOBAL MODEL

We conduct experiments on three datasets: CIFAR10, CIFAR100, Fashion-MNIST (FMNIST) and
FEMNIST. In cases of CIFAR10 and CIFAR100, ResNet18 serves as the backbone architecture.
For FMNIST and FEMNIST, we use MLP. Tables 4 and 5 show the global model architecture on the
FMNIST and FEMNIST datasets. Other datasets use the ResNet18 architecture.

Table 4: MLP architecture for FedAvg

Layer Type Size

Fully Connected + ReLU 784 × 1024
Fully Connected + ReLU 1024× 1024

Fully Connected 1024 × 10

Table 5: MLP architecture Zhang et al. (2023b)
for Grace

Layer Type Size

Fully Connected + ReLU 784 × 1024
Fully Connected + ReLU 1024× 1024

Fully Connected 1024× 2V
Fully Connected V × 10

To capture local data representations, we follow the approach of FedCR (Zhang et al. (2023b))
by integrating a fully-connected layer to produce 2V vectors, detailed in Table 5. Additionally, in
ResNet18, we also include an extra fully connected layer before the original final layer to generate
2V vectors.

A.2 PARAMETER SETTING FOR COMPARED BASELINE

We compare Grace with nine baselines, namely FedAvg (McMahan et al. (2017)) without any de-
fense, FLAME (Nguyen et al. (2022b)), FLTrust (Cao et al. (2021)), RFA (Pillutla et al. (2022)),
FedCPA (Han et al. (2023)), LeadFL (Zhu et al. (2023)) and Lockdown (Huang et al. (2023b)). Fe-
dAvg serves as an undefended baseline to evaluate the effect of defense on global model accuracy.
Specific parameters for each approach are as follows: FLTrust: The size of the dataset on the server-
side is set to 200. LeadFL: The regularization rate α is set to 0.4 and clipping bound q is set to
0.2. Lockdown: The agreement threshold is set to 50 and overall sparsity is 0.25. For our defense,
we set the loss of local optimization objective for both the αL2R and the αCMI coefficients to 0.001.
We use 2 local iterations, an SGD optimizer with a learning rate of 0.1, and a batch size of 64. In
the absence of a statement, we have a default attacker ratio of 0.5, a poisoning rate of 50%, and the
Dirichlet distribution parameter is set to α = 0.5.

A.3 ATTACK METHOD

As mentioned in the main paper, we classify the attack methods into two categories, following
Lockdown (Huang et al. (2023b)): data-level and advanced backdoors. Here, we provide a brief
description of the backdoor attacks modeled in the FL setting.

Data-level backdoor. First, we use three data-level backdoors, as detailed below:

• BadNets proposed in (Gu et al. (2017)), is the earliest and simplest backdoor attack. In
this attack, the attacker only needs to add identical backdoor triggers to the local data of
compromised clients and change the labels of these tainted samples to the target labels.
During the inference phase, the attacker can embed backdoor triggers into the test samples,
causing the attacked model to output the specified target labels determined by the attacker,
regardless of the original labels of the test samples.

• DBA proposed in Chulin et al. (2020) is a tailored attack aimed at FL systems. In DBA, the
attacker divides the backdoor trigger into multiple local patterns and distributes these pat-
terns to different clients to poison their local data. During the inference phase, the attacker
embeds the trigger into the test sample they wish to manipulate. In our evaluation, we di-
vided the ’plus’ trigger into four local patterns and allocated each pattern to a compromised
client.
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• Sinusoidal proposed in Barni et al. (2019) works similarly to BadNets by leveraging the
same trigger across all malicious clients to contaminate their local data. However, the
backdoor trigger utilized in this attack is a horizontal sinusoidal signal defined by v(i, j) =
∆sin(2π j f/m), where 1 ≤ j ≤ m,1 ≤ i ≤ l, for a given frequency f . In our evaluation, we
adopt the default hyperparameters of ∆ = 20 and f = 6 to execute this attack.

Advanced backdoor. Then, we adopt Neurotoxin to as an advanced backdoor.

• Neurotoxin proposed in Zhang et al. (2022) presents a method for persistent attacks in
scenarios where the attacker can only participate in a limited number of rounds. The key
concept of Neurotoxin involves enabling malicious clients to project their gradient updates
to coordinates that are rarely updated by other benign clients. By doing so, the updates
from malicious clients are predominantly embedded in coordinates that are less influenced
by benign updates. Consequently, we classify this attack as an advanced attack. In our
evaluations, we set its hyperparameter, the mask ratio value, to 0.25.

A.4 DATA PARTITIONING STRATEGY

In a comprehensive analysis, Kairouz et al. (2021) summarizes non-IID data from a distribu-
tional perspective. It focuses on local data distribution represented as P(xi,yi)=P(xi|yi)P(yi)
or P(xi,yi)=P(yi|xi)P(xi). This study categorizes five non-IID cases: (1) label distributions
skew(different P(yi)), (2) feature distribution skew (different P(xi)), (3) same label but different
features (P(xi|yi) differs), (4) same features but different labels (P(yi|xi) differs), and (5) quantity
skew (same P(xi,yi) but different data volumes). In this paper, we focus on the common labeling
skews and quantity skews in non-IID cases.

Label distribution skew. In label distribution skew, there’s a variance in label distributions P(yi)
among different clients, a prevalent occurrence in real-world scenarios. To effectively model la-
bel distribution skew, we introduce two distinct settings of label imbalance: quantity-based label
imbalance and distribution-based label imbalance.

Quantity-based label imbalance involves each party possessing data samples with a fixed number
of labels. Initially introduced in the experiments of FedAvg (McMahan et al. (2017)), this setup
divides data samples with identical labels into subsets, assigning each participant only two subsets
with different labels. Subsequently, similar setups have been adopted in various other studies such
as Li et al. (2020). In an extreme scenario, Yu et al. (2020) explores a scenario where each client
possesses data samples with a single label. We summarize these partitions above in a general way.
Suppose each client holds data samples encompassing k different labels. Initially, we randomly
assign k distinct label classes to each client. Then, for each label’s samples, we evenly and randomly
distribute them across each client. This approach ensures a fixed number of labels among parties,
with no overlap between samples from different parties. For brevity, we denote this division strategy
as C = k. In our specific evaluation, we set k to 2, denoting this heterogeneity as ‘Label#C=2’.

Distribution-based label imbalance offers another method to simulate label imbalance, wherein each
client is assigned a proportion of each label sample using the Dirichlet distribution. This distribution,
a prevalent prior in Bayesian statistics, is well-suited for modeling real data distributions. Our
specific method involves conducting pk ∼ Dir(α) sampling and allocating the pk, j proportion of
class k samples to client C j. Here, Dir(·) represents the Dirichlet distribution, and α represents a
concentration parameter (α > 0). This partitioning strategy has seen application in various recent
studies (Yan et al. (2023); Nguyen et al. (2022a); Zhang et al. (2023b)). An advantage of this
approach lies in its flexibility to adjust the imbalance level through the concentration parameter α .
Setting α to a smaller value amplifies the imbalance in the partition. Since most existing studies
adopt this approach to simulate heterogeneous scenarios, we use ‘non-IID’ to represent the data
distribution simulated using the Dirichlet distribution. During the specific experiments, we simulate
partitioning strategy using α = 0.8, α = 0.5, and α = 0.2. The label distribution under these three
strategies using 10 clients is shown in Fig. 5. In the specific experiment, we use the number of
clients of 100.

Feature Distribution Skew. In feature distribution skew, while the knowledge P(yi|xi) remains
constant, the feature distribution P(xi) varies. For instance, a cat may exhibit different fur colors
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(a) (b) (c)

Figure 5: Distribution-based label imbalance partition. It is an illustration demonstrating
distribution-based label imbalance partition on the CIFAR-10 dataset with α = 0.8, α = 0.5 and
α = 0.2. Each rectangular section represents the number of data samples belonging to a specific
class allocated to a particular client.

and patterns across different regions. To model this variance, we introduce two settings for feature
distribution skew: noise-based feature imbalance and real-world feature imbalance.

In noise-based feature imbalance, we begin by uniformly dividing the entire dataset among multiple
clients. Each client’s local dataset undergoes the addition of varying levels of Gaussian noise to
simulate diverse feature distributions. The choice of Gaussian noise stems from its widespread
use, particularly in image processing (Zhang et al. (2017)). Specifically, for a user-defined noise
level σ , we introduce noise x̂ ∼ Gau(σ · i/N) to client i, where Gau(σ · i/N) represents a Gaussian
distribution with a mean of 0 and variance of σ · i/N. Modifying σ allows clients to adjust and
amplify the disparities in characteristics among clients.

In real-world feature imbalance, the EMNIST dataset (Cohen et al. (2017)) comprises handwritten
characters and numbers sourced from various authors. Following a similar approach as outlined in
Caldas et al. (2018), distributing data from different authors among distinct clients seems intuitive.
Given that authors exhibit varying handwriting characteristics (e.g., stroke width, tilt), it naturally
exists skewness in feature distribution across clients. Specifically, for the digital images in EMNIST,
we evenly and randomly allocate authors (and their respective digits) to each client. As each client
receives data from different authors, the feature distribution inherently differs among clients. Similar
to the approach detailed in Caldas et al. (2018), we denote this federated dataset as FEMNIST.

Quantity Skew. In terms of quantity skew, the size of the local dataset |Di| varies among clients.
Although the data distribution remains consistent across parties, exploring the impact of quantity
imbalance proves insightful. Similar to the distribution-based label imbalance setting, we employ
the Dirichlet distribution to allocate varying quantities of data samples. We sample q ∼ DirN(βdir)
to assign q j,p as a proportion of the total data samples to client j. The parameter βdir serves as
a control for the level of imbalance in quantity skew. For simplicity, we denote this allocation as
q ∼ DirN(βdir).

A.5 COMPLETE ALGORITHM

Initial model purification algorithm. Algorithm 1 is shown the process of initial model purifi-
cation on the client. Upon receiving the global model, the client first initializes the local model to
the global model, wi,0 = wt (line 1). The client then uses Eq. 3 on a small portion of the augmented
dataset Dval to remove backdoor effects from the local model, updating wi,0 (lines 3-5). Finally, the
wi,0 is returned to update the local initial model (line 7).

Local representation learning algorithm. Algorithm 2 shows the complete algorithm for local
representation learning. For each client i, it first receives the global class representation µc

t ,Σ
c
t and

global model parameters wt , and then initializes its local model to the global model wi,0 = wt (in
Line 2). Then, we train its local model by minimizing the local objective function using a stochastic
gradient algorithm (in Lines 4 and 5). Finally, the client uploads the local class representation
µc

i,t+1,Σ
c
i,t+1 and local model updates wi,t+1 to the server (in line 8).
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Algorithm 1 Initial model purification (IMP)

Require: global model parameters wt , augmented dataset Dval
1: for each client i ≤ N in parallel do
2: initialize wi,0 = wt
3: for each local epoch j = 1,2,· · · ,N pi do
4: update wi,0 by SGD by Eq. 3
5: end for
6: end for
7: return wi,0

Algorithm 2 Local representation learning algorithm

Require: global class representation µc
t ,Σ

c
t , and global model parameters wt

1: for each client i ≤ N in parallel do
2: receive µc

t ,Σ
c
t ,wt and initialize wi,0 = wt

3: for each local epoch j = 1,2,· · · ,ti do
4: update wi by SGD as (6)
5: wi, j = wi, j−1 −η∇wi, j−1ℓi
6: end for
7: end for
8: return local class representation µc

i,t+1,Σ
c
i,t+1 and local model updates wi,t+1

Representation combination sampling algorithm. Algorithm 3 shows the comprehensive pro-
cess of representation combination sampling on the server side. Initially, the server receives local
class representations and local model updates from clients (in Line 3). Subsequently, it tracks the
frequency of each client’s selection: if a client is part of the set M, then Ts is incremented by 1
(in Line 6), otherwise, Ts remains unchanged (in Line 8). The set M is then updated utilizing the
method detailed in Section 4.2 (in Line 11). Once the selection of the set M is completed, the local
models of the clients indexed in the set are aggregated (in Line 12). Besides, the global class repre-
sentations are updated based on the local class representations of these selected clients (in Line 13).
Finally, AS sends the global model and class representations to clients (in Line 15).

Algorithm 3 Representation combination sampling algorithm

1: // client selection
2: while t ≤ T do
3: receive µc

t ,Σ
c
t ,wt

4: for i = 1,2, · · · ,N do
5: if i ∈M then
6: Ts = Ts +1
7: else
8: Ts = Ts
9: end if

10: end for
11: Update M using our proposed sampling strategy in Section 4.2
12: wt =

1
|M|

∑
i∈M wi,t

13: update the global class representation as (12)
14: end while
15: return local class representation µc

i ,Σ
c
i and local model updates wi

B ADDITIONAL RESULTS

B.1 DEFENSE AGAINST DIFFERENT BACKDOOR

We assess the effectiveness of Grace against various types of backdoor attacks, including three data-
level backdoors: BadNets (Gu et al. (2017)), DBA (Chulin et al. (2020)), and Sinusoidal (Barni et al.
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(2019)), as well as the advanced backdoor attack, Neurotoxin (Zhang et al. (2022)). The experimen-
tal results are presented in Fig. 6. These results demonstrate that Grace performs effectively across
different types of backdoor attacks and at varying levels of non-IID. Specifically, the ASR of Grace
remains below 10% across all attack types. Furthermore, the different attacks have minimal impact
on Grace’s ACC, highlighting its stability.

(a) ACC under different non-IID extent (b) ASR under different non-IID extent
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Figure 6: Defense against different backdoor.

B.2 GENERALIZATION TO VARYING DATASETS

In Fig. 7, we present the results of Grace’s evaluation on the CIFAR-10, CIFAR-100, FMNIST,
and FEMNIST datasets, using a non-IID parameter of α = 0.5. The results indicate that Grace’s
defense performance remains consistent across different datasets. Specifically, Grace’s ACC on all
four datasets shows minimal degradation under the non-IID setting, and the ASR remains below
10% across all datasets. These findings further demonstrate that Grace effectively selects clients for
aggregation, enhancing FL performance.

(a) ACC on different datasets (b) ASR on different datasets

IID non-IID

A
CC
(%
)

0

20

40

60

80

100

Datasets
CIFAR10CIFAR100 FMNIST FEMNIST

IID non-IID

A
SR
(%
)

0

2

4

6

Datasets
CIFAR10CIFAR100 FMNIST FEMNIST

Figure 7: Generalization to varying datasets.

B.3 ABLATION AND HYPERPARAMETER SENSITIVITY ANALYSIS.

B.3.1 ABLATION STUDY

Grace consists of three main components: Initial Model Purification (IMP), Local Representation
Learning (LRL), and Representation Combination Sampling (RCS). Since RCS relies on the results
of LRL, it must be combined with LRL for effective client selection. To evaluate the effectiveness of
each component, we evaluate them individually and in combination, and the results are summarised
in Table 6. We find that the ASR of the combination without IMP reaches more than 40%. This
indicates that the IMP component is effective against backdoor attacks. In addition, we observe
that combining LRL with IMP or RCS further reduces the ASR and improves the ACC, but the
effectiveness of LRL alone is not significant. Therefore, all three components of our design have
the effect of improving model accuracy and defending against backdoor attacks. However, neither
alone nor in combination can they achieve the best results. The best performance can only be shown
when all three components are present.
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Table 6: Effectiveness of each component.

Combination IID non-IID(α=0.2)

ACC(%) ↑ ASR(%) ↓ ACC(%) ↑ ASR(%) ↓
IMP 84.11 40.67 76.41 45.83
LRL 82.32 89.35 75.25 85.62

IMP+LRL 85.24 37.83 77.88 43.28
LRL+RCS 84.72 68.92 76.21 50.35

Grace 88.62 1.24 78.81 5.21

B.3.2 HYPERPARAMETER SENSITIVITY ANALYSIS

Sampling ratio. As an initial conjecture, we believe that the sampling ratio of clients participat-
ing in aggregation has a minor impact on Grace’s defense performance but improves the accuracy of
the global model. A higher sampling rate implies more clients participating in aggregation, which
should enhance the global model’s accuracy. To validate our conjecture, we evaluate Grace’s per-
formance at different sampling rates {0.2, 0.3, 0.5}. The experimental results are summarized in
Table 7. The results demonstrate that the ACC of the global model indeed improves with increas-
ing sampling rates, with more evident improvements in the IID setting compared to the non-IID
setting. Moreover, Grace’s defense performance remains stable, with the ASR consistently below
10%. Thus, the experimental results confirm our conjecture that Grace can enhance the global
model’s accuracy at different sampling rates with minimal impact on its defense performance.

Table 7: Effectiveness of different sampling rates.

Sampling ratio IID non-IID

ACC(%) ↑ ASR(%) ↓ PMM ↓ ACC(%) ↑ ASR(%) ↓ PMM ↓
0.2 88.62 1.24 0.132 85.83 4.95 0.141
0.3 84.57 8.03 0.141 82.71 6.23 0.140
0.5 85.38 7.27 0.156 83.68 8.27 0.173

Dimension of the local class representations. The local class representation dimension can be
interpreted as the degree of compression of local data features. A lower dimension implies greater
compression, and vice versa. We evaluate two dimensions, 256 and 512, under different data parti-
tion methods, and the experimental results are presented in Table 8. Interestingly, we observe that
the representation dimension does not significantly impact Grace’s performance. Specifically, while
the ACC marginally improves in IID, non-IID (α = 0.8), and Label#C=2 scenarios, it experiences a
slight decrease in non-IID (α = 0.5) and non-IID (α = 0.2) scenarios. However, these changes are
minimal in magnitude. Thus, the dimensionality parameter does not significantly affect the stability
of Grace.

Table 8: Impact of dimension of the local class representations.

Partitioning strategy 512 256

ACC(%) ↑ ASR(%) ↓ ACC(%) ↑ ASR(%) ↓
IID 89.91 1.12 88.62 1.24

non-IID(α=0.8) 86.44 2.69 86.49 2.22
non-IID(α=0.5) 85.42 4.19 85.83 4.95
non-IID(α=0.2) 78.62 8.96 78.81 5.21

Label#C=2 72.04 4.53 71.89 4.37

Purification intensity. To demonstrate the effectiveness of the local purification approach in the
proposed scheme, we compare ACC, ASR, and PACC of the global model under four different purifi-
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cation intensities: N pi = ri, N pi = 0.5 ∗ ri,N pi = 0.25 ∗ ri and uniform intensity. We also examine
the proportion of malicious models. In the uniform intensity scenario, each client uses the same
number of purification rounds during every client-server interaction, which we set to 200 rounds.
As shown in Fig. 8(a) and (c), uniform purification significantly degrades the performance of the
global model, aligning with our previously discussed results. In contrast, at the purification intensity
corresponding to the number of interaction rounds, the global model consistently achieves about
80% ACC in all cases. A combined analysis of Fig. 8(a) to (d) shows that all four metrics perform
optimally when the purification intensity is set to N pi = ri. This further verifies the effectiveness of
the proposed method.
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Figure 8: Effectiveness of the local purification.
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