
Mastering Atari Games with Limited Data

Weirui Ye∗ Shaohuai Liu∗ Thanard Kurutach† Pieter Abbeel† Yang Gao∗‡
∗Tsinghua University, †UC Berkeley, ‡ Shanghai Qi Zhi Institute

A Appendix

A.1 Models and Hyper-parameters

As for the architecture of the networks, there are three parts in our model pipeline: the representation
part, the dynamics part, and the prediction part. The architecture of the representation part is as
follows:

• 1 convolution with stride 2 and 32 output planes, output resolution 48x48. (BN + ReLU)
• 1 residual block with 32 planes.
• 1 residual downsample block with stride 2 and 64 output planes, output resolution 24x24.
• 1 residual block with 64 planes.
• Average pooling with stride 2, output resolution 12x12. (BN + ReLU)
• 1 residual block with 64 planes.
• Average pooling with stride 2, output resolution 6x6. (BN + ReLU)
• 1 residual block with 64 planes.

, where the kernel size is 3× 3 for all operations.

As for the dynamics network, we follow the architecture of MuZero [7] but reduce the residual blocks
from 16 to 1. Furthermore, we add an extra residual link in the dynamics part to keep the information
of historical hidden states during recurrent inference. The design of the dynamics network is listed
here:

• Concatenate the input states and input actions into 65 planes.
• 1 convolution with stride 2 and 64 output planes. (BN)
• A residual link: add up the output and the input states. (ReLU)
• 1 residual block with 64 planes.

In the prediction part, we use two-layer MLPs with batch normalization to predict the reward, value,
or policy. Considering the stability of the prediction part, we set the weights and bias of the last
layer to zero in prediction networks. As for the reward prediction network, it predicts the sum of the
rewards, namely value prefix: rt, ht+1 = R(ŝt+1, ht), where rt is the predicted sum of rewards, h0

is zero-initialized and hidden size of LSTM is 512. The architecture of the value prediction network
is as follows:

• 1 1x1convolution and 16 output planes. (BN + ReLU)
• Flatten.
• LSTM with 512 hidden size. (BN + ReLU)

∗{ywr20, liush20}@mails.tsinghua.edu.cn, gaoyangiiis@tsinghua.edu.cn
†{thanard.kurutach, pabbeel}@berkeley.edu

35th Conference on Neural Information Processing Systems (NeurIPS 2021), Sydney, Australia.

• 1 fully connected layers and 32 output dimensions. (BN + ReLU)

• 1 fully connected layers and 601 output dimensions.

The horizontal length of the LSTM during training is limited to the unrolled steps lunroll = 5, but it
will be larger in MCTS as the dynamics process can go deeper. Therefore, we reset the hidden state
of LSTM after ζ = 5 steps of recurrent inference, where ζ is the valid horizontal length.

The design of the reward and policy prediction networks are the same except for the dimension of the
outputs:

• 1 residual block with 64 planes.

• 1 1x1convolution and 16 output planes. (BN + ReLU)

• Flatten.

• 1 fully connected layers and 32 output dimensions. (BN + ReLU)

• 1 fully connected layers and D output dimensions.

, where D = 601 in the reward prediction network and D is equal to the action space in the policy
prediction network.

Here is the brief introduction of the training pipeline, taking one-step rollout as an example.

st = H(ot)

st+1 = H(ot+1)

ŝt+1 = G(st, at)
vt = V(st)
pt = P(st)

rt, ht+1 = R(ŝt+1, ht) = R(G(st, at), ht)

(1)

, where H is the representation network, G is the dynamics network, V is the value prediction network,
P is the policy prediction network, R is the reward (value prefix) prediction network. ot, st, at are
observations, states and actions. ht is the hidden states in recurrent neural networks.

Here is the training loss, taking one-step rollout as an example:

Lsimilarity(st+1, ŝt+1) = L2(sg(P1(st+1)), P2(P1(ŝt+1)))

Lt(θ) = L(ut, rt) + λ1L(πt, pt) + λ2L(zt, vt)
+ λ3Lsimilarity(st+1, ŝt+1) + c||θ||2

L(θ) = 1

lunroll

lunroll−1∑
i=0

Lt+i(θ)

(2)

, where L is the total loss of the unrolled lunroll steps, L1 is the Cross-Entropy loss, and L2 is the
negtive cosine similarity loss. Besides, P1 is a 3-layer MLP while P2 is a 2-layer MLP. The dimension
of the hidden layers is 512 and the dimension of the output layers is 1024. We add batch normalization
between every two layers in those MLP except the final layer. sg(P1) means stopping gradients.

We stack 4 historical frames, with an interval of 4 frames-skip. Thus the input effectively covers
16 frames of the game history. We stack the input images on the channel dimension, resulting in a
96 × 96 × 12 tensor. We do not use any extra state normalization besides the batch norm and we
choose reward clipping to keep better scales in the searching process.

Generally, compared with MuZero [7], we reduce the number of residual blocks and the number
of planes as we find that there is no capability issue caused by much smaller networks in our
EfficientZero with limited data. In another word, such a tiny network can acquire good performance
in the limited setting.

For other details, we provide hyper-parameters in Table 1. It is notable that we train the model for
120k steps where we only collect data during the first 100k steps. In this way, the latter trajectories
can be fully used in training. Besides, the learning rate will drop after every 100k training steps (from
0.2 to 0.02 at 100k).

2

Table 1: Hyper-parameters for EfficientZero on Atari games

Parameter Setting

Observation down-sampling 96 × 96
Frames stacked 4
Frames skip 4
Reward clipping True
Terminal on loss of life True
Max frames per episode 108K
Discount factor 0.9974

Minibatch size 256
Optimizer SGD
Optimizer: learning rate 0.2
Optimizer: momentum 0.9
Optimizer: weight decay (c) 0.0001
Learning rate schedule 0.2 → 0.02
Max gradient norm 5
Priority exponent (α) 0.6
Priority correction (β) 0.4 → 1
Training steps 120K
Evaluation episodes 32
Min replay size for sampling 2000
Self-play network updating inerval 100
Target network updating interval 200
Unroll steps (lunroll) 5
TD steps (k) 5
Policy loss coefficient (λ1) 1
Value loss coefficient (λ2) 0.25
Self-supervised consistency loss coefficient (λ3) 2
LSTM horizontal length (ζ) 5
Dirichlet noise ratio (ξ) 0.3
Number of simulations in MCTS (Nsim) 50
Reanalyzed policy ratio 0.99

A.2 More Ablations

In the experiment section , we list some ablation studies to prove the effectiveness of each component.
In this section, we will display more results for the ablation study.

Firstly, the detailed results of the ablation study of each component are listed in Table 2. In this
table, We find that the full version of EfficientZero outperforms the others without any one of the
components. Furthermore, for those environments EfficientZero can already solve, the performance
is similar between the full version and the version without off-policy correction, such as Breakout,
Pong, etc. In such a case, the off-policy issue is not severe, which is the reason for this phenomenon.
Besides, for some environments with sparse rewards, the value prefix component matters, such as
Pong; and for those with dense rewards, the state aliasing problem has less negative effects for the
reward signals are sufficient, such as Qbert. As for the version without self-supervised consistency,
the results of all the environments are much poorer.

In addition, we do the ablation study for the data augmentation technique in the consistency component
to examine the effect of data augmentations. We apply a random small shift of 0-4 pixels as well as
the change of the intensity as the augmentation techniques. Here we choose several Atari games and
train the model for 100k steps. The results are shown in Table 3. We can find that the version without
data augmentation has similar performances while the version without consistency component is
worse. This indicates that the improvement of the consistency component is basically from the
self-supervised learning loss rather than the data augmentation.

Finally, we also do the ablation study for the MCTS root value and the dynamic horizon in the
off-policy correction component. Here we choose several Atari games and train the model for 100k
steps. As shown in Table 4, the version without dynamic horizon has poorer results than that without

3

Table 2: Ablations of the self-supervised consistency, end-to-end value prefix and model-based
off-policy correction on more Atari games. (Scores on the Atari 100k benchmark)

Game Full w.o. consistency w.o. value prefix w.o. off-policy correction

Alien 808.5 961.3 558 619.4
Amidar 148.6 32.2 31.0 256.3
Assault 1263.1 572.9 955.0 1190.4
Asterix 25557.8 2065.6 7330.0 13525.0
Bank Heist 351.0 165.6 273.0 297.5
BattleZone 13871.2 14063.0 9900.0 16125.0
Boxing 52.7 6.1 60.2 30.5
Breakout 414.1 237.4 379.2 400.3
ChopperCommand 1117.3 1138.0 1280 1487.5
Crazy Climber 83940.2 75550.0 106090.0 70681.0
Demon Attack 13003.9 5973.8 6818.5 8640.6
Freeway 21.8 21.8 21.8 21.8
Frostbite 296.3 248.8 235.2 227.5
Gopher 3260.3 1155 2792.0 2275.0
Hero 9315.9 5824.4 3167.5 9053.0
Jamesbond 517.0 154.7 380.0 356.3
Kangaroo 724.1 375.0 200.0 687.5
Krull 5663.3 4178.625 4527.6 3635.6
Kung Fu Master 30944.8 19312.5 25980.0 25025.0
Ms Pacman 1281.2 1090.0 1475.0 1297.2
Pong 20.1 -1.5 16.8 19.5
Private Eye 96.7 100.0 100.0 100.0
Qbert 13781.9 5340.7 6360.0 13637.5
Road Runner 17751.3 2700.0 3010.0 9856.0
Seaquest 1100.2 460.0 468.0 843.8
Up N Down 17264.2 3040.0 7656.0 4897.2

Normed Mean 1.943 0.881 1.482 1.475
Normed Median 1.090 0.340 0.552 0.836

Table 3: Ablations of the data augmentation technique in the consistency component. Results show
that the data augmentation has limited improvement in EfficientZero and the self-supervised training
loss is more significant.

Game Full w.o. consistency w.o. data augmentation

Asterix 6218.8 1350.0 13884.0
Breakout 388.8 12.0 365.2
Demon Attack 10536.6 5973.8 8730.0
Gopher 2828.8 1155.0 1823.75
Pong 19.8 -8.5 13.9
Qbert 15268.8 2304.7 14286.0
Seaquest 1321.0 460.0 1125.0
Up N Down 10238.1 3040.0 16380.0

the MCTS root value. In the off-policy correction component, the dynamic horizon seems more
important.

A.3 MCTS Details

Our policy searching approach is based on Monte-Carlo tree search (MCTS). We follow the proce-
dure in MuZero [7], which includes three stages and repeats the searching process for Nsim = 50
simulations. Here are some brief introductions for each stage.

Selection In the selection part, it targets at choosing an appropriate unvisited node while balancing
exploration and exploitation with UCT:

ak =

{
argmax

a
Q(s, a) + P (s, a)

√∑
b N(s, b)

1 +N(s, a)

(
c1 + log

(∑
b N(s, b) + c2 + 1

c2

))}
(3)

, where Q(s, a) is the average Q values after simulations, N(s, a) is the total visit counts at state s by
selecting action a, and P (s, a) is the policy prior set in the expansion process. In each simulation, the

4

Table 4: Ablations of the techniques (the MCTS root value and the dynamic horizon) in the off-policy
correction component. The dynamic horizon seems more important than the MCTS root value when
data is limited.

Game Full w.o. off-policy correction w.o. dynamic horizon w.o. MCTS root value

Asterix 6218.8 2706.3 3263.0 6288.0
Breakout 388.8 468.6 427.0 387.8
Demon Attack 10536.6 8640.6 9211.1 10063.0
Gopher 2828.8 2275.0 2459.2 2651.0
Pong 19.8 19.5 19.2 14.5
Qbert 15268.8 3948.4 7945 14738.0
Seaquest 1321.0 1248.0 1292.0 876.0
Up N Down 10238.1 3240.0 4772.0 9925.6

MCTS starts from the root node s0. And for each time-step k = 1...l of the simulation, the algorithm
will select the action ak according to the UCT. Usually, c1 = 1.25 and c2 = 19652 according to the
literature [8, 9, 3].

However, the default Q value of the unvisted node is set to 0, which indicates the worst state. To give
a better Q-value estimation of the unvisited nodes, we evaluate a mean Q value mechanism in each
simulation for tree nodes, similar to the implementation of Elf OpenGo [10].

Q̂(sroot) = 0

Q̂(s) =
Q̂(sparent) +

∑
b 1N(s,b)>0Q(s, b)

1 +
∑

b 1N(s,b)>0

Q(s, a) : =

{
Q(s, a) N(s, a) > 0

Q̂(s) N(s, a) = 0

(4)

, where Q̂(s) is the estimated Q value for unvisited nodes to make better selections considering
exploration and exploitation. sroot is the state of the root node and sparent is the state of the parent
node of s. In experiments, we find that the mean Q value mechanism gives a better exploration than
the default one.

Expansion Then the newly selected node will be expanded with the predicted reward and policy as
its prior. Furthermore, when the root node is to expand, we apply the Dirichlet noise to the policy
prior during the self-play stage and the reanalyzing stage to give more explorations.

P (s, a) := (1− ρ)P (s, a) + ρND(ξ) (5)

, where ND(ξ) is the Dirichlet noise distribution, ρ, ξ is set to 0.25 and 0.3 respectively. However,
we do not use any noise and set ρ to 0 instead for those non-root node or during evaluations.

Backup After selecting and expanding a new node, we need to backup along the current searching
trajectory to update the Q(s, a). Considering the scales of values in distinct environments, we compute
a normalized Q-value by using the minimum-maximum values calculated along with all visited tree
nodes, which is applied in MuZero[7]. However, when the data is limited, the small difference
between the minimum and maximum values will result in overconfidence in UCT calculation. For
example, when all the Q-values in those visited tree nodes are in a range of 0 to 10−4, the normalized
Q-value of 10−5 and 5× 10−5 will make a huge difference as one is normalized to 0.1 and another is
0.5. Therefore, we set a threshold here to reduce overconfidence in such occasions, which is called
the soft minimum-maximum updates:

Q̄(sk−1, ak) =
Q(sk−1, ak)−min(s,a)∈Tree Q(s, a)

max(max(s,a)∈Tree Q(s, a)−min(s,a)∈Tree Q(s, a), ϵ)
(6)

, where ϵ, the threshold to give a smooth range of the min-max bound, is set to 0.01.

After all the expansions in the MCTS, we will obtain average value and visit count distributions of the
root node. Here, the root value can be applied in off-policy correction and the visit count distribution
is the target policy distribution:

π(s, a) =
N(s, a)1/T∑
b N(s, b)1/T

(7)

5

Data
worker #1

Data
worker #2

……

Data
worker #N1

Replay
Buffer

CPU
rollout worker #1

CPU
rollout worker #2

……

CPU
rollout worker #N2

GPU
batch worker #1

GPU
batch worker #2

……

GPU
batch worker #N3

Learner

Self-play

Sample transitions

Reanalyzing

Update
target model

Update
self-play model

Context
Queue

Batch Queue

Prepare contexts

training

In parallel

Figure 1: Pipeline of the EfficientZero implementation.

We decay the temperature of the MCTS output policy distribution here twice during training, at 50%
and 75% of the training progress to 0.5 and 0.25 respectively.

A.4 Training Details

In this subsection, we will introduce more training details.

Pipeline As for the code implementation of EfficientZero, we design a paralleled architecture with a
double buffering mechanism in Pytorch and Ray, as shown in Figure 1.

Intuitively, we will describe the training process in a synchronized way. Firstly, the data workers
called self-play actors are aimed at doing self-play with the given model updated within 600 training
steps and then they will send the rolled-out trajectories into the replay buffer. Then the CPU rollout
workers attempt to prepare the contexts of those batch transitions sampled from the replay buffer,
in which way only CPU resources are required. Afterward, the GPU batch workers reanalyze those
past data with the given contexts by the given target model, and most of the time-consuming parts in
this procedure are in GPUs. Considering the frequent utilization of CPUs and GPUs in MCTS, the
searching process is assigned for those GPU workers. Finally, the learner will obtain the reanalyzed
batch and begin to train the agent.

The learner, all the data workers, CPU workers, and GPU workers start in parallel. The data workers
and CPU workers share the replay buffer to sample data while the CPU and GPU workers share a
context queue for reanalyzing data. Besides, the learner and the GPU workers use a batch queue to
communicate. In such a design, we can utilize the CPU and GPU as much as possible.

Self-play During self-play, the priorities of the transition to collect are set to the max of the whole
priorities in replay buffer. We also update the priority in EfficientZero according to MuZero [7]:
P (i) =

pα
i∑

k pα
k

, where pi is the L1 error of the value during training. And the we scale with

important sampling ratio wi = (1
N×P (i))

β . We set α to 0.6 and anneal β from 0.4 to 1.0, following
prioritized replay [6]. However, we find the priority mechanism only improves a little with limited
data. Considering the long horizons in atari games, we collect the intermediate sequences of 400
moves.

Reanalyze The reanalyzed part is introduced in MuZero [7], which revisits the past trajectories and
re-executes the data with lasted target model to obtain a fresher value and policy with model inference
as well as MCTS.

6

Figure 2: Evaluation curves of EfficientZero on Atari 100k benchmark for individual games.
The average of the total rewards among 32 evaluation seeds for 3 runs is shown on the y-axis and the
number of total training steps is 120,000, shown on the x-axis.

For the off-policy correction, the target values are reanalyzed as follows:

zt =

l−1∑
i=0

γiut+i + γlνMCTS
t+l ,

l = (k − ⌊Tcurrent − Tst

τTtotal
⌋).clip(1, k), l ∈ [1, k]

(8)

, where k is the TD steps here, and is set to 5; Tcurrent is the current training steps, Tst is the training
steps of collecting the data st, Ttotal is the total training steps (100k), and τ is a coefficient which is
set to 0.3. Intuitively, l is to define how fresh the collected data st is. When the trajectory is stale,
we need to unroll less to estimate the target values for the sake of the gaps between current model
predictions and the stale trajectory rollouts. Besides, we replace the predicted value vt+k with the
averaged root value from MCTS νMCTS

t+l to alleviate the off-policy bias.

Notably, we re-sample Dirichlet noise into the MCTS procedure in reanalyzed part to improve the
sample efficiency with a more diverse searching process. Besides, we reanalyze the policy among
99% of the data and reanalyze the value among 100% data.

A.5 Evaluation

We evaluate the EfficientZero on Atari 100k benchmark with a total of 26 games. Here are the
evaluation curves during training, as shown in Figure 2.

Besides, we also report the scores for 3 runs (different seeds) with 32 evaluation seeds across the 26
Atari games, which is shown in Table 5.

Recently, Agarwal et al. [1] propose to use statistical tools to present more robust and efficient
aggregate metrics. Here we display the corresponding results based on its open-sourced codebase.
Figure 3 illustrates that EfficientZero significantly outperforms the other methods on Atari 100k
benchmark concerning all the metrics.

7

Figure 3: Aggregate metrics on Atari 100k benchmark with 95% CIs. Here the higher mean,
median and IQM scores and lower optimality gap indicate better performance. The CIs are estimated
by the percentile bootstrap with stratified sampling. All results except EfficientZero are from Agarwal
et al. [1]. And all the methods are based on 10 runs per game except SimPLe with 5 runs and
EfficientZero with 3 runs. EfficientZero significantly outperforms the other methods concerning the
four metrics.

Table 5: Scores reported for 3 random seeds for each of the above games, with the last two columns
being the mean and standard deviation across the runs. Each run is evaluated with 32 different seeds.

Game Seed 0 Seed 1 Seed 2 Mean Std

Alien 1093.1 622.2 710.3 808.5 204.4
Amidar 198.7 116.4 130.6 148.6 35.9
Assault 1436.3 1150.8 1202.2 1263.1 124.3
Asterix 18421.9 43220.2 15031.3 25557.8 12565.7
Bank Heist 362.6 336.3 354.0 351.0 10.9
Battle Zone 11812.5 13100.8 16700.4 13871.2 2068.5
Boxing 45.9 49.9 62.4 52.7 7.0
Breakout 432.8 418.7 390.9 414.1 17.4
ChopperCommand 1190.9 1360.9 800.0 1117.3 234.8
Crazy Climber 98640.2 65520.4 87660.1 83940.2 13774.6
Demon Attack 11517.5 14323.3 13170.8 13003.9 1151.5
Freeway 21.8 21.8 21.8 21.8 0.0
Frostbite 407.1 225.5 256.3 296.3 79.4
Gopher 3002.6 2744.2 4034.1 3260.3 557.2
Hero 12349.1 8006.5 7592.0 9315.9 2151.5
Jamesbond 530.7 600.3 420.1 517.0 74.2
Kangaroo 980.2 460.7 731.3 724.1 212.1
Krull 4839.5 5548.5 6602.0 5663.3 724.1
Kung Fu Master 28493.1 36840.7 27500.5 30944.8 4188.7
Ms Pacman 1465.0 1203.4 1175.3 1281.2 130.4
Pong 20.6 18.8 21.0 20.1 1.0
Private Eye 100.0 90.0 100.0 96.7 4.7
Qbert 15458.1 14577.5 13310.0 14448.5 881.7
Road Runner 17843.8 20140.0 15270.2 17751.3 1989.2
Seaquest 1038.1 1078.2 1184.4 1100.2 61.7
Up N Down 22717.5 8095.6 20979.4 17264.2 6521.9

A.6 Open Source EfficientZero Implementation

MCTS-based RL algorithms present a promising future research direction: to achieve strong per-
formance with model-based methods. However, two major practical obstacles prevent them from
being widely used currently. First, there are no high-quality open-source implementations of these
algorithms. Existing implementations [11, 4] can only deal with simple state-based environments,
such as CartPole [2]. Accurately scaling to complex image input environments requires non-trivial
engineering efforts. Second, MCTS RL algorithms such as MuZero [7] require a large number of
computations. For example, MuZero needs 64 TPUs to train 12 hours for one agent on Atari games.
The high computational costs pose problems both for the future development of such methods as well
as practical applications.

We think our open-source implementation of EfficientZero can drastically accelerate the research
in MCTS RL algorithms. Our implementation is computationally friendly. To train an Atari agent

8

for 100k steps, it only needs 4 GPUs to train 7 hours. Our framework could potentially have a large
impact on many real-world applications, such as robotics since it requires significantly fewer samples.

Our open-source framework aims to provide an easy way to understand the implementation while
keeping relatively high compute efficiency. As shown in Fig. 4, the system is composed of four
components: the replay buffer, the experience sampling actor, the reanalyze training target preparation
module, and the training component.

replay buff. actor

reanalyze train
update model
prepare targets

sample experience

sample training data update model

reanalyze

CPU threads

GPU threads

Figure 4: EfficientZero implementation overview.

To make sure the framework is
easy to use, we implement them
based on Ray [5], and the four
components are implemented as
ray actors which run in paral-
lel. The main computation bot-
tleneck is in the reanalyze mod-
ule, which samples from the re-
play, and runs an MCTS search
on each observation. To acceler-
ate the reanalyze module, we split the reanalyze computation into the CPU part and the GPU part,
such that computation on CPU and GPU are run in parallel. We use a different number of actors
between CPU and GPU to match their total throughput. To increase the throughput on GPU, we also
collocate multiple batch computation threads on one GPU, as in Tian et al. [10]. We also implement
the MCTS in C++ to avoid performance issues with Python on large amounts of atomic computations.

We implement the MCTS by a couple of important techniques, which are quite crucial to improve
the efficiency of the MCTS process. On the one hand, we implement batch MCTS to allow the
agent to search a batch of trees in parallel, to enlarge the throughput of MCTS during self-play and
reanalyzing targets. On the other, we choose C++ in the MCTS process. However, the process of
MCTS needs to do searching as well as model inference, which needs to communicate with Pytorch.
Therefore, we use Python to do model inference, C++ to do other atomic computations, and Cython
to communicate between Python contexts and C++ contexts. In another word, we use pure C++
to do selection, expansion, and backup while using neural networks in Python. Meanwhile, we
build a database to store the hidden states in Python while storing the corresponding data index
during the searching process in C++. For more details of the implementation, please refer to
https://github.com/YeWR/EfficientZero.

References
[1] Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron Courville, and Marc G Belle-

mare. Deep reinforcement learning at the edge of the statistical precipice. Advances in Neural
Information Processing Systems, 2021.

[2] Andrew G Barto, Richard S Sutton, and Charles W Anderson. Neuronlike adaptive elements
that can solve difficult learning control problems. IEEE transactions on systems, man, and
cybernetics, (5):834–846, 1983.

[3] Danijar Hafner, Timothy Lillicrap, Mohammad Norouzi, and Jimmy Ba. Mastering atari with
discrete world models. arXiv preprint arXiv:2010.02193, 2020.

[4] Anurag Koul. Pytorch implementation of muzero. https://github.com/koulanurag/
muzero-pytorch, 2019.

[5] Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov, Richard Liaw, Eric Liang,
Melih Elibol, Zongheng Yang, William Paul, Michael I Jordan, et al. Ray: A distributed
framework for emerging {AI} applications. In 13th {USENIX} Symposium on Operating
Systems Design and Implementation ({OSDI} 18), pages 561–577, 2018.

[6] Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay.
arXiv preprint arXiv:1511.05952, 2015.

[7] Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Si-
mon Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al. Mastering
atari, go, chess and shogi by planning with a learned model. Nature, 588(7839):604–609, 2020.

9

https://github.com/YeWR/EfficientZero
https://github.com/koulanurag/muzero-pytorch
https://github.com/koulanurag/muzero-pytorch

[8] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driess-
che, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mas-
tering the game of go with deep neural networks and tree search. nature, 529(7587):484–489,
2016.

[9] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur
Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of
go without human knowledge. nature, 550(7676):354–359, 2017.

[10] Yuandong Tian, Jerry Ma, Qucheng Gong, Shubho Sengupta, Zhuoyuan Chen, James Pinkerton,
and Larry Zitnick. Elf opengo: An analysis and open reimplementation of alphazero. In
International Conference on Machine Learning, pages 6244–6253. PMLR, 2019.

[11] Aurèle Hainaut Werner Duvaud. Muzero general: Open reimplementation of muzero. https:
//github.com/werner-duvaud/muzero-general, 2019.

10

https://github.com/werner-duvaud/muzero-general
https://github.com/werner-duvaud/muzero-general

	Appendix
	Models and Hyper-parameters
	More Ablations
	MCTS Details
	Training Details
	Evaluation
	Open Source EfficientZero Implementation

