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1. Introduction
This study develops a graph neural network

(GNN) to predict the virulence of Influenza A Virus
(IAV) infections by incorporating protein-protein
interactions between the virus and its mouse host.
Since direct human studies are unethical, mouse
models are used to infer disease properties [1].
GNN have previously been used in protein appli-
cations. SolPredictor [2] predicts the solubility
of molecules using a graph representation with
nodes representing atoms and edges representing
connections between atoms. The Residue-Based
Graph Attention and Convolutional Network (RGN)
uses both graph convolution and graph attention
networks to predict interaction sites of a protein
structure [3].

Here, a GNN architecture is proposed, that em-
ploys four different graph operators to classify
mouse-IAV protein-protein interactions using inter-
action scores predicted with the Deep Sequence
Contact Residue Interaction Prediction Transfer
(D-SCRIPT) software [4]. The goal is to better
understand the role of these interactions in vi-
ral severity and disease progression, aiding in
the development of effective treatments and vac-
cines. The code and datasets developed here are
available at https://github.com/liujiale-study/
MSAIProj_HP-PPI/tree/main.

2. Methods
The proteins in the dataset are primarily charac-

terized by embeddings from ProstT5 [5], while the
interactions are predicted using D-SCRIPT. ProstT5
is a model for the creation and translation of se-
quence and structural embeddings from amino acid
sequences and 3Di tokens, respectively.

2.1 Dataset
Previous work had curated infection records

with lethal dose values for several mice strains
and assigned them into three-class virulence labels
[6, 7]. Here, the dataset is further processed and
expanded to include UniProt IDs from the UniProt
[8] database for strains BALB/cJ and DBA/2J.
Additionally, the protein-protein interaction data for
C57BL/6, BALB/cJ and DBA/2J were computed using
D-SCRIPT, which provides predicted probabilities
of interactions. A protein pair was considered as
interacting if its D-SCRIPT score was higher than

a threshold of 0.01 (1%). Next, the virulence labels
were assigned to each interacting edge, according to
its information in the virulence record.

The final dataset consists of a total of (i) 53,266
mouse proteins, (ii) 659 IAV proteins and (iii) 365,926
mouse-IAV interactions.

2.2 GNN Architecture and Evaluation
The data was converted into a bipartite graph for-

mat with heterogenous node representation for the
mouse and viral protein nodes, as shown in Figure 1.

Fig. 1: Virulence Graph Composition

A node corresponds to a protein while an edge
represents an interaction between 2 proteins. Only
interactions between mouse and IAV nodes are con-
sidered. The node embeddings (of length 2048) were
generated using ProstT5[5].The D-SCRIPT predicted
interactionprobabilitywasused as an edge attribute.

Figure 2 shows the proposed GNN architecture.
It consists of a linear layer that transforms the

input to fixed-size embeddings, followed by a ’block
unit’ consisting of a (i) GNN operator layer, (ii)
batch normalization layer, (iii) ReLU layer and (iv)
dropout layer. The layers (ii)-(iv) have the effect of
regularizing the network and stabilizing its training.
This ’block unit’ structure is repeated (Figure2(c)).
The intermediate representations of mouse and
viral proteins produced by the block unit are fur-
ther concatenated to form the supervision edge
representation (Figure2(d)). The final linear layer
transforms the supervision edge representation into
3 predicted classes corresponding to each virulence
category Low/Intermediate/High, encoded as 0, 1, 2
respectively.
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Fig. 2: GNN Architecture

TheGNNoperator layer consists of one of four op-
erators – Residual Gated Graph Convolutional Net-
work (RGGCN) [9], Graph Attention Network (GAT)
[10], Graph Transformer (GTR) [11] and Graph Iso-
morphism Network with Edge Features (GINE) [12].
The RGGCN operator is given as:

x′
i = W1xi + (

∑
j∈N(i)

ηi,j ⊙W2xj ) + b (1)

where the edge gate ηi,j is given by:

ηi,j = σ(W3(xi||εi,j) +W4(xj ||εi,j)) (2)

The model can switch between one of the four
aforementioned operators and only one operator
maybe in use in the proposedGNNat any given time.
The edges were split into train, validation and test
sets at a ratio of 70:20:10. Section B gives more train-
ing settings.

3. Results
The proposed GNN was evaluated on each of

the four graph operators – RGGCN, GAT, GTR and
GINE, using themeasures of F1, overall accuracy and
Matthew’s Correlation Coefficient (MCC).
The results in Table 1 indicate that the RGGCN

and GTR operators provide the best performance.
Although these two operators have the highest
scores in different metrics, their overall perfor-
mance across all metrics is < 0.01. The RGGCN has
an overall accuracy of 0.887516, closely followed

Table 1: GNN Performance using Operators

Operator RGGCN GAT GTR GINE
F1: Low 0.903292 0.672532 0.907952 0.886930
F1: Inter-
mediate

0.880099 0.588587 0.871150 0.852913

F1 High 0.873618 0.604683 0.877721 0.854077
Mean F1 0.885670 0.621934 0.885608 0.864640
Overall
Accuracy

0.887516 0.628744 0.886915 0.866801

MCC 0.829910 0.436294 0.831264 0.798548
Best Fit
Epoch

130 143 104 113

Total
Training
Time

00:40:56 10:36:27 15:03:56 00:32:32

by the GTR at 0.886915. However, the GTR has a
better MCC score of 0.831264, 0.001354 higher than
RGGCN. Overall, the RGGCN layer provides the
best performance with greater efficiency due to
significantly shorter training times than needed
by the GTR. This may be attributed to the higher
complexity and number of weights in the GTR
operator. The GTR operator was also found to have
more fluctuations in its training loss compared to
the RGGCN, indicating that further architectural
regularization might be needed.

GTR obtained the highest MCC score, higher by
0.032716 compared to the GINE operator. As MCC is
ametric that is independent of class distribution, the
difference in performancemay indicate that GINE is
slightly more sensitive to the distribution of classes
and is less accurate when the balance of classes is
accounted for. Finally, the GAT operator showed the
lowest performance amongst all four operators.

4. Conclusion
This work presents a dataset of predicted protein-

protein interactions and their associated virulence
class labels. A GNN model with a choice of four
graph operators is also proposed for the classifica-
tion of the predicted interactions according to their
assigned virulence levels. After experimentation,
the RGGCN and GTR operators were found to per-
form similarly well, with the RGGCN being more ef-
ficient in terms of training time and stable training
loss.
Futurework includesmore extensive interaction fea-
tures such as those obtained fromprotein-protein in-
terfaces or from directly incorporating protein 3D
structure data, to improve the model for enhanced
virulence classification.
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Appendix A. Dataset Creation

In [7], the records of [6] were further annotated and
data for the C57BL/6 mouse strain was developed
into a network of interacting mouse and IAV protein
domains.
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Fig. A1: Dataset Creation Process

Two assumptions have been made in this work
to reduce computational complexity and to address
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lack of data concerns. First, only pairwise interac-
tions between mouse and IAV proteins have been
considered, while in nature proteins function in
complexes which may consist of more than 2 pro-
teins. For example, multiple host proteins may bind
to an IAV protein,as the viral infection progresses.
Such types of interactions are not considered in this
work to reduce the model complexity.

Second, the infection records’ virulence labels
were projected onto corresponding mouse-IAV
protein-protein interactions and each interaction
was treated as a training sample. This was done to
provide increased training samples as there were
insufficient virulence records for a graph-level clas-
sification task. Neural networks typically require
thousands of training sample in order to generalise
well on unseen data. However, in nature, not all pro-
tein interactions in an IAV infected mouse strains
could be considered to have the same virulence
level. F

Appendix B. Training Settings

The model was implemented with the PyTorch [13]
and PyTorch Geometric [14] libraries.

Due to GNNs requiring large amounts ofmemory,
a sub sampling approach [15] was applied on the in-
put graphs to reduce the computational complexity.
TheAdamoptimizerwas usedwithα = 0.001with

a weight decay of 0.01. The cross-entropy loss was
applied here. Under these settings, the model was
trained for 150 epochs with a batch size of 1024 for
each of the four graph operators - RGGCN, GAT, GTR
and GINE. The best fit model was selected based on
the lowest mean validation loss.
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