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Cross-modality Style Prompts
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Figure 1: We present MotionS, a generative motion stylization pipeline for synthesizing diverse and stylized motion on
cross-structure source motion with usage of cross-modality style prompts.

ABSTRACT
Stylized motion breathes life into characters. However, the fixed
skeleton structure and style representation hinder existing data-
driven motion synthesis methods from generating stylized motion
for various characters. In this work, we propose a generative motion
stylization pipeline, named MotionS, for synthesizing diverse and
stylized motion on cross-structure characters using cross-modality
style prompts. Our key insight is to embed motion style into a
cross-modality latent space and perceive the cross-structure skele-
ton topologies, allowing for motion stylization within a canonical
motion space. Specifically, the large-scale Contrastive-Language-
Image-Pre-training (CLIP) model is leveraged to construct the cross-
modality latent space, enabling flexible style representation within
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it. Additionally, two topology-encoded tokens are learned to capture
the canonical and specific skeleton topologies, facilitating cross-
structure topology shifting. Subsequently, the topology-shifted styl-
ization diffusion is designed to generate motion content for the par-
ticular skeleton and stylize it in the shifted canonical motion space
using multi-modality style descriptions. Through an extensive set
of examples, we demonstrate the flexibility and generalizability of
our pipeline across various characters and style descriptions. Qual-
itative and quantitative comparisons show the superiority of our
pipeline over state-of-the-arts, consistently delivering high-quality
stylized motion across a broad spectrum of skeletal structures.
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1 INTRODUCTION
“Style is the answer to everything.” – Charles Bukowski

Style serves as a pivotal element in animations, mirroring diverse
facets of a character, including personality, habits, emotions, and
intentions. Therefore, the expressiveness of motion style plays a
crucial role in motion synthesis and enriches storytelling in com-
puter animation. However, the complexity and time-consuming
nature of the traditional motion stylization process presents signifi-
cant barriers to entry [19]. In recent years, learning-based motion
synthesis methods have emerged in the community [10, 38]. Still,
they are often constrained to a fixed skeleton structure, generating
motion content without expressing the nuances of motion styles.
Thus, they fall short of synthesizing stylized motion for a wide
variety of characters.

By delving deeper into the underlying reasons, we have identi-
fied two primary challenges impeding the development of a com-
prehensive stylized motion synthesis. The first challenge involves
expressing motion style on cross-structure skeletons. Existing meth-
ods [2, 9, 27] for motion style transfer oversimplify this obstacle
by assuming a fixed skeletal structure between the source and tar-
get characters, thereby neglecting the intricacies of the characters’
skeletal topologies. This inherent assumption significantly limits
their applicability for transferring motion style among characters
with disparate skeletal structures. Moreover, the predominant fo-
cus of existing stylized motion datasets [26, 39] is on standard
human skeletons, making it difficult for learning-based methods
to stylize non-standard skeletal motions. Consequently, perceiving
the skeleton topology and effectively expressing motion style on
cross-structure skeletons emerge as a critical task.

The second challenge pertains to the utilization of cross-modality
style representations. Existing motion generation methods [13, 21]
have explored various conditions to control the content of the gener-
ated motion. However, these methods struggle to effectively control
the motion style through these multi-modality conditions, resulting
in the generated motion often perceived as dull and monotonous.
Additionally, the previous motion style transfer methods [33, 34]
are constrained to using motion sequences or category labels as
the style description, rendering flexible style control impossible.
Thus, incorporating cross-modality style representations for more
flexible and user-friendly motion-style editing stands out as another
significant task.

To address these challenges, we introduce a new generative mo-
tion stylization pipeline, MotionS, capable of synthesizing diverse
motion for a wide range of characters and stylizing it using motion
sequences, text, images, or videos as style descriptions, as Figure 1
shows. In MotionS, two novel techniques, i.e. cross-modality style
embedding and cross-structure topology shifting, are explored to
construct a canonical motion space. In this space, motion content
from various skeletons can be stylized using the extracted style
embedding by adjusting the mean and variance of the generated mo-
tion features. With these two key techniques, the topology-shifted
stylization diffusion is presented to synthesize diverse and stylized
motion, establishing a more accessible way of animation creation.

Cross-modality style embedding is to embed style descriptions
in various formats into the canonical motion space. Drawing inspi-
ration from GestureDiffuCLIP [5], which employs CLIP latents [32]
for the automatic creation of stylized gestures, we align the motion

features of the SMPL skeleton [24] with CLIP latents and construct
a shared space that represents motion style as adaptive mean and
variance applied to the motion features. The multi-modality style
embedding in the shared latent space enables flexible style descrip-
tions for motion stylization in our MotionS.

Cross-structure topology shifting aims to transfer motion fea-
tures between canonical and specific motion spaces. To achieve this,
we utilize two learnable topology-encoded tokens (TET) for cap-
turing the canonical and specific skeleton topologies. Each TET is
followed by a graph convolutional layer (GCL)with a pre-defined ad-
jacency matrix, serving as a topology prior of the skeletal structure.
Subsequently, the motion space is shifted using the cross-attention
mechanism. This topology shifting strategy enables cross-structure
motion stylization in our MotionS.

In response to the fact posed by the scarcity motion sequences
of arbitrary skeletal structure, we designed our MotionS based on
the SinMDM [31]. SinMDM requires only one motion sequence to
learn the motion content and can synthesize variable-length motion
sequences that retain the core motion elements of the single input.
Remarkably, distinct from SinMDM, the focus of this work is on the
stylization of cross-structure motion and the utilization of cross-
modality style representations.

We evaluate MotionS across a variety of skeletal-rigged charac-
ters and style descriptions. Both qualitative and quantitative results
demonstrate the effectiveness of MotionS in perceiving skeleton
topologies, constructing the canonical motion space, and synthesiz-
ing stylized motion. In comparison with state-of-the-art methods,
MotionS exhibits superior stylized motion results in terms of con-
tent preservation, style fidelity, and stylized motion diversity.

Our contributions are listed below:
• WeproposeMotionS, a generativemotion stylization pipeline
that, to our knowledge, marks the pioneering attempt to
synthesize cross-structure diverse and stylized motion by
utilizing cross-modality style descriptions.

• We exploit two novel techniques in MotionS, i.e., cross-
modality style embedding and cross-structure topology shift-
ing. These techniques collaborate to construct a canonical
motion space, enabling skeletal topology perception and
flexible style representations for motion stylization.

• Extensive experiments demonstrate the effectiveness and
generalizability of our MotionS, which achieves higher mo-
tion quality and style diversity in comparison with the prior
learning-based methods.

2 RELATEDWORK
Motion stylization has been a longstanding challenge within the
realm of computer animation [3, 7, 17, 42]. Recently, deep learning-
based approaches [11, 15, 16, 20, 27] started sparkling in the com-
munity. For example, Xia et al. [39] proposed an online learning
algorithm to capture complex relationships between pairwise mo-
tion styles. Yumer and Mitra [40] represented motion style in the
frequency domain, extracting style features without the need for
spatial matching. Smith et al. [33] presented a neural network-based
style transfer model, enabling the adjustment of output motion
in a latent space. These methods highlight the research trend of
achieving flexibility and diversity in style control. However, they
are limited to representing labeled or sample-based motion styles,
lacking support for multi-modality style descriptions.
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Moving forward, Aberman et al. [2] introduced a data-driven
framework encoding motion into two latent spaces for content
and style, enabling the extraction of unseen styles from videos.
Nevertheless, this approach requires estimating skeletal motion
from the video first and cannot directly extract style features from
ordinary videos. Additionally, Jang et al. [19] introduced a Motion
Puzzle framework capable of controlling the motion style of indi-
vidual human body parts. Ao et al. [5] leveraged the power of the
CLIP model to synthesize co-speech gestures with flexible style
control. Jang et al. [20] proposed an online motion characteriza-
tion framework that can transfer both the motion style and body
proportions of characters. However, the skeleton structure in these
methods remains fixed and they cannot handle various characters
with different skeletons. In line with the current research trend, our
work explores previously uncharted territory: motion stylization
on cross-structure characters using cross-modality style prompts.
Distinct from previous studies, our proposed pipeline is generative
and possesses the ability to perceive the skeletal topology. It can
flexibly generate diverse stylized motion based on style features
extracted from motion sequences, text, images, or videos.
Motion generation has emerged as a central focus of animation
creation in recent years, propelled by advancements in generative
deep models [12, 14]. Recent cutting-edge methods often explore
various conditions for human motion generation, which include
but are not limited to action labels [13, 29], audio [4], and text
[38]. For example, Tevet et al. [37] introduced the Motion Diffusion
Model (MDM), aiming for natural and expressive human motion
generation from text prompts. Building upon MDM, Chen et al. [8]
employed a Variational Auto-encoder (VAE) to enhance motion
representation, and Zhang et al. [43] integrated a retrieval mecha-
nism to refine the denoising process. Additionally, Zhang et al. [41]
proposed a text-driven animation pipeline (TapMo) for generating
motion in a broad spectrum of skeleton-free characters. However,
these methods typically require large amounts of data for training
and overlook motion style in the generation process. In our work,
recognizing the scarcity of motion data for non-standard skeletons,
we draw inspiration from SinMDM [31] to construct a generative
model learning from a single motion sequence. More importantly,
our pipeline can control the style of cross-structure skeletal motion
through multi-modality style descriptions in a learned canonical
motion space.

3 METHOD
As illustrated in Figure 2, our MotionS pipeline consists of two
parts, i.e., a style encoder E(·) and a diffusion model F (·). Given
a style prompt 𝑝 in an arbitrary representation, the style encoder
extracts the style feature 𝒇𝑝 within a cross-modality latent space.
Next, the style feature is input into a linear mapping layer to derive
the style embedding, represented by 𝝁 and 𝝈 . These two tensors
correspond to the mean and standard deviation of motion features
in the canonical motion space, respectively. Let 𝜽𝑀E , 𝜽𝑇E , and 𝜽

𝐼
E rep-

resent the parameters of the motion, text, and image style encoders,
respectively. This process is formulated as:

E : (𝑝;𝜽𝑀E , 𝜽
𝐼
E , 𝜽

𝑇
E ) ↦→ (𝒇𝑝 , 𝝁,𝝈) . (1)

Subsequently, the diffusionmodel takes the noisedmotion 𝒙𝑠 and
the step 𝑠 as inputs to generate the stylizedmotion �̂�𝑝0 through 1, 000

Limping St
yl

e 
En

co
de

r

Canonical 
motion space Ω

D
iff

us
io

n 
En

co
de

r

C
an

on
ic

al
 

D
ec

od
er𝒙𝒙 𝑠𝑠

𝑠𝑠 D
iff

us
io

n 
D

ec
od

er

𝝉𝝉Ω 𝝉𝝉Φ

𝝁𝝁,𝝈𝝈

𝒇𝒇𝑥𝑥Ω
𝒇𝒇𝑥𝑥Ω

𝑝𝑝 

� 𝒙𝒙 0𝑝𝑝

SMPL 
Skeleton

Diffusion Step × 𝑆𝑆

𝒇𝒇𝑝𝑝 Custom 
skeleton

ℰ(�)

ℱ(�)

Figure 2: An overview of theMotionS pipeline. MotionS takes
multi-modality prompts 𝑝 as style descriptions, generates
diverse motion �̂�

𝑝

0 for specific skeletal structures through
the diffusion denoising process, and performs the motion
stylization in a canonical motion space Ω.

denoising steps. All motions in this work are represented using
the 6D rotation features proposed by Zhou et al. [44]. Throughout
this process, the style feature is equipped to provide fine-grained
dynamic information about the motion style. The style embedding
influences the motion feature in canonical space using the AdaIN
strategy [18], controlling the style property. Notably, two TETs,
i.e., 𝝉Ω and 𝝉Φ, are employed to shift the motion feature space be-
tween canonical Ω and specific Φ settings. This is achieved through
the cross-attention mechanism used in the canonical decoder and
the diffusion decoder, allowing the model to perceive the skeletal
topologies and control motion style on cross-structure skeletons.
This inverse diffuse process is formulated as:

F : (𝒙𝑠 , 𝑠,𝒇𝑝 , 𝝁,𝝈 ;𝜽F) ↦→ (�̂�𝑝0 ), (2)

where 𝜽F denote the learnable parameter of the diffusion model.
Following SinMDM [31], the diffusion encoder is constructed as
a QnA-based network [6] to learn motion contents from a single
sequence effectively. For the global translation in the skeleton mo-
tion, we employ an independent three-layer convolutional network
in the diffusion steps to generate it. For simplification, this aspect
is ignored in the following discussion.

3.1 Cross-modality Style Embedding
Given that the existing human motion dataset is commonly repre-
sented using the SMPL model [25], we use the SMPL motion𝑚 as
style prompts in motion format. Accordingly, the topology of the
SMPL skeleton is utilized to construct the canonical motion space,
which comprises 𝑁Ω skeleton joints.

As depicted in Figure 3, drawing inspiration from MotionCLIP
[36], we design a transformer-based motion encoder to embed𝑚
into a style feature 𝒇𝑀𝑝 ∈ R1×𝐶 and a content feature 𝒇𝑚 ∈ R𝑇×𝐶 ,
where 𝑇 is the time dimension and 𝐶 is the channel. The style
embedding 𝝁 ∈ R𝐶 and 𝝈 ∈ R𝐶 are then obtained by mapping
𝒇𝑀𝑝 through a linear layer. Next, we repeat 𝒇𝑀𝑝 along the tempo-
ral dimension and concatenate it with 𝒇𝑚 to construct the input
motion feature of 2 ×𝑇 ×𝐶 dimensions for the canonical decoder.
Subsequently, the transformer-based canonical decoder utilizes the
input motion feature as the Key and Value of the cross-attention
mechanism. Meanwhile, it takes the GCL refined canonical TET
𝝉Ω ∈ R𝑁 Ω×𝐶 as the Query to map the motion feature from 2×𝑇 ×𝐶
to 𝑁Ω ×𝑇 ×𝐶 dimensions. At this point, the motion feature and
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the style feature are all expressed in a canonical motion space. This
process is formulated as:

D :
(
E(𝑚;𝜽𝑀E ),𝝉Ω ;𝜽D

)
↦→ (𝒇Ω𝑚 , 𝝁,𝝈), (3)

where D and 𝜽D denote the canonical decoder and its learnable
parameter, respectively. Finally, the AdaIN and a linear layer are
applied to reconstruct the input motion �̂� using 𝒇Ω𝑚 , 𝝁, and 𝝈 from
the canonical motion space.

Training. The training strategy of our cross-modality style em-
bedding is similar to that of MotionCLIP, and it serves as a pre-
training stage for our MotionS. Specifically, we utilize L2 losses for
the reconstruction of joint rotations 𝒎, positions 𝒏, and velocities
𝒗, expressed as:

L𝑟𝑒𝑐 = ∥𝒎 − �̂�∥22 + ∥𝒏 − �̂�∥22 + ∥𝒗 − 𝒗∥22 . (4)

The alignment of the style feature and the CLIP latent space is
achieved through the supervision of cosine similarity losses on the
triplet of the image, text, and motion style features:

L𝑠𝑖𝑚 = 2 − 𝑐𝑜𝑠 (𝒇𝑇𝑝 ,𝒇𝑀𝑝 ) − 𝑐𝑜𝑠 (𝒇 𝐼𝑝 ,𝒇𝑀𝑝 ). (5)

With these two losses, the style encoder and the canonical decoder
can be trained by:

min
𝜽𝑀
E ,𝜽D ,𝝉Ω

L𝑟𝑒𝑐 + 𝜈𝑠𝑖𝑚L𝑠𝑖𝑚, (6)

where 𝜈𝑠𝑖𝑚 is the loss balancing factor. 𝜽𝑀E , 𝜽D , and 𝝉Ω are opti-
mized in this training process.

3.2 Cross-structure Topology Shifting
To enable general motion stylization beyond the standard human
skeleton, we introduce the cross-structure topology shifting strat-
egy, which involves transferring the skeletal topology of the motion
in the latent feature space. As illustrated in the right part of Figure
4, for a type of skeleton B with 𝑁 joints, we exploit a learnable
topology-encoded token 𝝉 ∈ R𝑁×𝐶 to capture the structure and
order of the skeleton joints. Leveraging the graph convolutional
layer inspired by SAME [22], which incorporates a strict topology
prior, we input the initial TET into a GCL to refine the encoded
topology, thus facilitating the learning of the skeletal structure.
This process can be formulated as:

𝝉 ′ = 𝑨𝝉𝑾 , (7)

where 𝐴 ∈ R𝑁×𝑁 is the pre-defined adjacency matrix and 𝑨 =

𝑫−1/2𝑨𝑫−1/2. 𝑫𝑖, 𝑗 =
∑

𝑗 𝑨𝑖, 𝑗 is the the diagonal degree matrix.𝑾
is the learnable weights in the linear layer.

Subsequently, the refined 𝝉 is fed into a cross-attention block
as 𝑄𝑢𝑒𝑟𝑦, while a motion feature 𝒇𝐴 in space A serves as 𝐾𝑒𝑦 and
𝑉𝑎𝑙𝑢𝑒 to transfer themotion space from one to another. Notably, the
structural topology and joint order of these two motion spaces are
distinctly different, and the TETs are optimized with the network
in training. By employing our cross-structure topology shifting,
the motion space can be switched between any custom skeleton
structures and the SMPL-based canonical structure. This process
enables motion stylization using the style embedding extracted
from multi-modality style prompts through a unified AdaIN layer.
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Figure 3: The structure and training strategy of the cross-
modality style embedding. We design a motion encoder to
embed the motion 𝒎 of the standard SMPL skeleton and
align its latent space with the CLIP encoders. The motion
encoder and the CLIP encoders constitute the cross-modality
style encoder inMotionS. Furthermore, the canonicalmotion
space is constructed through the canonical decoder and the
learnable canonical TET.

3.3 Topology-shifted Stylization Diffusion
Building on the two key techniques introduced above, we present
the topology-shifted stylization diffusion (TSD) model, as illustrated
in the left part of Figure 4. Our TSD stands out from existing motion
stylization models for two main differences: 1) TSD is a generative
model capable of synthesizing diverse motion from a single se-
quence, addressing the challenge of scarce motion data for custom
characters. 2) TSD can stylize the generated motion for arbitrary
skeleton structures using multi-modality style prompts, providing
a flexible and user-friendly approach for animation creation.

Specifically, TSD comprises three network modules: the diffusion
encoder, the canonical decoder, and the diffusion decoder. First, the
QnA-based diffusion encoder takes the noised motion 𝒙𝑠 and the
step 𝑠 as inputs, producing the motion content feature 𝒇𝑥 ∈ R𝑇 ′×𝐶 .
Simultaneously, the style encoder extracts the style feature from
an SMPL motion sequence. Then, following a process similar to the
cross-modality style embedding shown in Figure 3, the style feature
is repeated, concatenated with the motion feature, and fed into the
pre-trained canonical decoder. At this stage, the canonical decoder,
integrated with the canonical TET, transfers the style feature to
the canonical motion space, allowing for stylization using the style
embedding. Notably, the parameters of the style encoder, canonical
decoder, and canonical TET are all frozen in this process.

Subsequently, in training, the network flow is divided into two
branches. In one branch, the canonical motion feature is directly
fed into the transformer-based diffusion decoder to shift it into the
specific motion space. In the other branch, the canonical motion
feature undergoes stylization using the AdaIN layer, a process akin
to cross-modality style embedding. The stylized canonical feature
is then input into the diffusion decoder, yielding a stylized specific
motion feature. It should be noticed that, during inference, the
stylized result is obtained through the stylization branch. This
unique design enables the stable training of TSD even without the
ground-truth stylized motion for the specific character.

Finally, the output features from the two branches are fed into a
linear layer to predict the ground-truth motion �̂�0 and the stylized
motion �̂�𝑝0 , respectively. Additionally, the stylized canonical motion
feature 𝒇Ω𝑥 is also output in training for calculating the losses.
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Figure 4: Illustration of the model details. The left part is the structure and training strategy of our topology-shifted stylization
diffusion (TSD) model, which generates the stylized motion across specific and canonical motion spaces. The right part is the
illustration of the cross-structure topology shifting.

Training.We design three losses to train the TSD in the absence
of ground-truth stylized motion for specific characters, i,e., the
content loss L𝑐𝑜𝑛 , the energy loss L𝑒𝑛𝑔 , and the style loss L𝑠𝑡𝑦 .

Originating from the simple loss of DDPM [14], the content loss
is formulated as:

L𝑐𝑜𝑛 := E𝑠∼[1,𝑆 ]
[
∥𝒙0 − �̂�0∥22

]
. (8)

The energy loss aims to weakly supervise the stylized results
�̂�
𝑝

0 with the style prompt motion 𝒙𝑝 using the motion energy. To
address structural differences between the SMPL skeleton of the
style prompt motion and the custom skeleton of the stylized motion,
we group the skeleton joints into five main human body parts: torso,
left arm, right arm, left leg, and right leg. Then, we average the joint
rotations within each group to align the joint number and order of
the two structures. Additionally, we align the temporal dimension
of the stylized results and the style prompt motion using linear
interpolation. The formulation of the energy loss is as follows:

L𝑒𝑛𝑔 := E𝑠∼[1,𝑆 ]
[𝑔𝑟𝑜𝑢𝑝 (

𝑖𝑛𝑡𝑒𝑟𝑝 (𝒙𝑝 )
)
− 𝑔𝑟𝑜𝑢𝑝 (�̂�𝑝0 )

2
2

]
. (9)

The style loss aims to guarantee that the stylized canonical mo-
tion feature 𝒇Ω𝑥 embodies the corresponding motion style present
in the style prompt motion 𝒙𝑝 . To achieve this, we employ the final
linear layer of the pre-trained canonical decoder to reconstruct 𝒇Ω𝑥
into a motion sequence compatible with the standard SMPL skele-
ton. Subsequently, we extract its style feature using the pre-trained
style encoder. The style loss is then calculated as:

L𝑠𝑡𝑦 =

𝒇𝑝 − E
(
𝑙𝑖𝑛𝑒𝑎𝑟 (𝒇Ω𝑥 )

) 2
2
. (10)

With the three losses introduced above, the TSD is trained by:

min
𝜽F ,𝝉Φ

L𝑐𝑜𝑛 + 𝜈𝑒𝑛𝑔L𝑒𝑛𝑔 + 𝜈𝑠𝑡𝑦L𝑠𝑡𝑦, (11)

where 𝜈𝑒𝑛𝑔 and 𝜈𝑠𝑡𝑦 are the loss balancing factor. 𝜽F and 𝝉Φ are
optimized in this training process.

4 EXPERIMENTS
Baselines. To the best of our knowledge, MotionS is the first
pipeline capable of generating stylized motion across various skele-
ton structures using a range of style prompts. We utilize three
reasonable baselines to evaluate the effectiveness of our MotionS.

SinMDM [31]. In the case of sample-based stylization, we retar-
get the style motion to the specific character’s skeleton and employ
the approach introduced in SinMDM to generate the results. For
text and image-based stylization, we utilize MDM to generate the

motion samples for the SMPL skeleton. Subsequently, the stylization
process aligns with the sample-based approach.

Deep Motion Editing (DME) [2] can utilize either motion sam-
ples or action videos as style prompts to stylize input motion se-
quences. However, it is limited to a fixed skeleton structure and
cannot accommodate text prompts. Thus, in our comparison with
DME, we follow its specific skeletal settings.

Motion Puzzle [19] controls the motion style of individual body
parts through reference motion sequences. It only supports sample-
based style prompts with a fixed skeleton structure. For the video
prompts, we utilize VIBE [35] to estimate the skeleton motion and
retarget it into the specific skeleton.
Datasets. Two public datasets, namely BABEL [30] and 100STYLE
[26], are employed to train our MotionS. BABEL is used for training
the cross-modality style embedding, while 100STYLE serves as the
style motion prompt for training the TSD model. Further details
about the datasets can be found in the supplementary material.
Implementation details. We implement our pipeline using Py-
Torch framework[28]. In the cross-modality style embedding (refer
to Section 3.1), the motion style encoder comprises a four-layer
transformer-encoder, while the canonical decoder is constructed
with a four-layer transformer-decoder. In TSD (refer to Section 3.3),
the diffusion encoder consists of an eight-layer QnA-encoder, and
the structure of the diffusion decoder mirrors that of the canonical
decoder. In our pipeline, the feature channel size𝐶 is set to 512. The
number of the canonical joints is 23, representing the SMPL skele-
ton joints excluding the root joint. For video prompts, we randomly
sample five frames to extract style features, which are computed as
the average image features of the sampled frames. Please see the
supplementary material for more details.
Evaluation metrics.We quantitatively evaluate our MotionS from
three aspects, i.e., content preservation, style fidelity and stylized
motion diversity. For evaluating content preservation and style
fidelity, we train TSD on two types of skeletal motions. The first
consists of four SMPL motion sequences corresponding to walk,
run, jump, and idle actions. The second includes two Xia et al. [39]
motion sequences used in DME and Motion Puzzle, corresponding
to walk and jump actions. Subsequently, we utilized the pre-trained
motion style encoder to extract the motion content features and
the style features of both the generated motion and the ground-
truth motion. Finally, we calculated the Fréchet Motion Distance
(FMD) [19] to measure the distance between the features of the gen-
erated motion and the ground-truth motion, reflecting the degree
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Table 1: Quantitative com-
parison on the SMPL source
motion and the Xia et al. [39]
source motion. The best re-
sults are in bold, and the
second best are underlined.
Note that a balance of good
scores across all metrics is
better than excelling in just
a few.

Methods SMPL Source Motion Xia Source Motion

Content↓ Style↓ Glo-D→ Loc-D→ Content↓ Style↓ Glo-D→ Loc-D→

SinMDM 28.24 15.12 3.37 3.21 31.73 16.82 4.27 3.39
SinMDM∗ 10.24 31.64 0.81 0.77 9.12 37.01 0.74 0.62
DME 33.51 32.13 - - 13.74 11.89 - -
Motion Puzzle 21.95 17.66 - - 17.47 12.44 - -

MotionS (CLIP) 24.21 22.75 3.23 3.01 27.46 23.79 3.65 3.12
MotionS (w/o TET) 16.35 18.14 1.75 1.66 22.31 28.64 2.71 1.98
MotionS (Ours) 10.96 14.11 1.24 1.20 12.32 14.65 1.89 1.73

Style Prompts Source Motion Motion𝕊𝕊 (Ours) SinMDM
Mixamo skeleton

(24 joints)

Custom skeleton 1
(33 joints)

SMPL skeleton
(22 joints)

Custom skeleton 2
(53 joints)

Crazy 
running.

SinMDM*

Figure 5: Qualitative comparison with SinMDM. SinMDM∗ refers to the model trained on the source motion instead of the style
motion. SinMDM exhibits unstable performance in expressing both the motion content and style.

of content preservation and style fidelity. For evaluating stylized
motion diversity, we utilize the Global Diversity (Glo-D) and
Local Diversity (Loc-D) metrics proposed in [23].

4.1 Qualitative Results
Comparison with the baselines. Figure 5 illustrates the qualitative
comparison between our MotionS and SinMDM. In their study, the
authors trained themodel on style motion and fused content motion
during the inference process for stylization. However, we observed
that this approach often results in generated outputs closely resem-
bling the style motion, potentially neglecting the preservation of
content motion, as shown in the fourth column of Figure 5. Thus,
we additionally implemented SinMDM∗ by training the model on
the source motion instead of the style motion.

Our MotionS effectively handles various skeleton structures,
stylizing the source motion based on key features of multi-modality
style prompts. Importantly, our MotionS well preserves the motion
content in the generated results. For instance, when using a walking
motionwith arms behind the back as the style prompt and a jumping
motion as the source, our result maintains the jumping content and
adjusts the skeletal arms to resemble the stylizedmotion. In contrast,
SinMDM tends to lose the jumping content, mistakenly generating
a walking motion. Furthermore, SinMDM∗ fails to transfer the style
to the content motion. In addition, when the skeletal structure
is complex and there is a significant difference between the style
prompt and source motion, both SinMDM and SinMDM∗ face mode
collapse, resulting in static motion sequences, as depicted in the

third row of Figure 5. In summary, MotionS inherits the strengths
of SinMDM in generating diverse sequences from a single source.
Additionally, MotionS is capable of learning skeletal structure and
utilizing multi-modality cues for motion stylization.

Figure 6 shows the qualitative comparison of our MotionS with
DME and Motion Puzzle. Due to the fixed Xia et al. [39] skeleton
structure employed in their work, the style sequences were retar-
geted from the SMPL skeleton to their specific skeleton. We trained
TSD using the two motion sequences provided in the DME’s demo.
Due to the uniformity of the jumping action, as shown in the first
row, we added positional encoding before the diffusion decoder
of TSD to ensure that the generated motion is consistent with the
source. In this experiment, we noticed that DME yields impressive
results when utilizing their normalized style prompts. However,
when confronted with in-the-wild style prompts, as illustrated in
the first row of Figure 6, the stylized results of DME exhibit notice-
able motion distortion. Turning to the results from Motion Puzzle,
while the motion style is effectively expressed, the contents are
not aligned with the source motion. The result also exhibits mo-
tion distortion when using the style motion extract from the video,
as shown in the bottom row of Figure 6. In comparison, MotionS
stands out for its robustness to arbitrary style cues, demonstrating
a more stable ability to generate diverse and stylized results.
Ablation study. We conduct ablative experiments to verify the
key designs in our MotionS as Figure 7 shouws, which involves
cross-modality style embedding, topology-encoded tokens, and the
utilization of graph convolutional layers.
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Style Prompts Source Motion Motion𝕊𝕊 (Ours) DME Motion Puzzle
Xia et. al. skeleton

(31 joints)

Figure 6: Qualitative comparison with DME and MotionPuzzle. The results of DME and MotionPuzzle suffer from motion
distortion when complex style prompts are used.

Style Prompts Source Motion Motion𝕊𝕊 (Ours)

Motion𝕊𝕊 (CLIP) Motion𝕊𝕊 (w/o 𝒇𝒇𝑝𝑝) Motion𝕊𝕊 (w/o TET) Motion𝕊𝕊 (w/o GCL)

Figure 7: Qualitative ablation study for key designs.

The concept of cross-modality style embedding is inspired by
MotionCLIP, with a key distinction being that our approach in-
dependently learns the motion content feature and the motion
style feature, reconstructing the input motion using both features.
To assess this design, we conducted an experiment by employing
MotionCLIP as the style encoder and incorporating a learnable
canonical decoder in TSD. The results, as shown in Figure 7, indi-
cate that MotionS (CLIP) fails to reconstruct the dynamic source
content, yielding a static stylized result. Additionally, in MotionS,
we concatenate the temporally repeated style feature with the con-
tent feature to obtain the motion feature, as depicted in Figure 3 and
Figure 4. This design is crucial for learning dynamic motion styles.
The result of MotionS (w/o 𝒇𝑝 ) demonstrates that without this pro-
cess, the model fails to express the motion style in the generated
motion.

The reason for the aforementioned failed result is that the mo-
tion style features aligned to the CLIP space only contain static
posture information, posing a challenge for the model to trans-
fer dynamic motion styles to the source motion. Thanks to our
approach, which involves decoupled learning of motion content
and style features, along with the weights transfer strategy of the
pre-trained canonical decoder, TSD in our MotionS can be theoreti-
cally viewed as comprising two complementary diffusion processes.
Initially, it leverages the style feature as a condition to generate the
dynamic content of the style motion and subsequently stylizes the
source motion in the canonical motion space. Consequently, our
cross-modality style embedding plays a pivotal role in achieving
flexible motion stylization in the generative process.

On the other hand, topology-encoded tokens and graph convolu-
tional layers have proven effective for skeletal topology shifting. In
Figure 7, MotionS (w/o TET) is implemented using the QnA-based
network for all modules, maintaining the joint dimension of the
features as one. However, this approach disregards the topology
differences among various skeletal structures, leading to an inabil-
ity to accurately express the motion style in the generated results

Swing arms. Old people.

Figure 8: Evaluation of the generalizability.

and causing jetting in the output motion. Furthermore, the result
of the model without the GCL is also worse than our MotionS,
further confirming that prior adjacency of the skeleton topology
can aid the model in perceiving the skeletal structure and achieving
cross-skeleton motion style transfer.
Generalizability.MotionS achieves zero-shot style control using
unseen style prompts, as demonstrated in Figure 8. The character
performs walking motion content stylized by text and images. De-
spite the implicit nature of the style prompts, such as the text "Old
people" and the famous painting "Skrik", MotionS can effectively
generate stylized motion that captures the key features of these
prompts. This capability is attributed to our cross-modality style
embedding, which aligns the style feature with the CLIP space
that trained on a tremendous dataset, enhancing the generalizabil-
ity of MotionS. However, as is common with deep learning-based
approaches, the capacity and robustness of the system are con-
strained by the training data. Thus, MotionS may face limitations
when dealing with excessively abstract style descriptions.
Generative stylization. Distinctly differing from existing motion
style transfer methods, MotionS functions as a generative pipeline.
As illustrated in Figure 9, the source motion depicts the charac-
ter running in a circle, and MotionS generates stylized results of
the character running randomly in any direction with a longer
sequence length. With its ability to generate diverse results and ac-
curately express motion styles, MotionS holds significant potential
for applications in the field of computer animation.

4.2 Quantitative Results
Table 4 presents a quantitative comparison between MotionS and
the baselines. It is crucial to emphasize that achieving a balance of
good scores across all metrics is preferable to excelling in just a few.
For the evaluation on SMPL source motion, we utilize the 100STYLE
dataset as style prompts. For the evaluation on Xia source motion,
we use the Xia test set from Aberman et al. [2] as style prompts.
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Source Motion Generated Motion
(Style: Waving hands.)

Figure 9: Evaluation of the generative stylization. MotionS
generates diverse motion from a single content sequence.

Content preservation. As shown in Table 4, MotionS effectively
preserves the source motion content compared to the baselines.
Despite SinMDM∗ achieving the best FMD, its generated results do
not express the motion style, as illustrated in Figure 5. The results
of DME and Motion Puzzle reveal lower generalization ability than
MotionS, as their performance on Xia source motion is significantly
better than on SMPL source motion. However, on both datasets,
their performance is worse than MotionS. Additionally, MotionS
(CLIP) and (w/o TET) exhibit worse performance on this metric
than ours, further validating the effectiveness of our key designs.
Style fidelity. In the evaluation of style fidelity on SMPL source
motion, MotionS achieves the best FMD. On Xia source motion,
MotionS also obtains comparable results with DME and Motion
Puzzle. These results demonstrate that MotionS can effectively
stylize the generated motion according to the motion prompts.
DME performs best on this metric for Xia source motion, given
that we use the data directly from their experiments. However, the
representation of motion style through joint positions in DME limits
its generalizability to unseen data, leading to the worst result on
SMPL source motion. Additionally, MotionS (CLIP) and (w/o TET)
cannot accurately transfer the motion style, as shown in Figure 7,
due to their inability to construct the canonical motion space.
Stylized motion diversity. Thanks to the diffusion model we em-
ployed, MotionS is capable of generating diverse motion from a
single source sequence. The Global Diversity and Local Diversity
are calculated based on the source motion. SinMDM obtains the
highest values since its generated result is similar to the source mo-
tion while lacking distinct style properties. In contrast, the results
of SinMDM∗ are primarily based on the style motion, leading to
a deficiency in motion content. On the other hand, the results of
MotionS preserve the source motion content, express style motion
features, and exhibit rich diversity.

4.3 Additional Evaluation
Manual adjustment. As discussed in Section 3.3, the network
flow of TSD in our MotionS is bifurcated into two branches to
ensure stable training. Only the stylization branch is utilized during
inference to generate the stylized motion. To enhance the flexibility
of the pipeline, we introduce a weight parameter 𝛼 , to blend the two
branches and perform feature linear interpolation in the canonical
motion space. This allows for manual adjustment, providing smooth
control over the degree of motion stylization. By gradually scaling
𝛼 , as Figure 10 illustrates, we can obtain results that transition

Style Prompts 𝛼𝛼 = 0.0 𝛼𝛼 = 0.5 𝛼𝛼 = 1.0

Figure 10: Application of the linear interpolation weight 𝛼 .
Manually adjusting 𝛼 can obtain smooth motion stylization.

Boxing. Raise right hand.Holding a cup.

Figure 11: We train the TSD on a text-to-motion dataset and
assess our MotionS’ performance in motion editing.

smoothly from the source motion to the stylized motion, enabling
interactive selection of visually optimal results.
Editing. Our MotionS pipeline can be extended to the application
of text-based motion editing. To achieve this, we train the TSD on
the BABEL dataset, utilizing it as style motion prompts in alignment
with the pre-training step of cross-modality style embedding. As
illustrated in Figure 11, we edit the walking motion using various
text prompts, and the generated results closely match the given
text prompts. However, the huge search space involved in editing
motion content for cross-structure skeletons poses challenges for
our model to learn. As a result, the visual quality of the editing
results is inferior to that of text-based motion generation methods.

5 CONCLUSIONS
In this work, we propose a novel generative motion stylization
pipeline, MotionS, capable of synthesizing diverse and stylized
motion from a single source sequence using multi-modality style
descriptions. In MotionS, two key strategies are exploited to embed
the cross-modality style prompts and the cross-structure skeleton
motion into a canonical motion space. The first strategy is cross-
modality style embedding, aligning style motion with the CLIP
space and extracting style features from motion, text, or image
prompts. The second strategy is cross-structure topology shifting,
aligning arbitrary skeleton structures with the SMPL skeleton in
latent space, enabling general motion stylization for various char-
acters. In implementation, we construct MotionS based on the
topology-shifted stylization diffusion model and pre-train the style
embedding auto-encoder on a large-scale motion, text, and image
triplet dataset. Subsequently, we transfer the pre-trained weights
of the canonical decoder into the diffusion model to ensure the
reconstruction of the dynamic motion style. We conduct extensive
experiments to validate the effectiveness of our method, demon-
strating that it achieves the state-of-the-art performance compared
to the baseline methods.
Limitations. One potential drawback lies in the limitation of style
descriptions that MotionS trained on, possibly leading to the gen-
erated results that may not accurately express the motion style
described in arbitrary custom prompts. Furthermore, foot contact
is not our primary focus, it can be addressed using the method pro-
posed in [1]. We acknowledge that some of the generated motion of
our MotionS exhibits motion distortions and artifacts. However, it
should be noted that stylizing motion on cross-structure characters
using cross-modality sources remains a challenging task that has
not been completely solved. We are committed to continuing our
efforts to improve the geometric quality of generated motion.
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