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Dataset Max Graph Size Max Runtime
Images Pairs Ours COLMAP

ScanNet [14] 391 43,964 2.98h 0.91h
ETH3D [59] 76 3,142 41min 9min
IMC2021 [6] 25 600 14min 3min
7-Scenes [60] 8,000 564,418 3.12h 13.52h
Wayspots [9] 1,157 1,333,196 4.72h Crash

Table 9. Max Pose Graph and its Runtime in each benchmarked
dataset. We run experiments on ScanNet, ETH3D, and IMC2021
with single V100 GPU, and on 7-Scenes and Wayspots with eight.

6. Extended Methodology

Compare Surrogate Loss to MAGSAC. We rewrite the
surrogate loss Eq. (10) into an integration form:

LMBA =
1

∥R∥
∑
i,j,k

−F (ri,j,k) · 1[ri,j,k < τmax]

= −
∫ τmax

0

F (r) · p(r) dr.
(14)

The formulation in Eq. (14) resembles the scoring function
presented by MAGSAC [2]. In Eq. (14), we marginalize
the residual probability density function p(r) with its em-
pirical CDF function F (r). MAGSAC [2] instead replaces
the empirical CDF function F (r) with a fixed chi-square
distribution derived from assumptions on the distribution of
residual errors for inliers and outliers. Despite their similar-
ity, Eq. (10) only serves as a surrogate forward loss for our
BA objective. We compare RANSAC performance using
the proposed scoring function Eq. (8) against MAGSAC in
Tab. 8. Our more generalized scoring function demonstrates
comparable performance. Please refer to Sec. 7.1 for details
of the experiments.

7. Extended Experiments
7.1. Two-View RANSAC

We follow the RoMa [20] evaluation protocol to benchmark
RANSAC-based essential matrix estimation. Results
on the MegaDepth-1500 [38] and ScanNet-1500 [15]
benchmarks are reported in Tab. 8. Replacing RoMa’s
default RANSAC, we evaluate MAGSAC++ and our
method under identical budgets, tuning both over the same
inlier-threshold grid and sampling the same number of
correspondences. For both methods, we sample 1 000 cor-
respondences and sweep the inlier threshold over the grid
{0.02, 0.05, 0.1, 0.2, 0.3, 0.5, 0.8, 1.0, 1.2, 1.5, 1.7, 2.0}

Ablation Method RRA@5◦ RTA@5◦

St
ag

es Initialization 62.6 41.0
Coarse 97.1 87.9
Fine 97.3 90.2

D
en

si
ty κ = 30 91.7 78.6

κ = 200 97.3 90.2
κ = 500 99.3 92.0

L
os

se
s

Soft L1 87.5 73.9
Cauchy 86.2 75.2
Tukey 63.5 40.7
L2 79.4 66.0
MBA (ours) 97.3 90.2

Table 10. Ablations on ETH3D dataset.

Type Method ETH3D Dataset
AUC@1◦ AUC@3◦ AUC@5◦

Detector-Based

SIFT+NN + COLMAP [56] CVPR’16 26.71 38.86 42.14
SIFT + NN + PixSfM [41] ICCV’21 26.94 39.01 42.19
D2Net + NN + PixSfM [41]ICCV’21 34.50 49.77 53.58
R2D2 + NN + PixSfM [41] ICCV’21 43.58 62.09 66.89

SP + SG + PixSfM [41] ICCV’21 50.82 68.52 72.86

Detector-Free

LoFTR + PixSfM [41] ICCV’21 54.35 73.97 78.86
LoFTR + DF-SfM [28] CVPR’24 59.12 75.59 79.53

AspanTrans. + DF-SfM [28]CVPR’24 57.23 73.71 77.70
MatchFormer + DF-SfM [28]CVPR’24 56.70 73.00 76.84

Dense Matching DKM + Dense-SfM [32]CVPR’25 59.04 77.73 82.20
RoMa + Dense-SfM [32]CVPR’25 60.92 78.41 82.63

Deep-based VGG-SfM [73]CVPR’24 (compared in Tab. 2)

Point-Based Mast3r-SfM [18]arXiv’24 35.85 58.46 65.03
Dense-SfM + Mast3r-SfM [18]arXiv’24 37.50 59.18 65.48

MDE SfMfM (Ours) 27.72 63.35 74.02

Table 11. Structure-from-Motion on ETH3D [58, 59] dataset in
metric AUC at multiple thresholds following DF-SfM.

in normalized pixel coordinates. Our method uses a GPU-
parallelized estimator: we always randomly compute 64
minimal solutions in parallel and retain the one that maxi-
mizes the scoring function in Eq. (9). We use OpenCV’s
MAGSAC++ implementation. Both MAGSAC++ and
our method substantially outperform standard RANSAC,
and our alternative scoring function Eq. (9) achieves
performance on par with MAGSAC++. These results
indicate that our RANSAC-motivated scoring function
applies to two-view essential matrix estimation, beyond the
multi-view pose setting.

7.2. FastMap Benchmark Comparison

Following FastMap [36], we evaluate our method on a
comprehensive set of large-scale real-world datasets that
cover diverse camera trajectory patterns and scene com-
plexities. The evaluation includes eight datasets: Mip-
NeRF360 [4], Tanks and Temples [30], NeRF-OSR [52],



ATE↓ RTA@3↑ AUC-R&T @ 3 ↑ RTA@1↑ AUC-R&T @ 1 ↑

n imgs MBA (Ours) FASTMAP [36] GLOMAP [47] COLMAP [56] MBA (Ours) FASTMAP [36] GLOMAP [47] COLMAP [56] MBA (Ours) FASTMAP [36] GLOMAP [47] COLMAP [56] MBA (Ours) FASTMAP [36] GLOMAP [47] COLMAP [56] MBA (Ours) FASTMAP [36] GLOMAP [47] COLMAP [56]

mipnerf360 (9) 215.6 5.0e-4 4.2e-4 3.3e-5 5.8e-5 99.6 99.9 100.0 100.0 85.5 97.4 98.2 97.2 87.3 99.8 100.0 99.7 66.1 92.4 94.6 91.9
tnt advanced (6) 337.8 1.7e-2 6.4e-3 1.2e-2 1.2e-3 59.9 71.4 79.1 98.5 34.7 42.6 75.3 94.8 25.2 42.3 77.5 97.0 12.5 16.7 69.8 90.0

tnt intermediate (8) 268.6 5.7e-3 7.8e-5 1.9e-5 2.6e-4 89.8 99.9 100.0 99.8 61.7 94.1 99.0 98.9 62.8 99.3 99.9 99.5 35.4 83.1 96.9 97.3
tnt training (7) 470.1 3.8e-3 3.0e-3 1.1e-2 3.0e-4 88.8 87.8 88.7 99.9 63.2 77.2 87.9 99.5 63.6 82.1 88.6 99.9 31.9 60.5 86.3 98.7

nerf osr (8) 402.8 1.4e-3 1.6e-3 1.1e-3 1.3e-3 89.8 91.7 92.0 92.1 69.3 70.9 71.9 71.7 54.4 71.1 71.9 71.7 35.0 43.2 45.2 44.7
drone deploy (9) 524.7 2.4e-3 4.9e-3 4.3e-3 2.0e-3 89.6 97.9 98.2 91.3 71.8 79.2 81.1 65.2 72.4 89.6 91.5 73.5 46.6 50.4 53.5 40.2
urban scene (3) 3824 8.1e-5 1.7e-5 1.4e-5 1.4e-5 99.0 99.9 99.9 100.0 85.9 95.3 97.0 97.0 94.1 99.5 99.6 99.6 63.2 86.3 91.2 91.3
mill19 building 1920 5.1e-5 3.0e-4 1.3e-2 1.9e-5 99.6 99.9 0.1 99.9 93.5 95.5 0.0 95.6 95.9 99.3 0.0 99.3 81.8 87.0 0.0 87.4

mill19 rubble 1657 4.3e-5 3.6e-5 6.4e-5 3.4e-5 99.9 99.9 99.8 99.9 95.8 93.6 94.5 94.6 98.4 98.6 98.6 98.7 87.8 81.6 84.7 84.8
eyeful apartment 3804 3.6e-3 2.8e-3 9.4e-3 2.2e-3 57.8 86.8 75.0 90.2 34.5 45.5 50.5 62.0 21.2 51.1 61.3 71.7 8.1 6.4 18.2 21.9

eyeful kitchen 6042 9.7e-4 3.1e-3 7.4e-3 - 72.3 85.0 59.9 - 46.0 38.1 41.2 - 33.7 46.7 51.7 - 13.4 4.6 14.4 -

Table 12. Pose accuracy comparison on MipNeRF360 [4], Tanks and Temples [30], NeRF-OSR [52], DroneDeploy [50], Urban-
scene3D [39], Mill-19 [70], and Eyeful Tower [82]. We follow the evaluation protocol established by FastMap [36] for reporting pose
accuracy metrics on these datasets. Note, [36] uses a different COLMAP groundtruth to Tab. 4. For datasets with multiple scenes, we
denote the average number of images as dataset-name(#scenes). Results are listed separately for each scene in Mill-19 and Eyeful
Tower. Metrics are color-coded with dark green for best performance and light green for competitive performance. Red denotes complete
failures and gray indicates timeout (did not finish in one week).

DroneDeploy [50], Urbanscene3D [39], Mill-19 [70], and
Eyeful Tower [82], with scene sizes ranging from approxi-
mately 200 to 6,000 images per scene. We compare against
FastMap, GLOMAP [47], and COLMAP [56] using stan-
dard pose accuracy metrics including ATE, RTA@δ, and
AUC-R&T@δ at multiple thresholds. The results are pre-
sented in Tab. 12, where we report per-dataset averages for
multi-scene datasets and individual results for Mill-19 and
Eyeful Tower scenes.

7.3. Ablations

Runtime. Our work primarily addresses the challenge of
applying pre-trained monocular depth estimators (MDE) to
multi-view pose estimation. As a result, computational ef-
ficiency has not been a primary focus of this work. In par-
ticular, we used first-order gradient descent for optimiza-
tion, which can be less efficient than second-order meth-
ods. In Tab. 9, we present a runtime comparison with
COLMAP. We report only the Bundle Adjustment time, ex-
cluding any preprocessing overhead. Overall, our method
running 50k iterations is approximately 2–4× slower than
COLMAP. The use of first-order optimization facilitates
scaling up to substantially larger problem set which is non-
trivial to achieve with second-order optimization. Notably,
COLMAP crashes on the Wayspots dataset. In Tab. 10, we
ablate the number of iterations, only running 5k steps with
a sophisticated optimization scheme. (Detailed in para-
graph Optimization Strategy). Yet, this requires dataset-
specific engineering, hurting the generalization capability
of our method. We leave a more thorough investigation into
computational efficiency for future work.
Number of sampled pixels (κ). Our method requires a cer-
tain level of sampling density to achieve the desired level
of accuracy, as shown in Tab. 10 on ETH3D. With insuffi-
cient sampling (κ = 30), the results significantly decrease
to 91.7% RRA and 78.6% RTA at 5◦. Our default config-
uration (κ = 200) achieves 98.0% RRA and 91.3% RTA.
Further increasing the sampling density to κ = 500 yields
additional minor improvements, reaching 99.3% RRA and

92.0% RTA, slightly outperforming the numbers reported
in the main paper (97.3% RRA and 90.2% RTA at 5◦ in
Tab. 2).
Loss Function Comparison. We ablate different losses in
Tab. 10 for their effectiveness for monocular depth-based
pose estimation. Our marginalized Bundle-Adjustment
(MBA) approach significantly outperforms traditional loss
functions, achieving 97.3% RRA and 90.2% RTA. Among
conventional losses, the soft L1 (87.5% RRA, 73.9% RTA)
and Cauchy (86.2% RRA, 75.2% RTA) show moderate per-
formance, while the l2 loss performs worst (79.4% RRA,
66.0% RTA). These findings highlight the importance of
robust loss functions that can effectively handle noise in
monocular depth estimates.

7.4. Extended ScanNet and 7-Scenes Results

We also report results on the ScanNet dataset using cali-
brated cameras (i.e., known intrinsics) in Tab. 14. We fur-
ther present the detailed per-sequence performance on the
7-Scenes dataset in Tab. 15.

7.5. Evaluation Protocols

ETH3D Dataset in Tab. 2. The ETH3D consists of 13
multi-view scenes containing up to 76 high-resolution pho-
tographs per scene. We evaluate on ETH3D dataset fol-
lowing two evaluation protocols. Tab. 2 follows MASt3R-
SfM [18] to report Relative Rotation Accuracy (RRA@τ )
and Relative Translation Accuracy (RTA@τ ), which mea-
sure the percentage of image pairs whose estimated rela-
tive pose errors fall below a threshold τ = 5◦. For each
image pair (i, j) with valid ground-truth poses, the rota-
tion error is computed as the angular difference between
the estimated and ground-truth relative rotations, i.e., the
angle of Rgt−1

ij Rest
ij , while the translation error is the angle

between the normalized translation directions tgt
ij and test

ij .
These errors are aggregated over all possible image pairs
within each scene, yielding one RRA and one RTA score
per scene. The final reported scores are obtained by averag-



Scene COLMAP [56] ACE-Zero [10] FlowMap [62] VGGSfM [73] DF-SfM [28] MASt3R-SfM [18] Ours / DUSt3R [79] Ours / ZoeDepth [5] Ours / UniDepth [48]
RRA RTA RRA RTA RRA RTA RRA RTA RRA RTA RRA RTA RRA RTA RRA RTA RRA RTA

courtyard 56.3 60.0 4.0 1.9 7.5 3.6 50.5 51.2 80.7 74.8 89.8 64.4 94.7 94.7 94.7 94.5 94.7 94.4
delivery area 34.0 28.1 27.4 1.9 29.4 23.8 22.0 19.6 82.5 82.0 83.1 81.8 83.1 83.0 87.8 82.0 83.1 83.1
electro 53.3 48.5 16.9 7.9 2.5 1.2 79.9 58.6 82.8 81.2 100.0 95.5 95.6 78.2 91.9 78.5 93.0 77.2
facade 92.2 90.0 74.5 64.1 15.7 16.8 57.5 48.7 80.9 82.6 74.3 75.3 100.0 99.2 100.0 97.4 80.9 86.0
kicker 87.3 86.2 26.2 16.8 1.5 1.5 100.0 97.8 93.5 91.0 100.0 100.0 100.0 98.9 100.0 98.5 100.0 98.0
meadow 0.9 0.9 3.8 0.9 3.8 2.9 100.0 96.2 56.2 58.1 58.1 58.1 100.0 58.1 45.7 33.3 100.0 56.7
office 36.9 32.3 0.9 0.0 0.9 1.5 64.9 42.1 71.1 54.5 100.0 98.5 100.0 86.2 100.0 85.7 100.0 86.5
pipes 30.8 28.6 9.9 1.1 6.6 12.1 100.0 97.8 72.5 61.5 100.0 100.0 100.0 96.7 100.0 94.5 100.0 97.8
playground 17.2 18.1 3.8 2.6 2.6 2.8 37.3 40.8 70.5 70.1 100.0 93.6 94.7 93.8 100.0 96.5 100.0 99.2
relief 16.8 16.8 16.8 17.0 6.9 7.7 59.6 57.9 32.9 32.9 34.2 40.2 100.0 98.9 100.0 97.4 100.0 99.6
relief 2 11.8 11.8 7.3 5.6 8.4 2.8 69.9 70.3 40.9 39.1 57.4 76.1 100.0 98.9 100.0 98.6 100.0 99.8
terrace 100.0 100.0 5.5 2.0 33.2 24.1 38.7 29.6 100.0 99.6 100.0 100.0 100.0 100.0 100.0 94.5 100.0 98.6
terrains 100.0 99.5 15.8 4.5 12.3 13.8 70.4 54.9 100.0 91.9 58.2 52.5 100.0 95.4 100.0 93.4 100.0 95.2

Average 49.0 47.8 16.4 9.7 10.1 8.8 65.4 58.9 74.2 70.7 81.2 79.7 97.3 90.2 93.9 88.1 96.3 90.2

Table 13. Structure-from-Motion ablation with other Monocular Depth Models ZoeDepth and UniDepth on ETH3D dataset [58, 59].

Method Depth Corres.
Calibrated Uncalibrated

Acc@3◦ Acc@5◦ Acc@10◦ Acc@3◦ Acc@5◦ Acc@10◦

COLMAP [56] - SuperPoint [17] 0.398 0.589 0.783 0.342 0.505 0.670

SfMfM (Ours)

ZoeDepth [5] RoMa [20] 0.396 0.614 0.823 0.372 0.586 0.811
DUSt3R [79] RoMa [20] 0.426 0.631 0.830 0.403 0.615 0.820
UniDepth [48] RoMa [20] 0.432 0.636 0.833 0.407 0.612 0.823
DUSt3R [79] MASt3R [34] 0.432 0.639 0.837 0.384 0.596 0.811
UniDepth [48] MASt3R [34] 0.439 0.645 0.841 0.393 0.598 0.817

Table 14. Extended Structure-from-Motion Results on the ScanNet dataset [14], with calibrated and uncalibrated cases.

ing the per-scene RRA and RTA across all 13 scenes.

IMC2021 in Tab. 3 We follow DF-SfM [28] in evaluating
the Area Under the Curve (AUC) of relative pose accuracy
at multiple thresholds. For each image pair with ground-
truth camera poses, we compute the rotation error as the
angular difference (in degrees) between the estimated and
ground-truth relative rotations, and the translation error as
the angle between the corresponding normalized translation
directions. The pose error is defined as the maximum of the
rotation and translation errors. The AUC at threshold τ is
defined as the area under the cumulative distribution func-
tion (CDF) of pose errors up to τ , normalized by τ , where
CDF(e) denotes the proportion of image pairs with pose er-
ror less than e degrees. On the IMC dataset, the AUC metric
is computed globally across all valid image pairs, without
per-scene aggregation. Following standard practice, we re-
port AUC at thresholds: 3◦, 5◦, and 10◦.

ScanNet Dataset. Similarly, for the ScanNet dataset, we
define the pose error as the angular error given by the max-
imum of the rotation and translation angular errors. For
each image pair with ground-truth poses, the rotation error
is computed as the angular difference between the estimated
and ground-truth relative rotations, and the translation error
is defined as the angle between the corresponding normal-
ized translation vectors. We report the Accuracy (ACC@τ ),
defined as the percentage of image pairs with pose error less
than a given threshold τ . The metric is computed over all
visible frame pairs within each scene and averaged to pro-
duce a per-scene ACC score. The final result is average

across all scenes. For a fair comparison with COLMAP, we
only report scores over the subset of frame pairs for which
COLMAP successfully returns a pose estimate.

FastMap Benchmark. Following FastMap [36], we report
standard pose accuracy metrics including Absolute Transla-
tion Error (ATE), Relative Translation Accuracy (RTA@δ),
and Area Under the Curve for Rotation and Translation
(AUC-R&T@δ) at thresholds of 1◦ and 3◦. For each im-
age pair with valid ground-truth poses, the rotation error is
computed as the angular difference between estimated and
ground-truth relative rotations, and the translation error as
the angle between normalized translation directions. ATE
measures the absolute translation error magnitude. RTA@δ
reports the percentage of image pairs with both rotation and
translation errors below threshold δ. AUC-R&T@δ com-
putes the area under the accuracy curve up to threshold δ.
For multi-scene datasets, we report per-dataset averages,
while Mill-19 and Eyeful Tower results are listed per scene.

7-Scenes Dataset. For the 7-Scenes dataset [60], we follow
DUSt3R [79] on the standard evaluation protocol by com-
puting the median rotation and translation errors across all
test frames. The translation error is measured as the Eu-
clidean distance (in centimeters) between the predicted and
ground-truth camera positions, while the rotation error is
computed as the angular difference (in degrees) between the
predicted and ground-truth orientations. These median er-
rors provide a robust summary of pose estimation accuracy
in the presence of outliers and are reported for each scene
individually. The final scores are obtained by averaging the



Category Method Chess Fire Heads Office Pumpkin Kitchen Stairs Average

FM
AS [55]PAMI’16 4/1.96 3/1.53 2/1.45 9/3.61 8/3.10 7/3.37 3/2.22 5.1/2.46
HLoc [53]CVPR’19 2/0.79 2/0.87 2/0.92 3/0.91 5/1.12 4/1.25 6/1.62 3.4/1.07

E2E
SC-wLS [81]ECCV’22 3/0.76 5/1.09 3/1.92 6/0.86 8/1.27 9/1.43 12/2.80 6.6/1.45
NeuMaps [65]CVPR’23 2/0.81 3/1.11 2/1.17 3/0.98 4/1.11 4/1.33 4/1.12 3.1/1.09
PixLoc [54]CVPR’21 2/0.80 2/0.73 1/0.82 3/0.82 4/1.21 3/1.20 5/1.30 2.9/0.98

SCR

ACE [9]CVPR’23 1.9/0.7 1.9/0.9 0.9/0.6 2.7/0.8 4.2/1.1 4.2/1.3 3.9/1.1 2.8/0.93
DSAC* [8]PAMI’22 1.9/1.11 1.9/1.24 1.1/1.82 2.6/1.18 4.2/1.41 3.0/1.70 4.2/1.42 2.7/1.41
HSCNet [37]CVPR’20 2/0.7 2/0.9 1/0.9 3/0.8 4/1.0 4/1.2 3/0.8 2.7/0.90
HSCNet++ [78]IJCV’24 2/0.63 2/0.79 1/0.8 2/0.65 3/0.85 3/1.09 3/0.83 2.29/0.81

APR
Direct-PN [11]3DV’21 10/3.52 27/8.66 17/13.1 16/5.96 19/3.85 22/5.13 32/10.6 20/7.26
DFNet [12]ECCV’22 3/1.15 9/3.71 8/6.08 7/2.14 10/2.76 9/2.87 11/5.58 8/3.47
MAREPO [13]CVPR’24 2.1/1.24 2.3/1.39 1.8/2.03 2.8/1.26 3.5/1.48 4.2/1.71 5.6/1.67 3.2/1.54

MDE SfMfM (Ours) 2.2/0.77 1.9/0.80 1.1/0.80 3.0/0.91 4.3/1.04 3.7/1.32 2.7/0.78 2.7/0.92

Table 15. Extended Camera Relocalization Results on the 7-Scenes dataset [60], with per-scene performance.

per-scene median errors across all seven scenes.
Wayspots Dataset. For the Wayspots dataset [9], we follow
the official evaluation protocol by measuring the accuracy
of absolute camera pose predictions at multiple error thresh-
olds. Specifically, the predicted pose is considered correct
if its translation error is below 10 cm and its rotation error is
below 5◦, computed with respect to the ground-truth cam-
era pose. For each test sequence, we report the percentage
of query images that meet this criterion. The final perfor-
mance is obtained by averaging the per-sequence accuracies
across all test scenes.

7.6. Extended Implementation Details

In both coarse and fine stages, we optimize with Adam [29]
for 50, 000 iterations at a learning rate of 1e-3. Within each
pair of frames, we sample κ = 200 pixels. For coarse BA
objective Eq. (13), we set maximum logged residual value
τ̄max = 10. For fine BA objective Eq. (5), we set τmax =
20. We parameterize camera poses following SPARF [69],
where rotations are represented using a 6-DoF continuous
representation and translations are encoded as 3-DoF vec-
tors. We include image pairs where at least ν ≥ 15% of
the pixels are co-visible. During preprocessing, we sample
correspondences only from dense regions where the confi-
dence score exceeds a threshold of χ > 0.2. To compute the
probability density function (PDF) and cumulative distribu-
tion function (CDF) using a histogram-based kernel density
estimation (KDE) algorithm, we use a 1 × 100 histogram
vector. For multi-GPU parallelization, we adopt different
strategies in the coarse and fine stages. In the coarse stage,
we distribute multiple complete sub-graphs (as shown in
Fig. 2) across different GPUs. In the fine stage, we ran-
domly assign frame pairs to different GPUs for processing.
We observe that the intrinsic parameters typically converge
more slowly than the others; therefore, we increase their
learning rate by a factor of 50, i.e., the intrinsic parameters

use a learning rate of 5e-2.
Two-View Pose Initialization. We initialize the two-view
pose sequentially. First, we estimate the essential matrix
using the five-point algorithm [35] within a RANSAC loop
on normalized image coordinates, and decompose it to re-
cover the rotation R and the unit translation direction t̂ with
∥t̂∥ = 1. Next, we resolve the absolute translation scale us-
ing the monocular depth map Di of the source frame Ii.
For each pixel p ∈ Ii with depth d(p) = Di[p], we use the
projection operator πi→j to project it to the target frame Ij
for a candidate scale s > 0. The projection πi→j(d(p), s)
depends on the camera intrinsics Ki, Kj and the relative
pose R, st̂. We choose s(p) that minimizes the distance
between the projected point πi→j(d(p), s) and the corre-
sponding pixel v ∈ Ij along the epipolar line defined by
(Ii, Ij). Repeating this process for all valid pixels yields a
set of per-pixel scale estimates {s(p)}. The median of these
estimates is taken as the final scale s⋆, forming the initial-
ized two-view pose

(
R, s⋆t̂

)
.

Camera Intrinsic Initialization. In uncalibrated settings,
we initialize camera intrinsics using the DUSt3R [79]
pointmap. First, we convert the pointmap into an incidence
field following WildCamera [86]: for each pixel p with cor-
responding 3D point (x, y, z), we compute the incidence
(ray-direction) vector (x/z, y/z, 1). This incidence map
encodes the incoming camera-ray direction for each pixel,
which, under the pinhole model, depends solely on camera
intrinsics and pixel coordinates. We then apply WildCam-
era’s RANSAC-based calibration procedure to recover the 1
DoF intrinsic. We repeat the intrinsic initialization process
for each frame. When shared intrinsics are assumed across
the collection, we set the initial focal length to the median
value across all frames.
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