
Supplementary Materials for Domain Adaptation under Open Set Label Shift

A Preliminaries

Domain adaptation under label shift Under label shift, we observe data from k classes in both
source and target where the conditional distribution remain invariant (i.e., pspx|yq “ ptpx|yq for all
classes y P r1, ks) but the target label marginal may change (i.e., ptpyq ‰ pspyq). Additionally, for all
classes in source have a non-zero support , i.e., for all y P r1, ks, pspyq ě c, where c ą 0. Here, given
labeled source data and unlabeled target data our tasks are: (i) estimate the shift in label distribution,
i.e., ptpyq for all y P r1, ks; (ii) train a classifier for the target domain ft to approximate ptpy|xq.

One common approach to label shift involves estimating the importance ratios ptpyq{pspyq by
leveraging a blackbox classifier and then employing re-sampling of source data or importance re-
weighted ERM on source to obtain a classifier for the target domain [45, 4, 1].

PU learning Under PU learning, we possess labeled source data from a positive class (pp) and
unlabeled target data from pu “ αpp ` p1 ´ αqpn a mixture of positive and negative class (pn). Our
goals naturally break down in to two tasks: (i) MPE, determining the fraction of positives pp in pu
and (ii) PU classification, learning a positive-versus-negative classifier on target.

Note that given access to population of positives and unlabeled, α can be estimated as
minx pupxq{pppxq. Next, we briefly discuss recent methods for MPE that operate in the classifier
output space to avoid curse of dimensionality:

(i) EN: Given a domain discriminator classifier fd trained to discriminate between
positive and unlabeled, Elkan and Noto [24] proposed the following estimator:
ř

xiPXp
fdpxiq{

ř

xiPXu
fdpxiq where Xp is the set of positive examples and Xu is the set

of unlabeled examples.

(ii) DEDPUL: Given a domain discriminator classifier fd, Ivanov [35] proposed an estimator
that leverages density of the data in the output space of the classifier fd to directly estimate
min pupfpxqq{pppfpxqq.

(iii) BBE: BBE [29] identifies a threshold on probability scores assigned by the classifier fd such
that by estimating the ratio between the fractions of positive and unlabeled points receiving
scores above the threshold, we obtain proportion of positives in unlabeled.

After obtaining an estimate for mixture proportion α, following methods can be employed for PU
classification:

(i) Domain Discriminator: Given positive and unlabeled data, Elkan and Noto [24] trained
a classifier fd to discriminator between them. To make a prediction on test point from
unlabeled data, we can then use Bayes rule to obtain the following transformation on
probabilistic output of the domain discriminator: f “ α

`

m
n

˘

´

fdpxq

1´fdpxq

¯

, where n and m

are the number of positives and unlabeled examples used to train fd [24].

(ii) uPU: Du Plessis et al. [21] proposed an unbiased loss estimator for positive versus negative
training. In particular, since pu “ αpp ` p1 ´ αqpn, the loss on negative examples
Epn

rℓpfpxq;´1qs can be estimated as:

Epn
rℓpfpxq;´1qs “

1

1 ´ α

“

Epu
rℓpfpxq;´1qs ´ αEpp

rℓpfpxq;´1qs
‰

. (6)

Thus, a classifier can be trained with the following uPU loss:

LuPUpfq “ αEpp
rℓpfpxq;`1qs ` Epu

rℓpfpxq;´1qs ´ αEpp
rℓpfpxq;´1qs . (7)

(iii) nnPU: While unbiased losses exist that estimate the PvN loss given PU data and the mixture
proportion α, this unbiasedness only holds before the loss is optimized, and becomes

17



ineffective with powerful deep learning models capable of memorization. Kiryo et al. [38]
proposed the following non-negative regularization for unbiased PU learning:

LnnPUpfq “ αEpp
rℓpfpxq;`1qs ` max

␣

Epu
rℓpfpxq;´1qs ´ αEpp

rℓpfpxq;´1qs , 0
(

.
(8)

(iv) CVIR: Garg et al. [29] proposed CVIR objective, which discards the highest loss α fraction
of unlabeled examples on each training epoch, removing the incentive to overfit to the
unlabeled positive examples. CVIR loss is defined as

LCVIRpfq “ αEpp
rℓpx, 1; fqs ` Epu

rwpxqℓpx,´1; fqs , (9)

where weights wpxq “ I rℓpx,´1; fq ď VIRαpfqs for VIRαpfq defined as VIRαpfq “

inftτ P R : Px„pu
pℓpx,´1; fq ď τq ě 1 ´ αu. Intuitively, VIRαpfq identifies a threshold

τ to capture bottom 1 ´ α fraction of the loss ℓpx,´1q for points x sampled from pu.

A.1 Reduction of OSLS into k PU problems

Under the strong positivity condition, the OSLS problem can be broken down into k PU problems as
follows: By treating a given source class yj P Ys as positive and grouping all other classes together
as negative we observe that the unlabeled target data is then a mixture of data from the positive and
negative classes. This yields a PU learning problem and the corresponding mixture proportion gives
the fraction αj of class yj among the target data. By iterating this process for all source classes, we
can solve for the entire target label marginal ptpyq. Thus, OSLS reduces to k instances of PU learning
problem. Formally, note that ptpxq can be written as:

ptpxq “ ptpy “ jq
l jh n

αj

pspx|y “ jq
l jh n

pp

` p1 ´ ptpy “ jqq

ˆ

ÿ

iPYztju

ptpy “ iq

1 ´ ptpy “ jq
pspx|y “ iq

˙

l jh n

pn

, (10)

individually for all j P Ys. By repeating this reduction for all classes, we obtain k separate PU
learning problems. Hence, a natural choice is to leverage this structure and solve k PU problems to
solve the original OSLS problem.

In particular, for each class j P Ys, we can first estimate its prevalence pαj in the unlabeled target.
Then the target marginal for the novel class is given by pαk`1 “ 1 ´

řk
i“1 pαi. For classification, we

can train k PU learning classifiers fi, where fi is trained to classify a source class i versus others
in target. Assuming that each fj returns a score between r0, 1s, during test time, an example x is
classified as fpxq given by

fpxq “

"

argmaxjPYs
fjpxq if maxjPYs

fjpxq ě 0.5

k ` 1 o.w .
(11)

That is, if each classifier classifies the example as belonging to other in unlabeled, then we classify
the example as belonging to the class k ` 1. In our main experiments, to estimate αj and to train fj
classifiers for all j P Ys, we use BBE and CVIR as described before which was shown to outperform
alternative approaches in Garg et al. [29]. We ablate with other methods in App. F.8.

Note that mathematically any OSLS problems can be thought of as k-PU problems as per (10).
However, for identifiablity of each of these PU problems, we need the irreduciblity assumption [7].
Put simply, for individual PU problems defined for source classes j P Ys, we need existence of a
sub-domain Xj such that we only observe example for that class j in Xj . Collectively Xj gives us
the Xsp defined in the strong positivity condition.

Failure due to error-accumulation While trading off bias with variance, PU learning algorithms
tend to over-estimate the mixture proportion [29, 7]. This error incurred due to bias can be mild
for a single mixture proportion estimation task but accumulates with increasing number of classes
(i.e., k). This error accumulation can significantly under-estimate the proportion of novel class when
estimated by subtracting the sum of prevalence of source classes in target from 1.
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B Proofs for identifiability of OSLS

For ease, we re-state Proposition 1 and Proposition 2.

Proposition 1 (Necessary conditions). Assume ptpyq ą 0 for all y P Yt. Then ptpyq is identified
only if ptpx|y “ k ` 1q and pspx|yq for all y P Ys satisfy weak positivity, i.e., there must exists a
subdomain Xwp Ă X such that:

(i) ptpXwp|y “ k ` 1q “ 0; and
(ii) the matrix rpspx|yqsxPXwp,yPYs

is full column-rank.

Proof. We prove this by contradiction. Assume that there exists a unique solution ptpyq. We will
obtain contradiction when both (i) and (ii) don’t hold.

First, assume for no subset Xwp Ď X , we have rpspx|yqsxPXwp,yPYs
as full-rank. Then in that case,

we have vectors rpspx|y “ jqsxPX as linearly dependent for j P Ys, i.e., there exists rαjsjPYs P Rk

such that
ř

j αjpspx|y “ jq “ 0 for all x P X . Thus for small enough ϵ ą 0, we have infinite
solutions of the form rptpy “ jq ´ ϵ ¨ ajsjPYs

.

Hence, there exists Xwp Ď X for which we have rpspx|yqsxPXwp,yPYs
as full-rank. Without loss

of generality, we assume that |Xwp| “ k. Assume that ptpXwp|y “ k ` 1q ą 0, i.e., rptpx|y “

k ` 1qsxPXwp has l ă k zero entries. We will now construct another solution for the label marginal pt.
For simplicity we denote A “ rpspx|yqsxPXwp,yPYs

. Consider the vector vpγq “ rptpxq ´ pptpy “

k ` 1q ´ γqptpx|y “ k ` 1qsxPXwp for some γ ą 0. Intuitively, when γ “ 0, we have u “ A´1vp0q

where u “ rptpyqsyPYs
, i.e., we recover the true label marginal corresponding to source classes.

However, since the solution is not at vertex, there exists a small enough γ ą 0 such that u1 “

A´1vpγq with
ř

j u
1
j ď 1 and u1

j ě 0. Since A is full-rank and vpγq ‰ vp0q, we have u1 ‰ u.
Thus we construct a separate solution with u1 as rptpyqsyPYs and ptpxq ´

ř

jPYs
u1
jpspx|y “ jq as

ptpx|y “ k ` 1q. Hence, when there exists Xwp Ď X for which we have rpspx|yqsxPXwp,yPYs
as

full-rank, for uniqueness we obtain a contradiction on the assumption ptpXwp|y “ k ` 1q ą 0.

We now make some comments on the assumption ptpyq ą 0 for all y P Yt in Proposition 1. Since,
ptpyq needs to satisfy simplex constraints, if the solution is at a vertex of simplex, then OSLS
problem may not require weak positivity. For example, there exists contrived scenarios where
pspx|y “ jq “ pspx|y “ kq for all j, k P Ys and ptpx|y “ k ` 1q ‰ pspx|y “ jq for all j P Ys.
Then when ptpxq “ ptpx|y “ k ` 1q, we can uniquely identify the OSLS solution even when weak
positivity assumption is not satisfied.

Proposition 2 (Sufficient conditions). The target marginal ptpyq is identified if for all y P Yztk ` 1u,
ptpx|y “ k ` 1q and pspx|yq satisfy either:

(i) Strong positivity, i.e., there exists Xsp Ă X such that ptpXsp|y “ k ` 1q “ 0 and the matrix
rpspx|yqsxPXsp,yPYs

is full-rank and diagonal; or

(ii) Separability, i.e., there exists Xsep Ă X , such that ptpXsep|y “ k ` 1q “ 0 , pspXsepq “ 1 ,
and the matrix rpspx|yqsxPXsep,yPYs

is full column-rank.

Proof. For each condition, we will prove identifiability by constructing the unique solution.

Under strong positivity, for all j P Ys there exists x P Xsp such that ptpx|y “ kq “ 0 for all
k P Ytztju. Set αj “ minxPX ,pspx|y“jqą0

ptpxq

pspx|y“jq
, for all j P Ys. For x P Xsp such that ptpx|y “

kq “ 0 for all k P Ytztju, we get ptpxq

pspx|y“jq
“ ptpy “ jq and for all x1 ‰ x, we have ptpxq

pspx|y“jq
ě

ptpy “ jq. Thus, we get αj “ ptpy “ jq. Finally, we get αk`1 “ 1 ´
ř

jPYs
αj . Plugging in values

of the label marginal, we can obtain ptpx|y “ k ` 1q as ptpxq ´
ř

yPYs
ptpy “ jqpspx|y “ jq.

Under separability, we can obtain the label marginal pt for source classes by simply considering
the set Xsep. Denote A “ rppx|yqsxPXsep,yPYs and v “ rptpxqsxPXsep . Then, since A is full column-
rank by assumption, we can define u “ pATAq´1AT v. For all x P Xsep, we have ptpxq “
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ř

yPYs
ptpyqpspx|yq and hence, u “ rptpyqsyPYs . Having obtained rptpyqsyPYs , we recover ptpy “

k ` 1q “ 1 ´
ř

jPYs
ptpy “ jq and ptpx|y “ k ` 1q “ ptpxq ´

ř

jPYs
ptpy “ jqpspx|y “ jq.

B.1 Examples illustrating importance of weak positivity condition

In this section, we present two examples, one, to show that weak positivity isn’t sufficient for
identifiability. Second, we present another example where we show that conditions in Proposition 2
are not necessary for identifiability.

Example 1 Assume X “ tx1, x2, x3, x4, x5u and Yt “ t1, 2, 3u. Suppose the ptpx|y “ 1q,
ptpx|y “ 2q, and ptpxq are given as:

ptpx|y “ 1q ptpx|y “ 2q ptpxq

x1 0.4 0.56 0.356
x2 0.3 0.3 0.207
x3 0.2 0.1 0.09
x4 0.1 0.04 0.042
x5 0.0 0.0 0.305

Here, there exists two separate ptpx|y “ 3q and ptpyq that are consistent with the given ptpx|y “ 1q,
ptpx|y “ 2q, and ptpxq and both the solutions satisfy weak positivity for two different Xwp and X 1

wp.

In particular, notice that ptpx|y “ 3q “ r0.17, 0.0675, 0.0, 0.0, 0.7625sT and ptpyq “ r0.3, 0.3, 0.4s

gives us the first solution. ptpx|y “ 3q “ r0.0, 0.0, 0.0645, 0.0096, 0.9839sT and ptpyq “

r0.19, 0.5, 0.31s gives us another solution. For solution 1, Xwp “ tx3, x4u and for solution 2, X 1
wp “

tx1, x2u. To check consistency of each solution notice that
ř

iPY ptpy “ iqptpx|y “ iq “ ptpxq for
each x P X .

In the above example, the key is to show that absent knowledge of which x’s constitute the set Xwp,
we might be able to obtain multiple different solutions, each with different Xwp and both ptpyq,
ptpx|y “ k ` 1q satisfying the given information and simplex constraints.

Next, we will show that in certain scenarios weak positivity is enough for identifiability.

Example 2 Assume X “ tx1, x2, x3, x4u and Yt “ t1, 2, 3u. Suppose the ptpx|y “ 1q, ptpx|y “

2q, and ptpxq are given as,

ptpx|y “ 1q ptpx|y “ 2q ptpxq

x1 0.5 0.2 0.24
x2 0.3 0.4 0.2
x3 0.1 0.35 0.35
x4 0.1 0.05 0.21

Here, out of all 4C2 possibilities for Xwp, only one possibility yields a solution that satisfies
weak positivity and simplex constraints. In particular, the solution is given by ptpx|y “ 3q “

r0.0, 0.0, 0.6, 0.4sT and ptpyq “ r0.4, 0.2, 0.4s with Xwp “ tx1, x2u.

In this example, we show that conditions in Proposition 2 are not necessary to ensure identifiability.
For discrete domains, this example also highlights that we can check identifiability in exponential
time for any OSLS problem given ptpxq and pspx|yq for all y P Ys.

B.2 Extending identifiability conditions to continuous distributions

To extend our identifiability conditions for continuous distributions, the linear independence condi-
tions on the matrix rpspx|yqsxPXsep,yPYs

has the undesirable property of being sensitive to changes
on sets of measure zero. In particular, by changing a collection of linearly dependent distributions
on a set of measure zero, we can make them linearly independent. As a consequence, we may im-
pose a stronger notion of independence, i.e., the set of distributions tppx|yq : y “ 1, ..., ku are such
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that there does not exist v ‰ 0 for which
ş

X
|
ř

y ppx|yqvy|dx “ 0 , where X “ Xwp for necessary
condition and X “ Xsp for sufficiency. We refer this condition as strict linear independence.

C PULSE Framework

In our PULSE framework, we build on top of BBE and CVIR from Garg et al. [29]. Here, we
elaborate on Step 3 and 5 in Algorithm 1.

Extending BBE algorithm to estimate target marginal among previously seen classes We
first explain the intuition behind BBE approach. In a PU learning problem, given positive and
unlabeled data, BBE estimates the fraction of positives in unlabeled in the push-forward space of
the classifier. In particular, instead of operating in the original input space, BBE maps the inputs to
one-dimensional outputs (i.e., a score between zero and one) which is the predicted probability of an
example being from the positive class. BBE identifies a threshold on probability scores assigned by a
domain discriminator classifier such that the ratio between the fractions of positive and unlabeled
points receiving scores above the threshold is minimized. Intuitively, if their exists a threshold on
probability scores assigned by the classifier such that the examples mapped to a score greater than the
threshold are mostly positive, BBE aims to identify this threshold. Efficacy of BBE procedure relies
on existence of such a threshold. This is referred to as the top bin property. We provide empirical
evidence to the property in Fig. 2 in App. D.1. We tailor BBE to estimate the relative fraction of
previously seen classes in the target distribution by exploiting a k-way source classifier fs trained on
labeled source data. We describe the procedure in Algorithm 2.

We now introduce some notation needed to introduce the tailored BBE proceudre formally. For given
probability density function p and a scalar output function f , define a function qpzq “

ş

Az
ppxqdx,

where Az “ tx P X : fpxq ě zu for all z P r0, 1s. Intuitively, qpzq captures the cumulative
density of points in a top bin, the proportion of input domain that is assigned a value larger than
z by the function f in the transformed space. We define an empirical estimator pqpzq given a set
X “ tx1, x2, . . . , xnu sampled iid from ppxq. Let Z “ fpXq. Define pqpzq “

řn
i“1 I rzi ě zs {n.

Our modified BBE procedure proceeds as follows. Given a held-out dataset of source tXS
2 ,y

S
2 u

and unlabeled target samples XT
2 , we push all examples through the source classifier f to obtain

k dimensional outputs. For all j P Ys, we repeat the following: Obtain Zs “ fjpXS
2 ridjsq and

Zt “ fjpXT
2 q. Intuitively, Zs and Zt are the push forward mapping of the source classifier. Next,

with Zp and Zu, we estimate pqs and pqt. Finally, we estimate rpptsj as the ratio pqtppcq{pqsppcq at pc that
minimizes the upper confidence bound at a pre-specified level δ and a fixed parameter γ P p0, 1q. Our
method is summarized in Algorithm 2. Throughout all the experiments, we fix δ at 0.1 and γ at 0.01.

Algorithm 2 Extending Best Bin Estimation (BBE) for Step 3 in Algorithm 1

input : Validation source tXS
2 ,y

S
2 u and unlabeled target samples XT

2 . Source classifier f : X Ñ

∆k´1. Hyperparameter 0 ă δ, γ ă 1.
1: ppt Ð zerospsize “ |Ys|q
2: for j P Ys do
3: idj Ð wherepyS

2 “ jq.
4: Zs, Zt Ð

“

fpXS
2 ridjsq

‰

j
,
“

fpXT
2 q
‰

j
.

5: pqspzq, pqtpzq Ð

ř

ziPZs
Irziězs

|idj | ,
ř

ziPZt
Irziězs

|XT
2 |

for all z P r0, 1s.

6: pcj Ð argmincPr0,1s

ˆ

pqtpcq

pqspcq
`

1`γ
pqspcq

ˆ

c

logp4{δq

2|XT
2 |

`

b

logp4{δq

2|idj |

˙˙

.

7: rpptsj Ð
pqtppcjq

pqsppcjq
.

8: end for
output : Normalized target marginal among source classes pp1

t Ð
ppt

||ppt||1

Extending CVIR to train discriminator fd and estimate novel class prevalence After estimating
the fraction of source classes in target (i.e., p1

tpjq “ ptpy“jq{
ř

kPYs
ptpy“kq for all j P Ys), we re-

sample the source data according to p1
tpyq to mimic samples from distribution p1

spxq. Thus, obtaining
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a PU learning problem instance, we resort to PU learning techniques to (i) estimate the fraction of
novel class ptpy “ k ` 1q; and (ii) learn a binary classifier fdpxq to discriminate between label
shift corrected source p1

spxq and novel class ptpx|y “ k ` 1q. Assume that sigmoid output fdpxq

indicates predicted probability of an example x belonging to label shift corrected source p1
spxq. With

pL`pfθ;Xq, we denote the loss incurred by fθ when classifying examples from X as positive, i.e.,
pL`pfθ;Xq “

ř|X|
i“1

ℓpfθpxiq,`1q

|X| . Similarly, pL´pfθ;Xq “
ř|X|

i“1
ℓpfθpxiq,´1q

|X|

Given an estimate of the fraction of novel class pptpy “ k ` 1q, CVIR objective creates a provisional
set of novel examples XN

1 by removing p1´ pptpy “ k` 1qq fraction of examples from XT
1 that incur

highest loss when predicted as novel class on each training epoch. Next, we update our discriminator
fd by minimizing loss on label shift corrected source rXS

1 and provisional novel examples XN
1 .

This step is aimed to remove any incentive to overfit to the examples from p1
spxq. Consequently,

we employ the iterative procedure that alternates between estimating the prevalence of novel class
pptpy “ k ` 1q (with BBE) and minimizing the CVIR loss with estimated fraction of novel class.
Algorithm 3 summarizes our approach which is used in Step 3 of Algorithm 1.

Note that we need to warm start with simple domain discrimination training, since in the initial stages
mixture proportion estimate is often close to 1 rejecting all the unlabeled examples. In Garg et al.
[29], it was shown that the procedure is not sensitive to the choice of number of warm start epochs
and in a few cases with large datasets, we can even get away without warm start (i.e., W “ 0) without
hurting the performance. In our work, we notice that given an estimate pα of prevalence of novel class,
we can use unbiased PU error (7) on validation data as a surrogate to identify warm start epochs for
domain discriminator training. In particular, we train the domain discriminator classifier for a large
number of epochs, say Epąą W q, and then choose the discriminator, i.e., warm start epoch W at
which fd achieves minimum unbiased validation loss.

Finally, to obtain a pk ` 1q-way classifier ftpxq on target we combine discriminator fd and source
classifier fs with importance-reweighted label shift correction. In particular, for all j P Ys, rftpxqsj “

pfdpxqq
wpjq¨rfspxqsj

ř

kPYs
wpkq¨rfspxqsk

and rftpxqsk`1 “ 1 ´ fdpxq. Similarly, to obtain target marginal pt, we
re-scale the label shift estimate among previously seen classes with estimate of prevalence of novel
examples, i.e., for all j P Ys, assign pptpy “ jq “ p1 ´ pptpy “ k ` 1qq ¨ pp1

tpy “ jq.

Overall, our approach proceeds as follows (Algorithm 1): First, we estimate the label shift among
previously seen classes. Then we employ importance re-weighting of source data to formulate a single
PU learning problem between source and target to estimate fraction of novel class pptpy “ k ` 1q

and to learn a discriminator fd for the novel class. Combining discriminator and label shift corrected
source classifier we get pk ` 1q-way target classifier.

C.1 PULSE under separability

Our ideas for PULSE framework can be extended to separability condition since (3) continues to
hold. In particular, when OSLS satisfies the separability assumption, we may hope to jointly estimate
the label shift among previously seen classes with label shift estimation techniques [45, 1] and learn
a domain discriminator classifier. This may be achieved by estimating label shift among examples
rejected by domain discriminator classifier as belonging to previously seen classes. However, in our
initial experiments, we observe that techniques proposed under strong positivity were empirically
stable and outperform methods developed under separability. This is intuitive for many benchmark
datasets where it may be more natural to expect that for each class there exists a subdomain that only
belongs to that class than assuming separability only between novel class samples and examples from
source classes.

D Proofs for analysis of OSLS framework

In this section, we provide missing formal statements and proofs for theorems in Sec. 8. This mainly
includes analysing key steps of our PULSE procedure for target label marginal estimation (Step 3, 5
Algorithm 1) and learning the domain discriminator classifier (Step 5, Algorithm 1).
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Algorithm 3 Alternating between CVIR and BBE for Step 5 in Algorithm 1

input : Re-sampled training source data rXS
1 , validation source data rXS

2 . Training target data XT
1

and validation data XT
2 . Hyperparameter W,B, δ, γ.

1: Initialize a training model fθ and an stochastic optimization algorithm A.
2: XN

1 Ð XT
1 .

{// Warm start with domain discrimination training}
3: for i Ð 1 to W do
4: Shuffle prXS

1 ,X
N
1 q into B mini-batches. With prXS

1 ris,XN
1 risq we denote ith mini-batch.

5: for i Ð 1 to B do
6: Set the gradient ∇θ

”

pL`pfθ; rX
S
1 risq ` pL´pfθ;X

N
1 risq

ı

and update θ with algorithm A.
7: end for
8: end for
9: pα Ð BBE(rXS

2 ,X
T
2 , fθ) {Algorithm 4}

10: Rank samples x P XT
1 according to their loss values ℓpfθpxq,´1q.

11: XN
1 Ð tXT

1 u1´pα where tXT
1 u1´pα denote the lowest ranked 1 ´ pα fraction of samples.

12: while training error pE`pfθ; rX
S
2 q ` pE´pfθ;X

N
1 q is not converged do

13: Train model fθ for one epoch on prXS
1 ,X

N
1 q as in Lines 4-7.

14: pα Ð BBE(rXS
2 ,X

T
2 , fθ) {Algorithm 4}

15: Rank samples x P XT
1 according to their loss values ℓpfθpxq,´1q.

16: XN
1 Ð tXT

1 u1´pα where tXT
1 u1´pα denote the lowest ranked 1 ´ pα fraction of samples.

17: end while
output : Trained discriminator fd Ð fθ and novel class fraction pptpy “ k ` 1q Ð 1 ´ pα.

Algorithm 4 Best Bin Estimation (BBE)

input : Re-sampled source data rXS and target samples XT . Discriminator classifier pf : X Ñ r0, 1s.
Hyperparameter 0 ă δ, γ ă 1.

1: Zs, Zt Ð fprXSq, fpXT q.

2: pqtpzq, pqspzq Ð

ř

ziPZs
Irziězs

| rXS| ,
ř

ziPZt
Irziězs

|X|T for all z P r0, 1s.

3: Estimate pc Ð argmincPr0,1s

ˆ

pqtpcq

pqspcq
`

1`γ
pqspcq

ˆ

c

logp4{δq

2| rXS| `

b

logp4{δq

2|XT |

˙˙

.

output : pα Ð
pqtppcq

pqsppcq

D.1 Formal statement and proof of Theorem 1

Before introducing the formal statement, we introduce some additional notation. Given probability
density function p and a source classifier f : X Ñ ∆k´1, define a function qpz, jq “

ş

Apz,jq
ppxqdx,

where Apz, jq “ tx P X : rfpxqsj ě zu for all z P r0, 1s. Intuitively, qpz, jq captures the cumulative
density of points in a top bin for class j, i.e., the proportion of input domain that is assigned a value
larger than z by the function f at the index j in the transformed space. We define an empirical
estimator pqpz, jq given a set X “ tx1, x2, . . . , xnu sampled iid from ppxq. Let Z “ rfpXqsj . Define
pqpz, jq “

řn
i“1 I rzi ě zs {n.

For each pdf ps and pt, we define qs and qt respectively. Moreover, for each class j P Ys,
we define qt,j corresponding to pt,j :“ ptpx|y “ jq and qt,´j corresponding to pt,´j :“
ř

iPYtztju ptpy“iqptpx|y“iq
ř

iPYtztju ptpy“jq
. Assume that we have n source examples and m target examples. Now

building on BBE results from Garg et al. [29], we present finite sample results for target label marginal
estimation:

Theorem 3 (Formal statement of Theorem 1). Define c˚
j “ argmincPr0,1s pqt,´jpc, jq{qt,jpc, jqq, for

all j P Ys. Assume minpn,mq ě maxjPYs

ˆ

2 logp4k{δq

q2t,jpc˚
j ,jq

˙

. Then, for every δ ą 0, ppt (in Algorithm 2
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with δ as δ{k) satisfies with probability at least 1 ´ δ, we have:

||ppt ´ pt||1 ď
ÿ

jPYs

p1 ´ ptpy “ jqq

˜

qt,´jpc˚
j , jq

qt,jpc˚
j , jq

¸

` O

˜

c

k3 logp4k{δq

n
`

c

k2 logp4k{δq

m

¸

.

When the data satisfies strong positivity, we observe that source classifiers often exhibit a threshold cy
on softmax output of each class y P Ys above which the top bin (i.e., rcy, 1s) contains mostly examples
from that class y. Formally, as long as there exist a threshold c˚

j P p0, 1q such that qt,jpc˚
j q ě ϵ and

qt,´jpc˚
j q “ 0 for some constant ϵ ą 0 for all j P Ys, we show that our estimator pα converges to

the true α with convergence rate minpn,mq´1{2. The proof technique simply builds on the proof of
Theorem 1 in Garg et al. [29]. First, we state Lemma 1 from Garg et al. [29]. Next, for completeness
we provide the proof for Theorem 3 which extends proof of Theorem 1 [29] for k classes.

Lemma 1. Assume two distributions qp and qu with their empirical estimators denoted by pqp and pqu
respectively. Then for every δ ą 0, with probability at least 1 ´ δ, we have for all c P r0, 1s∣∣∣∣ pqupcq

pqppcq
´

qupcq

qppcq

∣∣∣∣ ď
1

pqppcq

˜

d

logp4{δq

2nu
`

qupcq

qppcq

d

logp4{δq

2np

¸

.

Proof of Theorem 3. The main idea of the proof is to use the confidence bound derived in Lemma 1
at pc and use the fact that pc minimizes the upper confidence bound. The proof is split into two parts.
First, we derive a lower bound on pqt,jppcjq for all j P Ys and next, we use the obtained lower bound
to derive confidence bound on pptpy “ jq. With pαj , we denote pptpy “ jq for all j P Ys. All the
statements in the proof simultaneously hold with probability 1 ´ δ{k. We derive the bounds for a
single j P Ys and then use union bound to combine bound for all j P Ys. When it is clearly from
context, we denote qt,jpc, jq with qt,jpcq and qtpc, jq with qtpcq. Recall,

pcj :“ argmin
cPr0,1s

pqtpcq

pqt,jpcq
`

1

pqt,jpcq

˜

c

logp4k{δq

2m
` p1 ` γq

d

logp4k{δq

2npspy “ jq

¸

and (12)

pptpy “ jq :“
pqtppcjq

pqt,jppcjq
. (13)

Moreover,

c˚
j :“ argmin

cPr0,1s

qtpcq

qt,jpcq
and α˚

j :“
qtpc

˚
j q

qt,jpc˚
j q

. (14)

Part 1: We establish lower bound on pqt,jppcjq. Consider c1
j P r0, 1s such that pqt,jpc1

jq “
γ

2`γ pqt,jpc˚
j q.

We will now show that Algorithm 2 will select pcj ă c1
j . For any c P r0, 1s, we have with with

probability 1 ´ δ{k,

pqt,jpcq ´

d

logp4k{δq

2n ¨ pspy “ jq
ď qt,jpcq and qtpcq ´

c

logp4k{δq

2m
ď pqtpcq . (15)

Since
qtpc˚

j q

qt,jpc˚
j q

ď
qtpcq

qt,jpcq
, we have

pqtpcq ě qt,jpcq
qtpc

˚
j q

qt,jpc˚
j q

´

c

logp4k{δq

2m
ě

˜

pqt,jpcq ´

d

logp4k{δq

2n ¨ pspy “ jq

¸

qtpc
˚
j q

qt,jpc˚
j q

´

c

logp4k{δq

2m
.

(16)

Therefore, at c we have

pqtpcq

pqt,jpcq
ě α˚

j ´
1

pqt,jpcq

˜

c

logp4k{δq

2m
`

qtpc
˚
j q

qppc˚
j q

d

logp4k{δq

2n ¨ pspy “ jq

¸

. (17)
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Using Lemma 1 at c˚, we have

pqtpcq

pqt,jpcq
ě

pqtpc
˚
j q

pqt,jpc˚
j q

´

˜

1

pqt,jpc˚
j q

`
1

pqt,jpcq

¸˜

c

logp4k{δq

2m
`

qtpc
˚
j q

qt,jpc˚
j q

d

logp4k{δq

2n ¨ pspy “ jq

¸

(18)

ě
pqtpc

˚
j q

pqt,jpc˚
j q

´

˜

1

pqt,jpc˚
j q

`
1

pqt,jpcq

¸˜

c

logp4k{δq

2m
`

d

logp4k{δq

2n ¨ pspy “ jq

¸

, (19)

where the last inequality follows from the fact that α˚
j “

qtpc˚
j q

qt,jpc˚
j q

ď 1. Furthermore, the upper

confidence bound at c is lower bound as follows:

pqtpcq

pqt,jpcq
`

1 ` γ

pqt,jpcq

˜

c

logp4l{δq

2m
`

d

logp4k{δq

2n ¨ pspy “ jq

¸

(20)

ě
pqtpc

˚
j q

pqt,jpc˚
j q

`

˜

1 ` γ

pqt,jpcq
´

1

pqt,jpc˚
j q

´
1

pqt,jpcq

¸˜

c

logp4k{δq

2m
`

d

logp4k{δq

2n ¨ pspy “ jq

¸

(21)

“
pqtpc

˚
j q

pqt,jpc˚
j q

`

˜

γ

pqt,jpcq
´

1

pqt,jpc˚
j q

¸˜

c

logp4k{δq

2m
`

d

logp4k{δq

2n ¨ pspy “ jq

¸

(22)

Using (22) at c “ c1, we have the following lower bound on ucb at c1:

pqtpc
1q

pqt,jpc1q
`

1 ` γ

pqt,jpc1q

˜

c

logp4k{δq

2m
`

d

logp4k{δq

2n ¨ pspy “ jq

¸

(23)

ě
pqtpc

˚
j q

pqt,jpc˚
j q

`
1 ` γ

pqt,jpc˚
j q

˜

c

logp4k{δq

2m
`

d

logp4k{δq

2n ¨ pspy “ jq

¸

, (24)

Moreover from (22), we also have that the lower bound on ucb at c ě c1 is strictly greater than the
lower bound on ucb at c1. Using definition of pc, we have

pqtpc
˚
j q

pqt,jpc˚
j q

`
1 ` γ

pqt,jpc˚
j q

˜

c

logp4k{δq

2m
`

d

logp4k{δq

2n ¨ pspy “ jq

¸

(25)

ě
pqtppcq

pqt,jppcq
`

1 ` γ

pqt,jppcq

˜

c

logp4k{δq

2m
`

d

logp4k{δq

2n ¨ pspy “ jq

¸

, (26)

and hence

pc ď c1 . (27)

Part 2: We now establish an upper and lower bound on pαj . We start with upper confidence bound on
pαj . By definition of pcj , we have

pqtppcq

pqt,jppcq
`

1 ` γ

pqt,jppcq

˜

c

logp4k{δq

2m
`

d

logp4k{δq

2n ¨ pspy “ jq

¸

(28)

ď min
cPr0,1s

«

pqtpcq

pqt,jpcq
`

1 ` γ

pqt,jpcq

˜

c

logp4k{δq

2m
`

d

logp4k{δq

2n ¨ pspy “ jq

¸ff

(29)

ď
pqtpc

˚
j q

pqt,jpc˚
j q

`
1 ` γ

pqt,jpc˚
j q

˜

c

logp4k{δq

2m
`

d

logp4k{δq

2n ¨ pspy “ jq

¸

. (30)
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Using Lemma 1 at c˚
j , we get

pqtpc
˚
j q

pqt,jpc˚
j q

ď
qtpc

˚
j q

qt,jpc˚
j q

`
1

pqt,jpc˚
j q

˜

c

logp4k{δq

2m
`

qtpc
˚
j q

qt,jpc˚
j q

d

logp4k{δq

2n ¨ pspy “ jq

¸

“ α˚
j `

1

pqt,jpc˚
j q

˜

c

logp4k{δq

2m
` α˚

j

d

logp4k{δq

2n ¨ pspy “ jq

¸

. (31)

Combining (30) and (31), we get

pαj “
pqtppcq

pqt,jppcq
ď α˚

j `
2 ` γ

pqt,jpc˚
j q

˜

c

logp4k{δq

2m
`

d

logp4k{δq

2n ¨ pspy “ jq

¸

. (32)

Using DKW inequality on pqt,jpc˚
j q, we have pqt,jpc˚

j q ě qt,jpc˚
j q´

b

logp4k{δq

2n¨pspy“jq
. Assuming n¨pspy “

jq ě
2 logp4k{δq

q2t,jpc˚
j q

, we get pqt,jpc˚
j q ď qt,jpc˚

j q{2 and hence,

pαj ď α˚
j `

4 ` 2γ

qt,jpc˚
j q

˜

c

logp4k{δq

2m
`

d

logp4k{δq

2n ¨ pspy “ jq

¸

. (33)

Finally, we now derive a lower bound on pαj . From Lemma 1, we have the following inequality at pc

qtppcq

qt,jppcq
ď

pqtppcq

pqt,jppcq
`

1

pqt,jppcq

˜

c

logp4k{δq

2m
`

qtppcq

qt,jppcq

d

logp4k{δq

2n ¨ pspy “ jq

¸

. (34)

Since α˚
j ď

qtppcq

qt,jppcq
, we have

α˚
j ď

qtppcq

qt,jppcq
ď

pqtppcq

pqt,jppcq
`

1

pqt,jppcq

˜

c

logp4k{δq

2m
`

qtppcq

qt,jppcq

d

logp4k{δq

2n ¨ pspy “ jq

¸

. (35)

Using (33), we obtain a very loose upper bound on pqtppcq

pqt,jppcq
. Assuming minpn ¨ pspy “ jq,mq ě

2 logp4k{δq

q2t,jpc˚
j q

, we have pqtppcq

pqt,jppcq
ď α˚

j ` 4 ` 2γ ď 5 ` 2γ. Using this in (35), we have

α˚
j ď

pqtppcq

pqt,jppcq
`

1

pqt,jppcq

˜

c

logp4k{δq

2m
` p5 ` 2γq

d

logp4k{δq

2n ¨ pspy “ jq

¸

. (36)

Moreover, as pc ě c1, we have pqt,jppcq ě
γ

2`γ pqt,jpc˚
j q and hence,

α˚
j ´

γ ` 2

γpqt,jpc˚
j q

˜

c

logp4k{δq

2m
` p5 ` 2γq

d

logp4k{δq

2n ¨ pspy “ jq

¸

ď
pqtppcq

pqt,jppcq
“ pαj . (37)

As we assume n¨pspy “ jq ě
2 logp4k{δq

q2t,jpc˚
j q

, we have pqt,jpc˚
j q ď qt,jpc˚

j q{2, which implies the following

lower bound on α:

α˚
j ´

2γ ` 4

γqt,jpc˚
j q

˜

c

logp4k{δq

2m
` p5 ` 2γq

d

logp4k{δq

2n ¨ pspy “ jq

¸

ď pαj . (38)

Combining lower bound (38) and upper bound (33), we get

∣∣
pαj ´ α˚

j

∣∣ ď lj

˜

c

logp4k{δq

2m
`

d

logp4k{δq

2n ¨ pspy “ jq

¸

, (39)
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Figure 2: Purity and size (in terms of fraction of unlabeled samples) in the top bin for all classes. Bin
size refers to the fraction of examples in the top bin. With purity, we refer to the fraction of examples
from a specific class j in the top bin. Results with ResNet-18 on CIFAR10 OSLS setup. Details of
the setup in App. F.2. As the bin size increases for all classes the purity decreases.

for some constant lj . Additionally by our assumption of OSLS problem pspy “ jq ą c{k for some
constant c ą 0, we have∣∣

pαj ´ α˚
j

∣∣ ď l1j

˜

c

logp4k{δq

2m
`

c

k logp4k{δq

2n

¸

, (40)

for some constant l1j .

Combining the above obtained bound for all j P Ys with union bound, we get with probability at
least 1 ´ δ,

ÿ

jPYs

∣∣
pαj ´ α˚

j

∣∣ ď l1max

˜

c

k2 logp4k{δq

2m
`

c

k3 logp4k{δq

2n

¸

, (41)

where l1max “ max l1j . Now, note that for each j P Ys, we have qtpcq “ ptpy “ jq¨qt,jpcq`p1´ptpy “

jqq ¨ qt,´jpcq. Hence α˚
j “ ptpy “ jq ` p1 ´ ptpy “ jqq ¨ qt,´jpcq{ ¨ qt,jpcq. Plugging this in, we

get the desired bound.

Intuitively, the guarantees in the previous theorem capture the tradeoff due to the proportion of
negative examples in the top bin (bias) versus the proportion of positives in the top bin (variance).
As a corollary, we can show convergence to true mixture if there exits c˚

j for all j P Ys such that
qt,´jpc˚

j , jq “ 0 and qt,jpc˚
j , jq ě ϵ for some ϵ ą 0. Put simply, efficacy of BBE relies on existence

of a threshold on probability scores assigned by the classifier such that the examples mapped to a score
greater than the threshold are *mostly* positive. Using the terminology from Garg et al. [29], we
refer to this as the top bin property. Next, we provide empirical evidence of this property while using
the source classifier to estimate the relative proportion of target label marginal among source classes.

Empirical evidence of the top bin property We now empirically validate the positive pure top bin
property (Fig. 2). We include results with Resnet-18 trained on the CIFAR10 OSLS setup same as
our main experiments. We observe that source classifier approximately satisfies the positive pure top
bin property for small enough top bin sizes.

D.2 Formal statement and proof of Theorem 2

In this section, we show that in population on a separable Gaussian dataset, CVIR will recover the
optimal classifier. Note that here we consider a binary classification problem similar to the one in
Step 5 in Algorithm 1. Since we are primarily interested in analysing the iterative procedure for
obtaining domain discriminator classifier, we assume that α is known.

In population, we have access to positive distribution (i.e., pp), unlabeled distribution (i.e., pu :“
αpp ` p1 ´ αqpn), and mixture coefficient α. Our goal is to recover the classifier that discriminates
pp versus pn.
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For ease, we re-introduce some notation. For a classifier f and loss function ℓ, define
VIRαpfq “ inftτ P R : Px„pu

pℓpx,´1; fq ď τq ě 1 ´ αu . (42)
Intuitively, VIRαpfq identifies a threshold τ to capture bottom 1 ´ α fraction of the loss ℓpx,´1q for
points x sampled from pu. Additionally, define CVIR loss as

Lpf, wq “ αEpp
rℓpx, 1; fqs ` Epu

rwpxqℓpx,´1; fqs , (43)

for classifier f and some weights wpxq P t0, 1u. Recall that given a classifier ft at an iterate t, CVIR
procedure proceeds as follows:

wtpxq “ I rℓpx,´1; ftq ď VIRαpftqs , (44)
ft`1 “ ft ´ η∇Lf pft, wtq . (45)

We assume a data generating setup with where the support of positive and negative data is completely
disjoint. We assume that x are drawn from two half multivariate Gaussian with mean zero and identity
covariance, i.e.,

x „ pp ô x “ γ0θopt ` z| θToptz ě 0, where z „ N p0, Idq

x „ pn ô x “ ´γ0θopt ` z| θToptz ă 0, where z „ N p0, Idq

Here γ0 is the margin and θopt P Rd is the true separator. Here, we have access to distribution pp and
pu “ αpp ` p1 ´ αqpn. Assume ℓ as the logistic loss. For simplicity, we will denote Lpfθt , wtq with
Lpθt, wtq.
Theorem 4 (Formal statement of Theorem 2). In the data setup described above, a linear classifier
fpx; θq “ σ

`

θTx
˘

initialized at some θ0 such that Lpθ0, w0q ă logp2q, trained with CVIR procedure
as in equations (44)-(45) will converge to an optimal positive versus negative classifier.

Proof of Theorem 4. The proof uses two key ideas. One, at convergence of the CVIR procedure, the
gradient of CVIR loss in (43) converges to zero. Second, for any classifier θ that is not optimal for
positive versus negative classification, we show that the CVIR gradient in (43) is non-zero.

Part 1 We first show that the loss function Lpθ, wq in (43) is 2-smooth with respect to θ for fixed
w. Using gradient descent lemma with the decreasing property of loss in (44)-(45), we show that
gradient converges to zero eventually. Considering gradient of L, we have

∇θLpθ, wq “ αEpp
rpfpx; θq ´ 1qxs ` Epu

rwpxqpfpx; θq ´ 0qxs . (46)

Moreover, ∇2L is given by

∇2
θLpθ, wq “ αEpp

“

∇fpx; θqxxT
‰

` Epu

“

wpxq∇fpx; θqxxT
‰

. (47)

Since ∇fpx; θq ď 1, we have vT∇2Lv ď 2 for all unit vector v P Rd. Now, by gradient descent
lemma if η ď 1{2, at any step t we have, Lpθt`1, wtq ď Lpθt, wtq. Moreover, by definition
of VIRαpθq in (42) and update (44), we have Lpθt`1, wt`1q ď Lpθt`1, wtq. Hence, we have
Lpθt`1, wt`1q ď Lpθt, wtq. Since, the loss is lower bounded from below at 0, for every ϵ ą 0, we
have for large enough t (depending on ϵ), ||∇θLpθt, wtq||2 ď ϵ, i.e., ||∇θLpθt, wtq||2 Ñ 0 as t Ñ 8.

Part 2 Consider a general scenario when γ ą 0. Denote the input domain of pp and pn as P and
N respectively. At any step t, for all points x P X such that pupxq ą 0 and wtpxq “ 0, we say that
x is rejected from pu. We denote the incorrectly rejected subdomain of pn from pu as Nr and the
incorrectly accepted subdomain of pp from pu as Pa. Formally, Nr “ tx : pnpxq ą 0 and wtpxq “

0u and Pa “ tx : pppxq ą 0 and wtpxq “ 1u. We will show that pppPaq Ñ 0 as t Ñ 8, and hence,
we will recover the optimal classifier where we reject none of pu incorrectly.

Observe that at any time t, for fixed wt and θ “ θt, the gradient of CVIR loss in (43), can be
expressed as:

∇θLpθ, wtq “α

ż

xPP zPa

pfpx; θq ´ 1qx ¨ pppxqdx

l jh n

I

`p1 ´ αq

ż

xPNzNr

pfpx; θq ´ 0qx ¨ pnpxqdx

l jh n

II

` α

ż

xPPa

p2fpx; θq ´ 1qx ¨ pppxqdx

l jh n

III

. (48)

28



Note that for any x, θ, 0 ď fpx; θq ď 1. Now consider inner product of individual terms above with
θopt, we get

xI, θopty “

ż

xPP zPa

pfpx; θq ´ 1qxT θopt ¨ pppxqdx ď ´γ0

ż

xPP zPa

p1 ´ fpx; θqq ¨ pppxqdx , (49)

xII, θopty “

ż

xPNzNr

pfpx; θq ´ 0qxT θopt ¨ pnpxqdx ď ´γ0

ż

xPNzNr

pfpx; θq ´ 0q ¨ pnpxqdx ,

(50)

xIII, θopty “

ż

xPPa

p2fpx; θq ´ 1qxT θopt ¨ pppxqdx ď ´γ0

ż

xPPa

p1 ´ 2fpx; θqq ¨ pppxqdx . (51)

Now, we will argue that individually all the three LHS terms in (49), (50), (51) are negative for all
classifiers that do not separate positive versus negative data begining from Lpθ0, w0q ă logp2q. And
hence, we show that these terms approach zero individually only when the linear classifier approaches
an optimal positive versus negative classifier.

First, we consider the term in the LHS of equation (51). When α “ 0.5, we have VIRαpθq “ 0.5 and
hence, p1 ´ 2fpx; θqq ď 0 for x P Pa. When α ą 0.5, VIRαpθq ă 0.5 because, the proportion α ¨

pppPaq matches with proportion p1´αq¨pnpNrq. Hence, we again have p1´2fpx; θqq ď 0 for x P Pa.

To handle the case with α ă 0.5, we use a symmetry of he distribution to because VIRαpθq ą 0.5 and
p1´2fpx; θqq can take positive and negative values. However, note that VIRαpθq will be selected such
that the proportion α ¨pppPaq matches with proportion p1´αq ¨PnpNrq. In particular, we can split Pa

into three disjoint sets P p1q
a , P p2q

a , and P
p3q
a such that for all x P P

p1q
a we have fpx; θq ą“ 0.5, for all

x P P
p2q
a Y P

p3q
a we have fpx; θq ă 0.5 and pppP

p3q
a q “ α

1´αpppNrq. Additionally, by symmetry of
distribution around θ, we have

ş

xPP
p1q
a

p1´2fpx; θqq ¨pppxqdx`
ş

xPP
p2q
a

p1´2fpx; θqq ¨pppxqdx “ 0.
Hence, we get

xIII, θopty ď ´γ0

ż

xPPa

p1 ´ 2fpx; θqq ¨ pppxqdx “ ´γ0

ż

xPP
p3q
a

p1 ´ 2fpx; θqq ¨ pppxqdx . (52)

Combining all three cases, we get xIII, θopty ă 0 when pppPaq ą 0.

Now we consider LHS terms in (49) and (50). Note that for all x P P Y N , we have 0 ď fpxq ď 1.
Thus with pppP zPaq ą 0, xI, θopty Ñ 0 when fpx, θq Ñ 1 for all x P P zPa. Similarly with
pnpNzNrq ą 0, xII, θopty Ñ 0 when fpx, θq Ñ 0 for all x P NzNr.

From part 1, for gradient ||∇θLpθt, wtq||2 to converge to zero as t Ñ 8, we must have that LHS in
equations (49), (50), and (51) converges to zero individually. Since CVIR loss decreases continuously
and Lpθ0, w0q ă logp2q, we have that pppPaq Ñ 0 and hence, fpx, θq Ñ 1 for all x P P and
fpx, θq Ñ 0 for all x P N .

The above analysis can be extended to show convergence to max-margin classifier by using arguments
from Soudry et al. [65]. In particular, as pppPaq Ñ 0, we can show that θt{ ||θt||2 will converge to the
max-margin classifier for pp versus pn, i.e., θopt if pppPaq Ñ 0 in finite number of steps. Note that we
need an assumption that the initialized model θ0 is strictly better than a model that randomly guesses
or initialized at all zeros. This is to avoid convergence to the local minima of θ “ 0 with CVIR
training. This assumption is satisfied when the classifier is initialized in a way such that xθ0, θopty ą 0.
In general, we need a weaker assumption that during training with any randomly initialized classifier,
there exists an iterate t during CVIR training such that xθt, θopty ą 0.

D.3 Extension of Theorem 1

We also extend the analysis in the proof of Theorem 3 to Step 5 of Algorithm 1 to show convergence
of estimate pptpy “ k`1q to true prevalence ptpy “ k`1q. In particular, we show that the estimation
error for prevalence of the novel class will primarily depend on sum of two terms: (i) error in
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approximating the label shift corrected source distribution, i.e., p1
spxq; and (ii) purity of the top bin of

the domain discriminator classifier.

Before formally introducing the result, we introduce some notation. Similar to before, given prob-
ability density function p and a domain discriminator classifier f : X Ñ ∆, define a function
q “

ş

Apzq
ppxqdx, where Apzq “ tx P X : fpxq ě zu for all z P r0, 1s. Intuitively, qpzq captures

the cumulative density of points in a top bin, i.e., the proportion of input domain that is assigned
a value larger than z by the function f in the transformed space. We denote ptpx|y “ k ` 1q with
pt,k`1. For each pdf pt, pt,k`1, and p1

s, we define qt, qt,k`1, and q1
s respectively. Note that since

We define an empirical estimator pqpzq given a set X “ tx1, x2, . . . , xnu sampled iid from ppxq. Let
Z “ fpXq. Define pqpzq “

řn
i“1 I rzi ě zs {n.

Recall that in Step 5 of Algorithm 1, to estimate the proportion of novel class, we have access to
re-sampled data from approximate label shift corrected source distribution pq1

spxq. Assume that we
the size of re-sampled dataset is n.

Theorem 5. Define c˚ “ argmincPr0,1s pqt,k`1pcq{pq1
spcqq. Assume minpn,mq ě

´

2 logp4{δq

ppq1
spc˚qq2

¯

. Then,

for every δ ą 0, rpptsk`1 :“ pptpy “ k ` 1q in Step 5 of Algorithm 1 satisfies with probability at least
1 ´ δ, we have:

|rpptsk`1 ´ rptsk`1| ď p1 ´ rptsk`1q
|q1

spc˚q ´ pq1
spc˚q|

pq1
spc˚q

l jh n

Error in estimating
label shift corrected source

`rptsk`1

ˆ

qt,k`1pc˚q

pq1
spc˚q

˙

l jh n

Impurity in
top bin

` O

˜

c

logp4{δq

n
`

c

logp4{δq

m

¸

.

Proof. We can simply prove this theorem as Corollary of Theorem 1 from Garg et al. [29]. Note
that qtpc˚q “ p1 ´ ptpy “ k ` 1qq ¨ q1

spc˚q ` ptpy “ k ` 1q ¨ qt,k`1pc˚q. Adding and subtracting

p1´ptpy “ k`1qq¨pq1
spc˚q and dividing by pq1

s, we get qtpc˚
q

pq1
spc˚q

“ p1´ptpy “ k`1qq¨
|q1

spc˚
q´pq1

spc˚
q|

pq1
spc˚q

`

p1 ´ ptpy “ k ` 1qq ` ptpy “ k ` 1q ¨
qt,k`1pc˚

q

pq1
spc˚q

. Plugging in bound for LHS from Theorem 1 in
Garg et al. [29], we get the desired result.

D.4 Extensions of Theorem 2 to general separable datasets

For general separable datasets, CVIR has undesirable property of getting stuck at local optima where
gradient in (51) can be zero by maximizing entropy on the subset Pa which is (incorrectly) not-
rejected from pu in CVIR iterations. Intuitively, if the classifier can perfectly separate P zPa and
NzNr and at the same time maximize the entropy of the region Pa, then the classifier trained with
CVIR can get stuck in this local minima.

However, we can extend the above analysis with some modifications to the CVIR procedure. Note
that when the CVIR classifier maximizes the entropy on Pa. it makes an error on points in Pa. Since,
we have access to the distribution pp, we can add an additional regularization penalty to the CVIR loss
that ensures that the converged classifier with CVIR correctly classifies all the points in pp. With a
large enough regularization constant for the supervised loss on pp, we can dominate the gradient term
in (51) which pushes CVIR classifier to correct decision boundary even on Pa (instead of maximizing
entropy). We leave formal analysis of this conjecture for future work. Since we warm start CVIR
training with a positive versus unlabeled classifier, if we obtain an initialization close enough to the
true positive versus negative decision boundary, by monotonicity property of CVIR iterations, we
may never get stuck in such a local minima even without modifications to loss.

E Empirical investigation of CVIR in toy setup

As noted in our ablation experiments and in Garg et al. [29], domain discriminator trained with CVIR
outperforms classifiers trained with other consistent objectives (nnPU [38] and uPU [21]). While the
analysis in Sec. 8 highlights consistency of CVIR procedure in population, it doesn’t capture the
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(a) Accuracy on validation posi-
tive versus negative data

(b) Fraction of correctly rejected
examples with CVIR

Figure 3: Comparison of different methods in overparameterized toy setup. CVIR (random)
denotes CVIR with random initialization and CVIR (PvU) denotes warm start with a positive versus
negative classifier. Vertical line denotes the epoch at which we switch from PvU to CVIR in CVIR
(PvU) training. (a) We observe that CVIR (PvU) improves significantly even over the best early
stopped PvU model. As training proceeds, we observe that accuracy of nnPU, uPU and PvU training
drops whereas CVIR (random) and CVIR (PvU) maintains superior and stable performance. (b) We
observe that warm start training helps CVIR over randomly initialized model to correctly identity
positives among unlabeled for rejection.

observed empirical efficacy of CVIR over alternative methods in overparameterized models. In the
Gaussian setup described in Sec. D.2, we train overparameterized linear models to compare CVIR
with other methods (Fig. 3). We fix d “ 1000 and use n “ 250 positive and m “ 250 unlabeled
points for training with α “ 0.5. We set the margin γ at 0.05. We compare CVIR with unbiased
losses uPU and nnPU. We also make comparison with a naive positive versus unlabeled classifier
(referred to as PvU). For CVIR, we experiment with a randomly initialized classifier and initialized
with a PvU classifier trained for 200 epochs.

First, we observe that when a classifier is trained to distinguish positive and unlabeled data, early
learning happens [47, 3, 28], i.e., during the initial phase of learning classifier learns to classify
positives in unlabeled correctly as positives achieving high accuracy on validation positive versus
negative data. While the early learning happens with all methods, soon in the later phases of training
PvU starts overfitting to the unlabeled data as negative hurting its validation performance. For uPU
and nnPU, while they improve over PvU training during the initial epochs, the loss soon becomes
biased hurting the performance of classifiers trained with uPU and nnPU on validation data.

For CVIR trained from a randomly initialized classifier, we observe that it improves slightly over the
best PvU or the best nnPU model. Moreover, it maintains a relatively stable performance throughout
the training. CVIR initialized with a PvU classifier significantly improves the performance. In Fig. 3
(b), we show that CVIR initialized with a PvU correctly rejects significantly more fraction of positives
from unlabeled than CVIR trained from scratch. Thus, post early learning rejection of large fraction
of positives from unlabeled training in equation (4) crucially helps CVIR.

F Experimental Details

F.1 Baselines

We compare PULSE with several popular methods from OSDA literature. While these methods are
not specifically proposed for OSLS, they are introduced for the more general OSDA problem. In
particular, we make comparions with DANCE [59], UAN [73], CMU [25], STA [46], Backprop-
ODA (or BODA) [58]. We use the open source implementation available at https://github.com/
thuml and https://github.com/VisionLearningGroup/DANCE/. Since OSDA methods do
not estimate the prevalence of novel class explicitly, we use the fraction of examples predicted in
class k ` 1 as a surrogate. We next briefly describe the main idea for each method:

Backprob-ODA Saito et al. [58] proposed backprob ODA to train a pk ` 1q-way classifier. In
particular, the network is trained to correctly classify source samples and for target samples, the
classifier (specifically the last layer) is trained to output 0.5 for the probability of the unknown class.

31

https://github.com/thuml
https://github.com/thuml
https://github.com/VisionLearningGroup/DANCE/


The feature extractor is trained adversarially to move the probability of unknown class away from 0.5
on target examples by utilizing the gradient reversal layer.

Separate-To-Adapt (STA) Liu et al. [46] trained a network that learns jointly from source and target
by learning to separate negative (novel) examples from target. The training is divided into two parts.
The first part consists of training a multi-binary Gc|

|Ys|
c“1 classifier on labeled source data for each class

and a binary classifier Gb which generates the weights w for rejecting target samples in the novel
class. The second part consists of feature extractor Gf , a classifier Gy and domain discriminator Gd

to perform adversarial domain adaptation between source and target data in the source label space.
Gy and Gd are trained with incorporating weights w predicted by Gb in the first stage.

Calibrated Multiple Uncertainties (CMU) Fu et al. [25] trained a source classifier and a domain
discriminator to discriminate the novel class from previously seen classes in target. To train the
discriminator network, CMU uses a weighted binary cross entropy loss where wpxq for each example
x in target which is the average of uncertainty estimates, e.g. prediction confidence of source classifier.
During test time, target data x with wpxq ě w0 (for some pre-defined threshold w0) is classified as an
example from previously seen classes and is given a class prediction with source classifier. Otherwise,
the target example is classified as belonging to the novel class.

DANCE Saito et al. [59] proposed DANCE which combines a self-supervised clustering loss to
cluster neighboring target examples and an entropy separation loss to consider alignment with source.
Similar to CMU, during test time, DANCE uses thresholded prediction entropy of the source classifier
to classifier a target example as belonging to the novel class.

Universal Adaptation Networks (UAN) You et al. [73] proposed UAN which also trains a source
classifier and a domain discriminator to discriminate the novel class from previously seen classes in
target. The objective is similar to CMU where instead of using uncertainty estimates from multiple
classifiers, UAN uses prediction confidence of domain discriminator classifier. Similar to CMU,
at test time, target data x with wpxq ď w0 (for some pre-defined threshold w0) is classified as an
example from previously seen classes and is given a class prediction with source classifier. Otherwise,
the target example is classified as belonging to the novel class.

For alternative baselines, we experiment with source classifier directly deployed on the target data
which may contain novel class and label shift among source classes (referred to as source-only). This
naive comparison is included to quantify benefits of label shift correction and identifying novel class
over a typical k-way classifiers.

We also train a domain discriminator classifier for source versus target (referred to as domain disc.).
This is an adaptation of PU learning baseline[24] which assumes no label shift among source classes.
We use simple domain discriminator training to distinguish source versus target. To estimate the
fraction of novel examples, we use the EN estimator proposed in Elkan and Noto [24]. For any target
input, we make a prediction with the domain discriminator classifier (after re-scaling the sigmoid
output with the estimate proportion of novel examples). Any example that is classified as target, we
assign it the class k ` 1. For examples classified as source, we make a prediction for them using the
k-way source classifier.

Finally, per the reduction presented in Sec. 5, we train k PU classifiers (referred to as k-PU). To train
each PU learning classifier, we can plugin any method discussed in Sec. A. In the main paper, we
included results obtained with plugin state-of-the-art PU learning algorithms. In App. F.8, we present
ablations with other PU learning methods.

F.2 Dataset and OSLS Setup Details

We conduct experiments with seven benchmark classification datasets across vision, natural language,
biology and medicine. Our datasets span language, image and table modalities. For each dataset,
we simulate an OSLS problem. We experiment with different fraction of novel class prevalence,
source label distribution, and target label distribution. We randomly choose classes that constitute
the novel target class. After randomly choosing source and novel classes, we first split the training
data from each source class randomly into two partitions. This creates a random label distribution for
shared classes among source and target. We then club novel classes to assign them a new class (i.e.
k ` 1). Finally, we throw away labels for the target data to obtain an unsupervised DA problem. We
repeat the same process on iid hold out data to obtain validation data with no target labels. For main
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experiments in the paper, we next describe important details for the OSLS setup simulated. All the
other details can be found in the code repository.

For vision, we use CIFAR10, CIFAR100 [40] and Entity30 [61]. For language, we experiment with
Newsgroups-20 dataset. Additionally, inspired by applications of OSLS in biology and medicine, we
experiment with Tabula Muris [17] (Gene Ontology prediction), Dermnet (skin disease prediction),
and BreakHis [66] (tumor cell classification).

CIFAR10 For CIFAR10, we randomly select 9 classes as the source classes and a novel class formed
by the remaining class. After randomly sampling the label marginal for source and target randomly,
we get the prevalence for novel class as 0.2152.

CIFAR100 For CIFAR100, we randomly select 85 classes as the source classes and a novel class
formed by aggregating the data from 15 remaining classes. After randomly sampling the label
marginal for source and target randomly, we get the prevalence for novel class as 0.2976.

Entity30 Entity30 is a subset of ImageNet [54] with 30 super classes. For Entity30, we randomly
select 24 classes as the source classes and a novel class formed by aggregating the data from 6
remaining classes. After randomly sampling the label marginal for source and target randomly, we
get the prevalence for novel class as 0.3942.

Newgroups-20 For Newsgroups202, we randomly select 16 classes as the source classes and a novel
class formed by aggregating the data from 4 remaining classes. After randomly sampling the label
marginal for source and target randomly, we get the prevalence for novel class as 0.3733. This dataset
is motivated by scenarios where novel news categories can appear over time but the distribution of
articles given a news category might stay relatively unchanged.

BreakHis BreakHis3 contains 8 categories of cell types, 4 types of benign breast tumor and 4 types
malignant tumors (breast cancer). Here, we simulate OSLS problem specifically where 6 cell types
are observed in the source (3 from each) and a novel class appears in the target with 1 cell type from
each category. After randomly sampling the label marginal for source and target randomly, we get
the prevalence for novel class as 0.2708.

Dermnet Dermnet data contains images of 23 types of skin diseases taken from Dermnet NZ4. We
simulate OSLS problem specifically where 18 diseases are observed in the source and a novel class
appears in the target with the rest of the 5 diseases. After randomly sampling the label marginal for
source and target randomly, we get the prevalence for novel class as 0.3133.

Tabula Muris Tabula Muris dataset [17] comprises of different cell types collected across 23 organs
of the mouse model organism. We use the data pre-processing scripts provided in [12]5. We just use
the training set comprising of 57 classes for our experiments. We simulate OSLS problem specifically
where 28 cell types are observed in the source and a novel class appears in the target with the rest of
the 29 cell types. After randomly sampling the label marginal for source and target randomly, we get
the prevalence for novel class as 0.6366.

F.3 Details on the Experimental Setup

We use Resnet18 [33] for CIFAR10, CIFAR100, and Entity30. For all three datasets, in our main
experiments, we train Resnet-18 from scratch. We use SGD training with momentum of 0.9 for
200 epochs. We start with learning rate 0.1 and decay it by multiplying it with 0.1 every 70 epochs.
We use a weight decay of 5 ˆ 10´4. For CIFAR100 and CIFAR10, we use batch size of 200. For
Entity30, we use a batch size of 32. In App. F.7, we experiment with contrastive pre-training instead
of random initialization.

For newsgroups, we use a convolutional architecture6. We use glove embeddings to initialize the
embedding layer. We use Adam optimizer with a learning rate of 0.0001 and no weight decay. We
use a batch size of 200. We train with constant learning rate for 120 epochs.

2http://qwone.com/~jason/20Newsgroups/
3https://web.inf.ufpr.br/vri/databases/breast-cancer-histopathological-database-breakhis/
4http://www.dermnet.com/dermatology-pictures-skin-disease-pictures
5https://github.com/snap-stanford/comet
6https://github.com/mireshghallah/20Newsgroups-Pytorch
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For Tabular Muris, we use the fully connected MLP used in Cao et al. [12]. We use the hyperparame-
ters used in Cao et al. [12]. We use Adam optimizer with a learning rate of 0.0001 and no weight
decay. We train with constant learning rate for 40 epochs. We use a batch size of 200.

For Dermnet and BreakHis, we use Resnet-50 pre-trained on Imagenet. We use an initial learning
rate of 0.0001 and decay it by 0.96 every epoch. We use SGD training with momentum of 0.9 and
weight decay of 5 ˆ 10´4. We use a batch size of 32. These are the default hyperparameters used in
Alom et al. [2] and Liao [44].

For all methods, we use the same backbone for discriminator and source classifier. Additionally,
for PULSE and domain disc., we use the exact same set of hyperparameters to train the domain
discriminator and source classifier. For kPU, we use a separate final layer for each class with the
same backbone. We use the same hyperparameters described above for all three methods. For OSDA
methods, we use default method specific hyperparameters introduced in their works. Since we do not
have access to labels from the target data, we do not perform hyperparameter tuning but instead use
the standard hyperparameters used for training on labeled source data. In future, we may hope to
leverage heuristics proposed for accuracy estimation without access to labeled target data [30].

We train models till the performance on validation source data (labeled) ceases to increase. Unlike
OSDA methods, note that we do not use early stopping based on performance on held-out labeled
target data. To evaluate classification performance, we report target accuracy on all classes, seen
classes and the novel class. For target marginal, we separately report estimation error for previously
seen classes and for the novel class. For the novel class, we report absolute difference between true
and estimated marginal. For seen classes, we report average absolute estimation error. We open-
source our code at https://github.com/Neurips2022Anon. By simply changing a single config
file, new OSLS setups can be generated and experimented with.

Note that for our main experiments, for vision datasets (i.e., CIFAR10, CIFAR100, and Entity30) and
for language dataset, we do not initialize with a (supervised) pre-trained model to avoid overlap of
novel classes with the classes in the dataset used for pre-training. For example, labeled Imagenet-1k
is typically used for pre-training. However, Imagenet classes overlaps with all three vision datasets
employed and hence, we avoid pre-trained initialization. In App. F.7, we experiment with contrastive
pre-training on Entity30 and CIFAR100. In contrast, for medical datasets, we leverage Imagenet
pre-trained models as there is no overlap between classes in BreakHis and Dermnet with Imagenet.

F.4 Detailed results from main paper

For completeness, we next include results for all datasets. In particular, for each dataset we tabulate
(i) overall accuracy on target; (ii) accuracy on seen classes in target; (iii) accuracy on the novel
class; (iv) sum of absolute error in estimating target marginal among previously seen classes, i.e.,
ř

yPYs
|pptpyq ´ ptpyq|; and (v) absolute error for novel fraction estimation, i.e., |pptpy “ k ` 1| ´

ptpy “ k`1q. Table 5 presents results on all the datasets. Fig. 4 and Fig. 5 presents epoch-wise results.

F.5 Investigation into OSDA approaches

We observe that with default hyperparameters, popular OSDA methods significantly under perform
as compared to PULSE. We hypothesize that the primary reasons underlying the poor performance
of OSDA methods are (i) the heuristics employed to detect novel classes; and (ii) loss functions
incorporated to improve alignment between examples from common classes in source and target. To
detect novel classes, a standard heuristic employed popular OSDA methods involves thresholding
uncertainty estimates (e.g., prediction entropy, softmax confidence [73, 25, 59]) at a predefined
threshold κ. However, a fixed κ, may not for different datasets and different fractions of the novel
class. Here, we ablate by (i) removing loss function terms incorporated with an aim to improve source
target alignment; and (ii) vary threshold κ and show improvements in performance of these methods.

For our investigations, we experiment with CIFAR10, with UAN and DANCE methods. For DANCE,
we remove the entropy separation loss employed to encourage align target examples with source
examples. For UAN, we remove the adversarial domain discriminator training employed to align
target examples with source examples. For both the methods, we observe that by removing the
corresponding loss function terms we obtain a marginal improvement. For DANCE on CIFAR10, the
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performance goes up from 70.4 to 72.5 (with the same hyperparameters as the default run). FOR
UAN, we observe similar minor improvements, where the performance goes up from 15.4 to 19.6.

Next, we vary the threshold used for detecting the novel examples. By optimally tuning the threshold
for CIFAR10 with UAN, we obtain a substantial increase. In particular, the overall target accuracy
increases from 19.6 to 33.1. With DANCE on CIFAR10, optimal threshold achieves 75.6 as compared
to the default accuracy 70.4. In contrast, our two-stage method PULSE avoids the need to guess κ, by
first estimating the fraction of novel class which then guides the classification of novel class versus
previously seen classes.

F.6 Ablation with novel class fraction

In this section, we ablate on novel class proportion on CIFAR10, CIFAR100 and Newsgroups20. For
each dataset we experiment with three settings, each obtained by varying the number of classes from
the original data that constitutes the novel classes. We tabulate our results in Table 4.

F.7 Contrastive pre-training on unlabeled data

Here, we experiment with contrastive pre-training to pre-train the backbone networks used for feature
extraction. In particular, we initialize the backbone architectures with SimCLR pre-trained weights.
We experiment with CIFAR100 and Entity30 datasets. Instead of pre-training on mixture of source
and target unlabeled data, we leverage the publicly available pre-trained weights7. Table 2 summarizes
our results. We observe that pre-training improves over random initialization for all the methods with
PULSE continuing to outperform other approaches.

Table 2: Comparison with different OSLS approaches with pre-trained feature extractor. We use
SimCLR pre-training to initialize the feature extractor for all the methods. All methods improve over
random initialization (in Table 1). Note that PULSE continues to outperform other approaches.

CIFAR100 Entity30

Method Acc
(All)

MPE
(Novel)

Acc
(All)

MPE
(Novel)

BODA [58] 37.1 0.34 52.1 0.376

Domain Disc. 49.4 0.041 57.4 0.024

kPU 37.5 0.297 70.1 0.32

PULSE (Ours) 67.3 0.052 72.4 0.002

F.8 Ablation with different PU learning methods

In this section, we experiment with alternative PU learning approaches for PULSE and kPU. In
particular, we experiment with the next best alternatives, i.e., nnPU instead of CVIR for classification
and DEDPUL instead of BBE for target marginal estimation. We refer to these as kPU (alternative)
and PULSE (alternative) in Table 3. We present results on three datasets: CIFAR10, CIFAR100
and Newsgroups20 in the same setting as described in Sec. F.2. We make two key observations:
(i) PULSE continues to dominate kPU with alternative choices; (ii) CVIR and BBE significantly
outperform alternative choices.

F.9 Age Prediction Task

We consider an experiment on UTK Face dataset8. We create an 8-way class classification problem
where we split the age in the following 8 groups: 0–10, 11–20, ¨ ¨ ¨ , 60–70 and ą 70. We consider
the first 7 age groups in source and introduce age group ą 70 into the target data. OSLS continues to

7For CIFAR100: https://drive.google.com/file/d/1huW-ChBVvKcx7t8HyDaWTQB5Li1Fht9x/
view and for Entity30, we use Imagenet pre-trained weights from here: https://github.com/
AndrewAtanov/simclr-pytorch.

8https://susanqq.github.io/UTKFace/
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Table 3: Comparison with different PU learning approaches. ‘Alternative’ denotes results with
employing nnPU for classification and DEDPUL for target marginal estimation instead of ‘default’
which uses CVIR and BBE.

CIFAR10 CIFAR100 Newsgroups20

Method Acc
(All)

MPE
(Novel)

Acc
(All)

MPE
(Novel)

Acc
(All)

MPE
(Novel)

k-PU (alternative) 53.4 0.215 12.1 0.298 14.1 0.373

k-PU (default) 83.6 0.036 36.3 0.298 52.1 0.307

PULSE (alternative) 80.5 0.05 30.1 0.231 39.8 0.223

PULSE (default) 86.1 0.008 63.4 0.078 62.2 0.061

Table 4: Comparison with different OSLS approaches for different novel class prevalence. We observe
that for on CIFAR100 and Newsgroups20, PULSE maintains superior performance as compared to
other approaches. On CIFAR10, as the proportion of novel class increases, the performance of of
kPU improves slightly over PULSE for target accuracy.

CIFAR10
pptpk ` 1q “ 0.215q

CIFAR10
pptpk ` 1q “ 0.406q

CIFAR10
pptpk ` 1q “ 0.583q

Method Acc (All) MPE (Novel) Acc (All) MPE (Novel) Acc (All) MPE (Novel)

BODA [58] 63.1 0.162 65.5 0.166 48.6 0.265

Domain Disc. 47.4 0.331 57.5 0.232 68.7 0.144

kPU 83.6 0.036 87.8 0.010 89.9 0.036

PULSE (Ours) 86.1 0.008 87.4 0.009 83.7 0.006

CIFAR100
pptpk ` 1q “ 0.2976q

CIFAR100
pptpk ` 1q “ 0.4477q

CIFAR100
pptpk ` 1q “ 0.5676q

Method Acc (All) MPE (Novel) Acc (All) MPE (Novel) Acc (All) MPE (Novel)

BODA [58] 36.1 0.41 41.6 0.075 50.2 0.03

Domain Disc. 45.8 0.046 52.3 0.092 58.7 0.187

kPU 36.3 0.298 52.2 0.448 63.9 0.568

PULSE (Ours) 63.4 0.078 66.6 0.052 68.2 0.088

Newsgroups20
pptpk ` 1q “ 0.3733q

Newsgroups20
pptpk ` 1q “ 0.6452q

Newsgroups20
pptpk ` 1q “ 0.7688q

Method Acc (All) MPE (Novel) Acc (All) MPE (Novel) Acc (All) MPE (Novel)

BODA [58] 43.4 0.16 25.5 0.645 17.7 0.769

Domain Disc. 50.9 0.176 44.8 0.085 47.8 0.064

kPU 52.1 0.373 50.2 0.645 35.5 0.769

PULSE (Ours) 62.2 0.061 71.7 0.044 75.73 0.179

outperform the kPU baseline for novel prevalence estimation. Additionally, for target classification
performance of OSLS is similar to kPU baseline (ref. Table 6).
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Table 5: Comparison of PULSE with other methods. Across all datasets, PULSE outperforms
alternatives for both target classification and novel class prevalence estimation. Acc (All) is target
accuracy, Acc (Seen) is target accuracy on examples from previously seen classes, and Acc (Novel) is
recall for novel examples. MPE (Seen) is sum of absolute error for estimating target marginal among
previously seen classes and MPE (Novel) is absolute error for novel prevalence estimation. Results
reported by averaging across 3 seeds.

CIFAR-10 CIFAR-100

Method Acc
(All)

Acc
(Seen)

Acc
(Novel)

MPE
(Seen)

MPE
(Novel)

Acc
(All)

Acc
(Seen)

Acc
(Novel)

MPE
(Seen)

MPE
(Novel)

Source-Only 67.1 87.0 - - - 46.6 66.4 - - -

UAN [73] 15.4 19.7 25.2 1.44 0.214 18.1 40.6 14.8 1.48 0.133
BODA [58] 63.1 66.2 42.0 0.541 0.162 36.1 17.7 81.6 0.564 0.41

DANCE [59] 70.4 85.5 14.5 0.784 0.174 47.3 66.4 1.2 0.702 0.28
STA [46] 57.9 69.6 14.9 0.409 0.124 42.6 48.5 34.8 0.798 0.14
CMU [25] 62.1 77.9 41.2 0.443 0.183 35.4 46.0 15.5 0.695 0.161

Domain Disc. 47.4 87.0 30.6 - 0.331 45.8 66.5 39.1 - 0.046
k-PU 83.6 79.4 98.9 0.062 0.036 36.3 22.6 99.1 6.31 0.298

PULSE (Ours) 86.1 91.8 88.4 0.091 0.008 63.4 67.2 63.5 0.365 0.078

Entity30 Newsgroup20

Method Acc
(All)

Acc
(Seen)

Acc
(Novel)

MPE
(Seen)

MPE
(Novel)

Acc
(All)

Acc
(Seen)

Acc
(Novel)

MPE
(Seen)

MPE
(Novel)

Source-Only 32.0 53.5 - - - 39.3 64.4 - - -

BODA [58] 42.22 25.9 67.2 0.367 0.189 43.4 38.0 34.1 0.550 0.167

Domain Disc. 43.2 53.5 68.0 - 0.135 50.9 64.4 93.2 - 0.176
k-PU 50.7 22.3 94.4 0.99 0.394 52.1 57.8 42.7 0.776 0.373

PULSE (Ours) 58.0 54.3 72.2 0.215 0.054 62.2 65.0 83.6 0.232 0.061

Tabula Muris BreakHis

Method Acc
(All)

Acc
(Seen)

Acc
(Novel)

MPE
(Seen)

MPE
(Novel)

Acc
(All)

Acc
(Seen)

Acc
(Novel)

MPE
(Seen)

MPE
(Novel)

Source-Only 33.8 93.3 - - - 70.0 95.8 - - -

BODA [58] 76.5 59.8 87.0 0.200 0.079 71.5 81.8 44.0 0.163 0.077

Domain Disc. 73.0 93.3 94.7 - 0.071 56.5 95.8 90.4 - 0.09
k-PU 85.9 91.6 83.3 0.279 0.307 75.6 71.7 86.1 0.094 0.058

PULSE (Ours) 87.8 94.6 88.8 0.388 0.058 79.1 96.1 76.3 0.090 0.054

Dermnet

Method Acc
(All)

Acc
(Seen)

Acc
(Novel)

MPE
(Seen)

MPE
(Novel)

Source-Only 41.4 53.6 - - -

BODA [58] 43.8 31.4 58.4 0.401 0.207

Domain Disc. 40.6 53.6 82.7 - 0.083
k-PU 46.0 26.0 89.9 1.44 0.313

PULSE (Ours) 48.9 53.7 57.7 0.41 0.043
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(a) CIFAR10 (b) CIFAR100 (c) Entity30

(d) Newsgroups20 (e) Tabula Muris (f) BreakHis

(g) Dermnet

Figure 4: Epoch wise results for target accuracy. Results aggregated over 3 seeds. PULSE
maintains stable and superior performance when compared to alternative methods.

Table 6: Results on age prediction dataset. We observe that the prevalence of the novel class as
estimated with our PULSE framework is significantly closer to the true estimate. Additionally target
classification performance of OSLS is similar to that of kPU both of which significantly improve
over domain discriminator and source only baselines.

UTK Face

Method Acc
(All)

MPE
(Novel)

Source Only 50.1 0.11

Domain Disc. 52.4 0.08

kPU 56.7 0.11

PULSE (Ours) 56.8 0.01
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(a) CIFAR10 (b) CIFAR100 (c) Entity30

(d) Newsgroups20 (e) Tabula Muris (f) BreakHis

(g) Dermnet

Figure 5: Epoch wise results for novel prevalence estimation. Results aggregated over 3 seeds.
PULSE maintains stable and superior performance when compared to alternative methods.
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