
A Q Learning

Q learning is an RL algorithm that learns an estimate of the action-value function Q⇤(s, a). This
action-value function gives the expected total reward of taking action a at state s and using the
optimal policy function in the future. Once Q⇤(s, a) has been learned, the optimal policy is

⇡⇤(s) 2 arg maxa2AQ
⇤(s, a). (2)

A Q-learning algorithm maintains an |S|⇥ |A| Q-matrix, Qt, representing the estimate of Q⇤(s, a)
at step t. Usually, this matrix is randomly initialized. At each step t, the algorithm takes action at
that with probability 1� "t is optimal according to its current Q-matrix Qt, and with probability "t
chosen uniformly at random from the set of avalilable actions. We call "t the exploration rate. The
entry (st, at) of Qt is updated based on feedback via a convex combination of its previous value and
the reward r(st, at) attained from the action plus the discounted value of the state st+1:

Qt+1(st, at) = (1� ↵)Qt(st, at) + ↵[r(st, at) + �max
a2A

Qt(st+1, a)]. (3)

Parameter ↵ 2 [0, 1] is the learning rate. When the environment is stationary and Markovian, and
under suitable assumptions on the learning rate and exploration rate, the Q-matrix is guaranteed to
converge in the limit to the action-value function Q⇤(s, a) and the policy to the optimal policy.

B Proof of Proposition 1

Proposition 1 The optimal Stackelberg POMDP policy ⇡⇤
ne,nr

, for an equilibrium phase with ne � 1
steps and a reward phase with nr � 1 steps, maximizes CS (⇡), for seller behavior induced after ne

steps when nr = T ⇤
.

Proof. Let ⌧ ⇠ q⇡(⌧) denote a generic trajectory determined by executing policy ⇡ in the Stackelberg
POMDP environment. We have

⇡⇤
ne,nr

2 argmax⇡E⌧⇠q⇡(⌧)

"
ne+nrX

t=ne+1

r(st, at)

#
, (4)

recognizing r(st, at) = 0 if t  ne. After replacing r(st, at) with U(pt;⇡(pt)), we can rewrite the
objective in (4) as

E⌧⇠p⇡(⌧)

"
ne+nrX

t=ne+1

U(pt;⇡(pt))

#
,

which is equal to (1) when nr = T ⇤.

C Proof of Proposition 2

Proposition 2 For any ✏ > 0, there exists a threshold platform rule ⇡ such that CS (⇡) � CS (⇡⇤)�P
t �

t✏ under a subgame perfect Nash equilibrium (SPE) of the infinitely-repeated continuous pricing

game induced by platform rule ⇡.

Proof. For any ⌘ > 0, we study the stage game with continuous prices induced by the threshold
platform rule that sets threshold ⌧ = c+ ⌘ for each price profile p. We show that this stage game has
a unique Nash equilibrium in which each seller sets a price pi = p⇤, for some p⇤ 2 (c, c+ ⌘]. Given
this, we have that every seller pricing at p⇤ 2 (c, c+ ⌘] in every period is an SPE of any infinitely
repeated game between sellers, since this is an open-loop Nash equilibrium profile (and thus SPE
by the single-deviation principle). Moreover (as it is a continuous function over price profiles) the
consumer surplus comes arbitrarily close, for a small enough ⌘ > 0, to the maximum consumer
surplus, which coincides with every seller pricing at cost.

Left to prove is that every seller pricing at p⇤ is a Nash eq (NE) of the stage game. First, pricing
pi > ⌧(pt) = c+ ⌘ provides zero profit to a seller because the seller is not part of the displayed set
of sellers. Similarly, pricing pi = c provides zero profit. Now dropping the time period t, because we

14

study a generic stage game, and considering prices p = (p1, . . . , pn) 2 ⇥n
i=1(c, c + ⌘], so that all

sellers are displayed, and with seller profit ⇢i(p;N) for price profile p, we have

@

@pi
⇢i(p;N) = �(pi � c)

Di(p;N)(1�Di(p;N))

µ
+Di(p;N).

By first-order optimality conditions, we have @
@pi

⇢i(p;N) = 0, for each i, only when pi = p̂, for
some p̂ > c (Anderson and De Palma, 1992). Furthermore, ⇢i(pi, p�i;N) is concave. Thus, if
c + ⌘ � p̂, there is only one Nash equilibrium of the stage game, where each seller i sets price
p⇤ = p̂  c+ ⌘. On the other hand, if c+ ⌘ < p̂, we have that ⇢i(p;N) is strictly increasing when
p 2 ⇥n

i=1(c, c+ ⌘]. This means that a generic seller i can always increase its utility by quoting pi + "
instead of pi. This happens unless pi is equal to c + ⌘: in this case, increasing pi would drive the
agent out of the buybox (zeroing its utility). Thus, there is a unique Nash equilibrium where each
seller quotes price p⇤ = c+ ⌘.

D Variations on Setting Parameters

Figure 4: "Learning in the wild" performance of No State RL and State-based RL with different
environment settings when (left) the horizontal differentiation µ is lowered from 0.25 to 0.05, and
when (right) µ is increased from 0.25 to 0.40 . The results are averaged over 10 runs, and the shaded
regions show 95% confidence intervals.

Following Calvano et al. (2020a) and Johnson et al. (2021), we also consider the learning performance
of our RL algorithms in settings with different horizontal differentiation parameter µ. Specifically,
Figure 4 displays our training curves when the horizontal differentiation is lowered from 0.25 to 0.05
and increased from 0.25 to 0.40, and our policies are learned "in the wild." We notice that, in both
scenarios, our RL policies bring consumer welfare close to its optimal level (0.8 when µ = 0.05 and
1.08 when µ = 0.4) outperforming all the baselines.

E Deterministic Policies During Stackelberg POMDP Episodes

In this section, we test the learning performance of our RL algorithms when policies are not de-
terministic during the Stackelberg POMDP episodes. As we can see from Figure 5, this variation
dramatically affects our learning performance, which only slightly improves during training and
leads to final policies that do not outperform our baselines. As discussed in Section 5, this poor
performance is caused by the sellers not being able to learn optimal response strategies due to the
high variance introduced by the non-deterministic behavior of our policies.

15

Figure 5: "Learning in the wild" performance of No State RL and State-based RL when policies are
non-deterministic (left) and deterministic (right) during Stackelberg POMDP episodes. The results
are averaged over 10 runs and shaded regions show 95% confidence intervals.

F Variations on Sellers’ Learning Behavior

In our previous experiments, we assumed that both sellers restart their learning processes any time
the platform rules change. This is consistent with the original experiments run by Calvano et al.
(2020a), which demonstrated seller collusive behavior. However, this assumption may not hold in
real-world settings, where sellers can restart their learning processes asynchronously and at any time.
This behavior can present new challenges to learning an effective platform policy. Indeed, in this
scenario, changes in the sellers’ behavior may be caused not only by different platform interventions,
but also as a result of learning restarts.

In this section, we evaluate the performance of the Stackelberg POMDP framework in scenarios
where sellers randomly restart their exploration rate during training. Specifically, we assume that,
at each step of the platform’s learning process, each seller restarts its exploration rate with some
probability. We set this probability such that, in expectation, each seller restarts its exploration
once per Stackelberg POMDP episode (which corresponds to the number of steps between platform

Figure 6: "Learning in the wild" performance of No State RL and State-based RL when sellers restart
their exploration asynchronously during Stackelberg POMDP episodes. The results are averaged over
10 runs and shaded regions show 95% confidence intervals.

16

updates). Note that if restarts occur close to the reward phases, rewards may reflect an out-of-
equilibrium behavior of the sellers (even if exploration is paused). To avoid this problem, we generate
our plots by logging rewards in an evaluation Stackelberg POMDP episode we run every 100k training
steps. These evaluation episodes use the current platform policy and operate it executing the action
with the highest weight given each observation. In these episodes, the Q learning processes are run as
in the previous sections, without intra-episode restarts.

As we can see from Figure 6, the Stackelberg learning framework allows us to derive close-to-optimal
policies even under this less stationary behavior. Given that rewards are collected in evaluation
episodes (where policies are operated via highest-weighted actions), the optimal intervention under
No State RL is executed much earlier than in the simulations of Figure 2, reaching the maximum
reward after only 15M training steps.

G Variations on Policy Rewards

In our main experiments, we assume that the platform can compute the consumer surplus U(pt;Nt) =
µ · log[�(pt;Nt)], where �(pt;Nt) =

P
j2Nt

exp((↵j � pj,t)/µ) + exp(↵0/µ) at each step t to
reward the policy. We note that, however, to compute this surplus one needs to access the consumers’
quality indexes ↵is, which may not be available to the platform. However, we note that, to maximize
consumer surplus, we can replace U(pt;Nt) with any reward function that increases with respect
to the number of agents displayed and decreases as prices increase. In this section, we will use
Ũ(pt;Nt) = µ · log[�̃(pt;Nt)], where �̃(pt;Nt) =

P
j2Nt

exp(�pj,t/µ) and show that we can
achieve similar learning performance as shown in Figure 7 .

Figure 7: Learning performance under reward that does not access quality indexes.

H Selecting Stackelberg POMDP Parameters

The hyperparameters of our Stackelberg POMDP are selected the following criteria: First, we want
to make sure that the equilibrium phase of our Stackelberg POMDP is long enough such that sellers’
dynamics produce best responses to platform policies. At the same time, we want to avoid too long
equilibrium phases, as this makes rewards too sparse. With 50k steps we have a good trade-off
between these two desiderata. Regarding the reward phase, we want to make sure that this reward
is representative of the converged policy reached by Q-learners, and their converged behavior is
usually a single price profile or a loop of two or three price profiles. We adopt 30 reward steps to be
conservative.

17

	Introduction
	Preliminaries
	The Platform Stackelberg Problem
	Learning Optimal Platform Rules
	Experimental Results
	Platform Learning Performance
	Learning in the Wild
	Robustness of Learned Platform Rules

	Conclusion
	Q Learning
	Proof of Proposition 1
	Proof of Proposition 2
	Variations on Setting Parameters
	Deterministic Policies During Stackelberg POMDP Episodes
	Variations on Sellers' Learning Behavior
	Variations on Policy Rewards
	Selecting Stackelberg POMDP Parameters

