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ABSTRACT

Mapping the relationship between neural activity and motor behavior is a central
aim of sensorimotor neuroscience and neurotechnology. Most progress to this end
has relied on restricting complexity: studying specific simple behaviors, in limited
subjects, with interpretable computational models. However, current trends in deep
learning suggest that modeling a breadth of neural and behavioral data may be both
possible and beneficial. We accordingly developed Neural Data Transformer 3
(NDT?3) as a foundation model for motor decoding of neural data from intracortical
microelectrodes. We pretrained NDT3 with 2000 hours of neural population
spiking activity paired with diverse motor covariates from over 30 monkeys and
humans from 10 labs. Pretrained NDT3 is broadly useful, benefiting decoding on 8
downstream decoding tasks and generalizing to a variety of neural distribution shifts.
However, we find signs that scaling over diverse neural datasets may be challenging,
as scaling from 200 to 2000 hours already requires increasing model size to 350M
parameters to avoid model degradation, and several downstream datasets scarcely
benefit from either data or model scale. We provide two demonstrations that this
scaling is at least partially limited by variability in input and output spaces across
neural datasets, which pretraining alone may not resolve.

1 INTRODUCTION

A

+ Pretrained NDT3
% NDT3 from Scratch
¢ Linear

10! 102
Minutes of Task Data
Figure 1. A. NDT3 is a deep network for decoding intracortical spiking activity into low-dimensional time
series for various motor effectory’} B. We measure decoding performance on downstream tasks with variable

amounts of task-specific data. While from-scratch models only reliably outperforms a linear baseline after 15
minutes of data, tuning a pretrained NDT3 provides consistently superior performance.

Intracortical neural data collection is growing rapidly. This growth comprises not only larger
individual datasets with more neurons and higher behavioral complexity (Urai et al.,[2022; [Stevenson,
2023)), but also an increase in the collective number of datasets. This growth marks a new regime of
neural data science that may be best supported and exploited by new computational tooling capable
of modeling a broad diversity of datasets. Large deep networks appear very suitable for this task,
so much so as to justify terming large pretrained networks on broad domain data as foundation
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models (Bommasani et al.,|2022). Efforts to create foundation models are now proliferating beyond
their origins in natural language processing (NLP) and computer vision (CV) into many domains
of engineering and science (Wang et al,|2023a). Here, we propose a foundation model for motor
decoding from intracortical spiking activity, which we call Neural Data Transformer 3 (NDT3).

Motor decoding is a valuable initial domain for characterizing neural data foundation models.
Academic, clinical, and industrial efforts to create iBCIs for movement neuroprosthetics provide a
path for scaling data collection from hundreds to thousands of subject-hours, and also fuel a need
for pretrained models that generalize quickly and perform robustly for new users and settings. To
this end, behavior prediction also provides more intuitive metrics for benchmarking progress than
neural data prediction or the most abstract endpoint of providing scientific insight (e.g. with latent
variable models or in silico models) (Pei et al., [2021; |Wang et al.,[2023b)). Finally, recent work has
shown that deep networks are able to transfer learn across motor cortical datasets collected at different
timepoints, subjects, or tasks (Azabou et al., 2024} |Ye et al., [2023} [Schneider et al.| 2023). These
ingredients provide the means and motivation for scaling neural data modeling.

However, scaling may be complicated by the design and heterogeneity of contemporary neural
datasets. Many motor cortical datasets are designed to probe specific hypotheses by limiting behav-
ioral complexity and diversity. These behavioral limits can constrain the complexity of the observed
neural data (Gao and Ganguli, [2015)). Both constraints would seem to limit the benefits of scaling
complex decoders. Beyond the limitations of individual datasets, each neural dataset inherently
contains unique variability distinguishing them from others. This is most salient when comparing
across the datasets we aggregate to enable pretraining, where different neurons are recorded in each
subject and distinct output dimensions are required for each effector. To illustrate this, consider
a 2-neuron toy setting, where one neuron fires on leftward motion motion and the other fires on
rightward motion. No amount of scaling could reduce the data needed to determine which neuron
corresponds to which direction.

To probe the value of scaled pretraining on heterogeneous spiking activity, we developed Neural
Data Transformer 3 (NDT3). NDT3 uses simple neural and behavioral tokenization strategies to
enable pretraining over diverse decoding datasets and fine-tuning to new tasks without introducing
any new parameters (Fig.[[]A). We pretrained NDT3 using up to 2000 hours of neural and behavioral
data from motor neuroscience experiments with monkeys and clinical iBCI trials with humans. We
then evaluated NDT3’s decoding performance on eight diverse motor tasks (Section[3.1)) and find
that tuning NDT3 yields models that either improve or match task-specific models trained from
scratch, with prominent gains when task data is under 1.5 hours (Fig. [IB). Further, these gains persist
under a number of distribution shifts Section These performance gains in low-data regimes
may enable both more complex experimental design and potentially decrease the burden of decoder
training for people using iBCIs. However, we find that scaling pretraining data from 200 to 2K hours
required raising model capacity to 350M parameters to mitigate a performance drop. We provide
initial analyses of NDT3’s sensitivity to the specific inputs and outputs seen during fine-tuning to
illustrate how we might understand this scaling behavior.

2 APPROACH

2.1 DATA

NDT3 models datasets of paired neural spiking activity and behavior (Fig.[2). Given our focus on
motor decoding, most of the data comes from devices implanted in motor cortex of various monkeys
and humans (Fig. 2JA). These devices are intracortical multielectrode arrays or probes that record 30
kHz extracellular potentials. Spikes are extracted from these potentials, typically by bandpass-filtering
the data between 300 and 3000 Hz, and marking a spike when the voltage signal crosses a preset
threshold value. The neural data in our pretraining are diverse (Fig.[2B top). Data can have markedly
different profiles across electrodes due to being from different electrode arrays in the same subject
(left), have many silent channels (middle), or be densely active due to noise (right).

The typical behaviors in the pretraining data are different types of upper-limb reaching and grasping,
nearly all from experimental paradigms that consist of short, repeated trials. While neural data were
always recorded from microelectrodes, motor covariate signals came from various sensors. In monkey
datasets, these sensors measure actual limb activity (e.g., Fig. [2JA, left: limb kinematics from optical
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Figure 2. NDT3 Data and Model Design: A. NDT3 models paired neural spiking activity and behavioral
covariate timeseries. We plot the distribution of 2000 hours of pretraining data volume by subjects (top) and
covariate dimensionality (bottom). B. Examples of the neural and behavioral data for each of the three types
of behavioral covariates in pretraining: kinematics, EMG (electromyography), or forces. Not all modeled
dimensions in data are meaningfully task-related (right, grey behavior). C. Neural spiking activity is tokenized
in time by binning the number of spikes every 20 ms, and in “space” using patches of channels (usually 32), as
in NDT2 [2023)). Behavior is low-dimensional in our data, so we use 1 token per behavior dimension,
also per 20 ms timestep. NDT3 also pretrains on data from BCI control, which we annotate with two additional
tokens. The phase token indicates whether the user is controlling or observing the behavior and the reward token
indicates if the BCI task was completed. D. NDT3 models tokens in a single flat stream with linear readins and
readouts. Every real-world timestep (shown by the blue cutout) yields several tokens, which we order to allow
causal decoding in evaluation. During evaluation, we omit non-neural tokens.

tracking, middle: electromyography (EMG)). In human datasets, physical movements are typically
not possible, so the data’s behavior signals are programmatically generated. These signals are “paired”
with the neural data in that they are cued or otherwise instructed to the person, who will attempt or
imagine the corresponding behavior, such as grasping at a specified force level (Fig. 2B right). This
force panel also shows that in pretraining, we cannot always automatically discern the primary task
covariates (e.g., blue line, force, in the panel) from other recorded behavioral variables (grey). Thus,
behavior data may include unpredictable variables. Finally, we also include closed loop iBCI data,
where some behavior is generated by an iBCI decoder (not NDT3, see modeling strategy in Section

2.2).

The pretraining datasets are composed of archives from several experimental labs and some public
datasets, and contain data from non-human primate neuroscience experiments and human clinical
trials for neuroprosthetics. The grassroots nature of this aggregate dataset presents a heterogeneity
in neural data processing, motor effectors, and experimental setup, most comparable to aggregate
robotics datasets (OpenX et all,[2024). We detail the pretraining data composition in and provide
references for the 100-so hours of public data in Section[C.4]

We minimize preprocessing of these data to maximize the applicability of our generalist model.
Kinematics signals are all converted to velocities, and all behavior (kinematics, EMG, force) is
normalized per dataset such that the maximum absolute value of each variable is one. Data are
cut into segments of two seconds - or concatenated to this length if the individual pieces of data
(e.g. trials) are shorter - without additional annotation of data discontinuity. Two seconds was
selected as it is roughly the timescale of behavior in our data (Fig.[2JA). This segmenting is useful
as it provides a more uniform format for forming training batches, which improves GPU memory
utilization. Segments with no spikes or covariate variability are discarded. In total, this yielded about
3 million sequences, or 1750 hours, which we sample uniformly for pretraining. We round this to 2
khrs in subsequent text for simplicity.
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2.2 MODEL

NDT3 is a causal Transformer with linear readin and readout layers for its various modalities, similar
to GATO or TDMs (Reed et al., [2022; |Schubert et al., |2023; (Chameleon, [2024). For use with
a Transformer, the data must be tokenized (Fig. [2IC). We tokenize neural data by patching spike
counts (Ye et al.| 2023)); each token is a flattened vector of the binned spikes in a chosen temporal
resolution (20 ms) and spatial dimension (32 channels). For example, neural activity sampled from
an electrode array with 100 channels would patch into 4 = [100/32] 32D neural tokens per 20 ms
timestep. As the behavioral variables are already low-dimensional, we simply assign 1 token per
dimension at the same temporal resolution. Finally, we add tokens marking whether the behavior
are generated by a BCI system or by physical limb movement. While measured kinematics, EMG,
or force will reflect a natural relationship with neural activity, behavioral data from BCI tasks
are controlled by a program or learned decoder. We frame BCI-driven behavior as a suboptimal
demonstration (Merel et al.,2016)), and adopt a scheme inspired by Decision Transformers (Chen
et al., 2021; |Lee et al., 2022)). In this scheme, we use a Phase token to track the timesteps where
behavior is at least driven by neural activity and under decoder control, or only under programmatic,
open loop control. We also use a Return token reflecting controller quality based on task completion.
Note that these signals are only considered for pretraining, and are ablated entirely from the model
at evaluation. Similarly, input behavior tokens are masked out in inference, so that the model input
only indicates how many tokens must be predicted. NDT3 is trained with mean-squared error for
prediction of behavioral variables, and categorical cross-entropy losses for prediction of neural spike
count and reward.

All modalities are flattened into a single token stream, with the order of tokens in each real-world
timestep respecting a canonical order required for control (Fig.[2D). As in GATO, individual tokens are
annotated with learned position embeddings identifying token modality and sub-modality “position.”
We additionally add a rotary embedding (Su et al.,|2023) to track real-world timesteps.

Pretraining We pretrain NDT3 models over variable pretraining data and in sizes of 45M and 350M
parameters to assess the impact of data and model scaling. Pretraining is early stopped according to
validation loss or terminated at a maximum of 400 epochs. The 200 hour, 45M model trains for 480
A100-hours while the 2000 hour (2kh) 350M model takes 20K A100-hours. Fine-tuning maintains
the pretraining objectives and updates all parameters. Data is segmented into 2 second intervals in
pretraining, and mainly 1 second intervals in fine-tuning.

2.3  EVALUATION STRATEGY

Evaluation datasets and tuning Our main evaluation (Section uses four human and four
monkey datasets sampling varied upper limb movements, which we detail in Section Each
dataset contains multiple sessions of data, typically from a single monkey or human. We will refer to
each such setting as a “task,” distinguished from the behavioral procedure performed in each dataset.
Each session has unique variability, so fine-tuning procedure may greatly impact decoding results.
Prior work (Azabou et al.| 2024; |Ye et al.| 2023} Zhang et al.,|2024)) ran focused evaluations by tuning
and evaluating separately for each evaluation session. To manage compute and storage demands and
to reflect that real world datasets are rarely collected or analyzed in isolation, we fine-tune NDT3
jointly over data combined from multiple evaluation sessions.

Downstream Hyperparameters All tuned and from-scratch NDT3 models use a search over 3
learning rates. This sweep is limited to make computational demands tractable, but also demonstrate
the simple versatility of the base model. Importantly, the same search space is used for all tasks; we
list the space and show its sufficiency relative to wider sweeps in (Section[C.2). The best learning
rate is chosen according to average validation performance across three random seeds, and we report
their mean on the evaluation data.

Baselines We compare against Wiener filters (WF) and multi-session NDT2. WFs are a conventional
linear method for both motor decoding and control in iBCI devices (Pandarinath and Bensmaial, 2022)),
and we implement them as ridge regression with multi-timestep history. NDT2 is a Transformer
that uses MAE-style (He et al.,|[2021) self-supervision and has been demonstrated to improve with
heterogeneous neural datasets, including the multi-session data we use it for here. Other Transformer
variants have been proposed for pretraining on spiking data (Azabou et al.| 2024; |Zhang et al.l 2024),
but the field yet lacks consensus benchmarks to distinguish the most promising proposal to scale.
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3 RESULTS

NDT3’s pretraining effort advances prior intracortical models from data volumes of 200 to 2000
hours and model sizes an order of tens to hundreds of millions of parameters. In Section[3.1] we show
the increased data scale actually degrades aggregate downstream performance unless simultaneously
increasing model scale. We propose that the performance drop from scaling data alone is due to high
variability across intracortical motor decoding datasets. In Section[3.2] we illustrate this challenge
by showing NDT3’s sensitivity to shifts in data input or output. Section [3.3|concludes by showing
that despite this challenge for further data scaling, NDT3’s pretraining already provides gains that
generalize to various novel settings, establishing NDT3 as a useful foundation for motor decoding.

3.1 MULTI-SCALE EVALUATION ACROSS MOTOR DECODING TASKS
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Figure 3. Evaluation on diverse motor tasks: A. Test-split pretraining R? compared for 3 models. All
model pretraining data includes 1.5 hours of calibration data for the test dataset. We compare a model with
just this data (Test dataset only) vs using 200 hours of additional data either from the test monkey or from
over 10 other monkeys. Only the additional test monkey data improves over the calibration model. Models
terminate at different points due to early stopping. B. Pretraining R? for models with up to 2000 hours (2K hrs)
of pretraining data. The 2K hr model degrades in performance vs the 200 hr model at 45M parameters, and
merely maintains performance at 350M parameters. C. Examples of good and bad data-scaling in downstream
multiscale evaluation on two datasets. The x-axis scales the task and per-session data available by random
subsampling of the full dataset. Shading shows standard deviation on 3 model seeds. The bottom right text
shows total per-session and total time in each dataset, and the session time denotes the data in each evaluation
session. 2 khr models are offset for visual clarity, but use the same amount of tuning data as other models.
Increasing pretraining data yields performance gains at all downstream scales in the 4D task, but unclear effects
in the self-paced reach task. D. Downstream performance averaged for all scales and datasets (31 settings in
total) for different NDT3 and baselines. 45M models improve with data until 200 hrs and degrade at 2 khrs.
Increasing model size to 350M parameter resolves interference. E. Per-task performance, normalized by the
350M 200 hr NDT3 performance, is shown against task time for different NDT3 models. Each vertical band
shows models trained on some scaling of an evaluation dataset, e.g. dashed lines show the evaluations from the
bimanual dataset. Model variability vanishes by 100 minutes of data. ¥ indicate outliers clipped for clarity.

o
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To set expectations for how data scale and model size will impact model performance, we first
examine pretraining curves computed on a test split. This test split contains multiple sessions of
2D reaching behavior mainly from one monkey. From the dataset this test split was drawn from,
we sample an additional 1.5 hours of data and include this in the pretraining of all models to allow
learning this specific test task. Fig.[B]A shows the test performance over the course of pretraining in a
model using just this 1.5 hours of “calibration” data, and two models using 200 hours of data. One
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of these 200 hour models used data from over 10 other monkeys performing a variety of reaching
tasks, but did not improve over the minimal 1.5 hour model on the test data. In contrast, using 200
hours more from the test monkey (from a separate set of experiments with similar behavior) achieved
a small improvement in performance. Thus, only closely related data appears to improve a model
that already sees sufficient task-specific data, in this case 1.5 hours. To further emphasize this sense
of dataset distance, Fig.[3B shows that a 2 khr model that sees the same extra test data degrades in
performance, indicating interference in learning of the test task. Pretraining literature has shown
that increasing model size and dataset size in tandem is important for performance Dosovitskiy et al.
(2021); |[Kolesnikov et al.|(2020);|Aghajanyan et al.[(2023), and indeed increasing model size to 350M
parameters remedied the drop. However, we still do not see gains on the test task.

This upstream saturation motivated a downstream evaluation conducted at multiple data scales. We
illustrate this evaluation for two tasks in Fig.[3|C. These two datasets are from a human performing
open loop iBCI calibration for bimanual cursor use (Deo et al., 2024), and a monkey performing
self-paced reach to random targets (O’ Doherty et al.,|2017). In both cases, the individuals are held-out
from pretraining entirely, so the task-specific data is only seen in tuning. In the bimanual task, NDT3
performance does scale smoothly with pretraining performance at all downstream scales, up to the
full 42 minutes of task data. The degradation in the 2000 hour model and subsequent rescue by
increased model size is also replicated. The self-paced reach shows a much less clear result. For
example, the from-scratch NDT3 achieves nearly the best performance at most data scales. The
mixed effects here may result from the high data volume in this dataset, as the 10% scale still uses
1.2 hours of task data.

These two tasks reflect just two of several different downstream trends on the eight different evaluation
datasets we study. We defer individual discussion to Section and next consider summary
performance in Fig.[3D. To create this summary, we tuned over 2000 models in 31 evaluation settings,
to identify overall benefit of pretraining scale in spite of per-evaluation variability Brown et al.
(2020). As in (Entezari et al.,|2023)), we find that minimal pretraining (1.5 hrs) already achieves a
large performance gain, but scaling data to 200 hours yields further improvements. However, as in
upstream evaluation, effective use of 2000 hours of pretraining data requires raising model size to
350M parameters. We note this aggregate view obscures high variability in individual task trends,
which we cover in Section[B.4] In particular contrast with pretraining, we see the least improvement
and even degradation in three of our evaluation tasks which use data from humans in the 2 khr
pretraining data.

We finally return to the issue of downstream data scale. Recall that pretraining suggested that task
performance saturates given 1.5 hours in the test task. Fig.[3E aims to generalize this observation
by plotting all NDT3 evaluations against the downstream data size each evaluation tuned on. Model
variability steadily decreases and is negligible by 100 minutes of data. This mark provides a heuristic
for users to estimate whether their own decoding task will benefit from NDT3. We believe this
threshold will be effectively irreducible by further scaling over heterogeneous pretraining data. This
limit may be driven by each task’s unique variability rather than neural signal quality, as in most
tasks we consider, such as in Fig. 3IC, doubling task data reliably improves performance, more so
than scaling pretraining data two orders of magnitude.

3.2 PRETRAINING DOES NOT OVERCOME INPUT-OUTPUT VARIABILITY

Section [3.1] showed pretraining may overall be limited by a fundamental variability in each neural
dataset. This variability is evident as 350M parameters were necessary to scale to only 2 khrs of
pretraining data, whereas in contrast, a 0.8B audio model consistently improves as pretraining data
scales from 3K to 700K hours (Radford et al., 2022), and 3M parameter language models saturate but
do not degrade when scaling up to 20B tokens (~ 20M trials) (Kaplan et al.,2020). On the other hand,
modeling decisions around architecture, hyperparameters, and post-training, may all significantly
influence scaling. Decoupling the effects of these potential data-driven and model-driven factors will
be vital for the future scaling of neural data foundation models. We next illustrate how these factors
interact in NDT3’s sensitivity to the specific neural inputs and covariate outputs seen in tuning.
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Figure 4. Pretrained NDT3s fail in novel input-output configurations. A: Cross-session transfer persists
after pretraining, but cross-subject does not. We test NDT3 in a downstream task with one evaluation session
from a monkey self-paced reaching dataset. Training uses 1 minute from the evaluation session and additional
data from other sessions (Cross-Session) with the same monkey or from sessions from a different monkey for
the same behavior (Cross-Subject). B: Shuffling inputs ablates cross-session data to resemble cross-subject
transfer. uses the same cross-session neural data but permutes input dimensions (recording channels). Shuffle
channel randomly permutes inputs, shuffle token permutes while keeping channels from the same patch together,
and shift half-token rolls channels so that each channel ¢ uses data from ¢ + 16. Half-token shift is sufficient to
yield cross-session transfer with the same trend as cross-subject data, shown in red. All panels show the baseline
performance achieved by the model with just 1 minute of test-session data, x-axis shows additional cross-context
data provided. Tuning on cross-context and test-session data is done jointly except for the sequential tuning
in A right, where models tune on cross-subject and then test-session data. C. Pretraining does not improve
angular extrapolation. Two different monkey 2D center-out datasets with 8 angular conditions. LDA on all
neural data show monkey J’s data is distinctly more separable than monkey V’s. We then test generalization
of behavioral decoding to held-out angles after training on 2 of 8 angles (boxed in red). Both WF and NDT3
predictions are constrained between the held-out angles. NDT3’s predictions are visible for the interpolated
angle only in monkey J. D. We quantify performance for decoding on each angle with respect to distance from
the angle between the held-in angles. We average performance on all 8 central angles.

Input order sensitivity may limit cross-subject transfer. In the context of transfer learning, gains
from using cross-subject data are less than using the same amount of cross-session data (Ye et al.|,
2023). NDT3 allows us to revisit this difference downstream of large scale pretraining. We compare
cross-session and cross-subject scaling downstream on a monkey 2D reaching dataset (O’Doherty
et al.,|2017) in Fig. E|A Here, we tune NDT3 with calibration data from one test session and additional
variable amounts of cross-context data. The left panel shows that, as in Section B;ﬂ Cross-session
data is still highly effective after pretraining. In contrast, pretrained models with only test-session
data slightly improve on the best cross-subject from-scratch model, and maintain this performance
when tuning with additional cross-subject data. Thus for this dataset, NDT3’s pretraining effectively
accounts for, and occludes gains from, this downstream cross-subject transfer learning.

Cross-subject transfer must overcome changes in both the specific sampling of neurons recorded
in each dataset, which we term "sensor variability," and changes in the structure of processing
contained in each neural population. While the latter structure is difficult to measure, we can isolate
sensor variability’s influence on NDT3 by transferring with cross-session data and permuting the test
session’s neural dimensions. Indeed, Fig. @B Channel shuffle shows that input permutation cripples
the ability of NDT3, whether pretrained or not, to learn from cross-session data. Note that transfer
is assessed throughout both by joint tuning on all data and by first tuning on cross-context data and
then the test session. While pretrained models are largely unaffected by this choice (Section [B.3),
sequential tuning is required for cross-subject transfer. This requirement is not reproduced by channel
shuffling, indicating that joint tuning may be sensitive to changes in population statistics that are
preserved in channel shuffling.
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To further probe what distinguishes cross-session from cross-subject transfer, we apply structured
ablations of input order, as in Neyshabur et al.| (2020). We specifically create a shuffle that only alters
the test session’s neural token order with respect to cross-session data, hypothesizing Transformers
would be more robust to this shift than full channel shuffling. Indeed, all models benefit with a small
amount of token-shuffled cross-session data (Fig. @B center). If we instead apply a half-token shift to
test-session inputs, performance is greatly harmed (Fig. B right). This shows cross-session transfer
depends greatly on the specific token dimension semantics. This is so much the case that performance
degrades to the point of from-scratch cross-session transfer (blue) matching the trend of cross-subject
transfer (red) to this altered test-session. This suggests that NDT3 is no more able to transfer under
shifts in intra-token semantics than changes to a wholly different subject.

Outputs seen in tuning restrict NDT3 predictions. The increased sample efficiency of pretrained
models suggests that NDT3 could map a new individual’s neural activity to behavior without sam-
pling the full range of neural-behavior data. For example, having seen many instances of radial
reaches, NDT3 may generalize to unseen reach directions in a new subject better than non-pretrained
decoders, which fail completely ((Rizzoglio et al.l[2022)). Structured radial reaches are a particu-
larly simple litmus test as their underlying neural activity is easily visualized in terms of a planar
subspace (Churchland et al.,[2012)). We assess angular generalization in Fig. , by evaluating reach
decoding in an isometric, force-based (Monkey J) setting and a manipulandum-based (Monkey J)
setting. Beyond the change in effectors, the neural data in these datasets also vary in their separability
as visualized by linear discriminant analysis (LDA). We next train decoders on every pair of angles
separated by 90 degrees (one shown) and plot predictions on held-out trials from all angles. The
specific failure of both WFs and NDT3 is that their predictions do not extrapolate to held-out angles,
consistent with |Rizzoglio et al.|(2022)). While NDT3 produces more organized trajectories than the
WE, held-out angles are constrained to the held-in conditions. Intriguingly, even the intermediate, in-
terpolated angle appears to disappear for the less separable monkey V dataset. We quantify prediction
performance in Fig. . Notably, the two datasets achieve similar R? patterns despite significantly
different LDA projections, with the only subtle difference being that from-scratch models are slightly
worse for monkey V.

These results show that NDT3 fails to generalize to held-out directions, but also hint at the reason
why. One appealing interpretation is that NDT3 is incentivized to sacrifice any angular generalization
to maximize held-in performance, consistent with reports that RNNs exploit attractor structures to
improve performance on noisy neural data (Costello et al.,[2023). The fact that in the more challenging
monkey V dataset, the interpolated angle between held-in angles appears degraded, and pretrained
models slightly outperform from-scratch models, suggest that pretraining may even incentivize this
tradeoff. Importantly, we show in Section that a constrained linear decoder class (more so than
WFs) can yield held-out generalization. Thus while NDT3 fails to generalize to held-out directions, it
remains unclear whether this implies that pretraining failed to learn a viable prior for radial reach
(such as a low-dimensional linear constraint), or whether we have merely failed to elicit this structure
(i.e. through post-training). Even in the easiest setting of planar reaches, it can be challenging to
directly probe whether the model has learned what we expect it to.

Our manipulations on model input and output highlight the difficulty of pinpointing whether scaling
is limited by data-based or model-based factors. They highlight, however, basic forms of variability
across neural datasets that NDT3’s generic pretraining fails to bridge.

3.3 WHERE DOES PRETRAINING HELP?

Despite challenges for scaling, NDT3’s pretraining endows a prior extracted from hundreds of hours
of neural data. We conclude by showing how this prior generalizes beyond shifts in behavioral task.

Neural distribution shifts Neural data is nonstationary due to factors ranging from speculatively
characterized to fully experimentally controlled. As examples, we examine shifts in time, arm
posture (Marino et al.l 2024), and spring load (Mender et al., 2023) (Fig. E]A top), and evaluate
pretraining robustness under these shifts (bottom). Specifically, we measure the performance of
models prepared in the same setting they were trained on (in-distribution, ID) vs. the shifted data
(out-of-distribution, OOD). In all cases, the gains conferred by pretraining ID persist OOD. Note that
the pose shift has the most significant change in firing rates but virtually no drop in performance.
Decoder robustness in this case likely benefits from the fact that the neural variance associated with
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Figure 5. Enumerating where pretraining does generalize. A. Models fine-tuned in one distribution of
data are evaluated in-distribution (ID) and out-of-distribution (OOD). Top plots show the distribution across
channels of neural firing rates from OOD and ID trials, normalized by average ID firing rates. Lower plots
scatter OOD vs ID performance, with each point being a single model with different hyperparameters. . The
time shift uses two human cursor datasets collected one hour apart. Models were tuned in each block and were
evaluated in the second block. Pose shift uses a monkey center-out reach task which was performed with the
hand starting in different locations in the workspace. Spring Load uses a dataset of monkey 1D finger motion
with or without spring force feedback. B. Models are evaluated on a human open-loop cursor dataset prepared in
two ways. Trialized training receives inputs according to trial boundaries, varying from 2-4 seconds in length.
Continuous training receives random 1 second snippets (that can cross trial boundaries). Trialized evaluation
matches trialized training, and continuous evaluation is done by streaming up to 1 second of history. ¥ indicates
points below 0.0. Continuously trained models perform well in both evaluation settings, while models trained on
trialized data fail in continuous evaluation. C. Multiscale fine-tuning performance of NDT3 on datasets recorded
outside motor cortex, namely S1 (Somatosensory) and FEF/MT (Oculomotor).

pose is effectively orthogonal to neural variance for reach direction. Overall, while neural data
present many nonstationarities, these examples provide some assurance that pretraining benefits are
not dependent on brittle features specific to the precise training dataset.

Trial structure Non-pretrained DNNs tend to overfit trial structure in datasets, for example by
learning what timesteps a trial begins and ends. This disrupts continuous control in iBCI use (Deo
et al.,2024; Costello et al.,2023). In Fig. Ep, we assess how pretraining impacts such overfit to trial
structure in an open loop human cursor control dataset. Though best assessed through control, we
can also emulate probe trial structure overfitting by streaming neural inputs across trials (Continuous
eval). Alternatively, we can provide full trials of data to the model (Trialized eval). We prepare
models trained with trialized inputs (Trialized train), or with random 1 second intervals of data
(Continuous Train), since the streaming is done with up to one second of history. That trialized
evaluation of trialized trained models outperforms the best continuous analog reflects that all models
can learn to exploit trial structure. However, while trialized from-scratch models become subtrivial
under continuous evaluation (solid blue line is off-panel), degradation is more graceful for the
pretrained models. Comparing across panels, continuous performance of pretrained models under
trialized training is comparable to continuous training, though not fully. Note that the small drop
in performance from continuous to trialized evaluation under continuous training comes from the
extra history continuous evaluation provides at the onset of each trial. Reduced dependence on trial
structure should benefit both analysis and control.

New brain areas In Fig. 5D, we return to multiscale fine-tuning to test how NDT3, pretrained on
motor cortex, performs in somatosensory cortex (S1) and oculomotor areas (FEF and MT). The gain
from pretraining over from-scratch models is high in S1, but also nontrivial in the Oculomotor dataset.
While the former can be attributed the close interaction of sensorimotor areas, the latter implies
NDTS3 has learned a broader prior. This prior could be neurophysiological (e.g. declining subject
focus over time (Steinmetz et al., 2019)), or it could be a common experimental artifact, like trial
structure. For example, this Oculomotor dataset contains 4 behavioral conditions, which may benefit
from the tendency to learn classifiers shown in Fig. 4[C rather than a prior on neural dynamics.
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4 DISCUSSION

Many fields are now pursuing large scale deep learning as "a tide that lifts all boats" (Abnar et al.,
2021)), with the hope that improvements on the single abstract goal of effective pretraining will yield
field-wide, downstream improvements. Such a unifying abstraction may be timely for neuroscience,
given the increasing volume, diversity, and complexity of modern neural data. Joining other pre-
training efforts on varied modalities of neural data (Section E]) we trained NDT3 on 2000 hours
of paired neural population activity from motor cortex and behavior, and then conducted a broad
downstream decoding evaluation. Consistent with the broad foundation modeling narrative, we found
the best aggregate performance from increasing data scale and model size jointly. However, these
benefits from pretraining vary with the downstream dataset, with several datasets having minimal
improvements from scale (Section|[B.4). This result may stem in various ways from our approach:
insufficient hyperparameter sweeps, our focus on decoding, and generic architecture design. However,
the fact NDT3 needs increased capacity to pretrain on 2000 hours and that NDT3 generalizes poorly
to input and output shifts highlights potential challenges rooted in neural dataset variability.

More broadly, we advocate for further consideration of how neural data can contribute to and gain
from the ongoing cross-disciplinary conversation on foundation modeling. For example, our input
and output sensitivity analyses were inspired by ML (Neyshabur et al.,[2020; |Pham et al., 2021)) and
neuroscientific literature (Gallego et al., 2020j [Sadtler et al.|[2014), respectively. Challenges to scale
in neural data could deeply resemble interference in multimodal models (Aghajanyan et al., 2023} Liu
et al.| [2024). Inversely, neural distribution shifts have the advantage of being carefully characterized,
and so the appearance of correlated ID-OOD performance, as also appears in CV, NLP, and other
Al domains (Taori et al., [2020), may refine our understanding of when such correlation will occur,
and thus when foundation models will be effective. Our hypothesized challenge of sensor variability
should be particularly interesting to compare across the biosignals community, which must overcome
analogous variability to achieve our shared goal of achieving user-general models.

4.1 ETHICS STATEMENT

The animal datasets used in this work were collected for other studies that were approved by
Institutional Animal Care and Use Committees. Human datasets were also collected for other
studies, with Institutional Review Board approval and as part of clinical trials conducted under
FDA Investigational Device Exemptions. Informed consent was obtained prior to any experimental
procedures. We discuss the potential for NDT3 to reduce user burden for iBCI-based neuroprosthetics,
though the dissemination of pretrained models on these data raise the risk that the original human
data may be recoverable from model weights. Since this seems technically challenging at this point,
and since the source data are restricted to binned spiking activity to begin with, we deem the risk low
enough to justify the potential scientific benefit of sharing our pretrained models.

4.2 REPRODUCIBILITY STATEMENT

Advancing neural data foundation modeling will require a flourishing open-source ecosystem, in-
cluding data, models, and evaluations. While we will release our models and codebase, our work
currently has limited reproducibility given our inability to release pretraining data. Similarly, we
have tried to use open evaluations where possible, but several evaluation datasets remain private. We
expect that field-wide trends toward open data releases, and larger scale academic (Koch et al.| [2022)
or academic-industrial collaborations, can alleviate this limitation in the near future.
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A RELATED WORKS AND A PROPOSED TAXONOMY

Neural data is sufficiently diverse so as to support many distinct efforts to train large neural data
models. The scale of pretraining is somewhat larger in the non-implanted modalities, where data
is more abundant. The largest EEG models have reached a scale of 2.5K (Jiang et al [2024) to
40K hours of data (Yuan et al.} [2024), or higher volumes if also considering non-brain biosignals
(EKG) (Yang et al.,|2023; |Thapa et al.} 2024). Current fMRI models operate in the 1K (Thomas et al.,
2023) to 7K (Caro et al.| 2024) hour range. The largest models in these studies are in the 0.1B-1B
parameter range. Intracranial modalities, including sEEG (Wang et al., [2023c; |Chau et al.| [2024)),
ECoG (Talukder et al., 2022} |Peterson et al.||2022), and spiking activity (Wang et al.,|2023b)), have
thus far been studied at an order of magnitude smaller scales of data and model size (20-1000 hours,
<0.1B parameters).

Direct scaling on neural data modeling should be distinguished from NeuroAl efforts (Doerig et al.,
2022) to measure how models of the human sensorimotor experience (e.g. language, vision, audio
models) predict neural data (Antonello et al., [2024). However, as multimodal efforts begin to blur
this distinction (Benster et al., 2024} Xia et al.,[2024), care will be required to distinguish advances in
modeling neural data, embodied data, or their interaction.

Comparing neural data models Current efforts to understand scaling in neural data|Simeon et al.
(2024); Sato et al.|(2024) will have their reach limited by the specificity of every neural dataset. A
meta-challenge for the field is understanding how different parameters (species, brain area, modality,
task) impact scaling properties. This would be greatly aided by development of reporting practices for
different neural data models. To facilitate comparison, we create a model card (Mitchell et al.|[2019)
for NDT3 in Section|D} In addition to the standard model card, we propose reporting an additional
taxonomy to aid comparisons across neural data models, using two concepts.

First: neural data models can be conceptualized as modeling slices of the plenneural function, inspired
by the plenoptic function in vision (Adelson et al.| [1991)). The plenoptic function is a model of an
idealized eye which parameterizes all possible images with 7 dimensions: 4D to describe the global
spacetime of the view, 2D to describe viewing angle (spherical) or coordinate (Cartesian) of the
image, and 1D for wavelength. Since neural data models are primarily interested in circumscribed
systems rather than the physical world, a similar global coordinate system (e.g. 4D for all possible
electric potentials) would be uninformative. We thus propose reporting more qualitative coordinates:

1. Identity: The network or individual being recorded.
2. Task: The behavior, stimuli, or other activity the network is reflecting.

3. Spacetime: Coordinates specified in a network-local coordinate frame (e.g. brain area).

Second: The modeled extent of this plenneural function is conveniently discretized in three resolutions
in a Transformer-like sequence modeling framework: the token, the sequence, and the full training
data. The token is the most granular unit of data being modeled; NDT3 models neural populations
32 neurons at a time, in 20ms bins. At the sequence input level, NDT3 models inputs from single
humans or monkeys, across 128-256 neurons in 2 second snippets, while performing effectively one
“movement.” Finally, NDT3’s pretraining spans dozens of individuals, records motor and premotor
areas over 2.5K hours, over a variety of arm and hand movements.

B SUPPLEMENTARY RESULTS

B.1 EXTRAPOLATION IN CENTER-OUT DECODING IS POSSIBLE WITH RESTRICTED LINEAR
DECODERS.

In Section[3.2] we proposed that pretrained models like NDT3 should be able to generalize to held-out,
and in particular, extrapolated reach angles. We hypothesized this due to the frequent appearance of
2D linear projections of high dimensional neural activity showing clear separation by reach angle
(e.g. (Rodriguez et al.||2024)), which would imply NDT3 meta-learning of an explicit planar prior
would enable our desired generalization. Here we make this intuition explicit, by constructing a
linear decoder that generalizes to held-out reach directions, and thus illustrate that NDT3’s failure
to extrapolate is not due to an inherently unconstrained generalization task but is rather due to a
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Figure 6. We illustrate how explicitly restricting to a linear decoder plane allow reconstruction of held-out
behavior (Linear Regression), in contrast with NDT3 predictions which are restricted to held-in conditions even
when shown three cardinal directions.

lack of proper objective (i.e. requires post-training to make generalization desirable) or a failure of
pretraining.

To do this, we follow a classic neural data analysis procedure on a single session of the monkey
J dataset (as in Fig. EII) As a reminder, the behavior here is an isometric task where the monkey
generates isometric forces against a small box equipped with a six-degree-of-freedom load cell (JR3
Inc., CA). The forces were linearly mapped to control cursor movement: wrist flexion/extension
moved the cursor left/right, and radial/ulnar deviation moved it up/down. The monkey had to move
the cursor from a central position toward one of eight peripheral targets, in a classic center-out task.
We extracted successful trials for each target from 0.5 seconds before to 1 second after movement
onset.

With this preparation, we can now project the high-dimensional (96) neural activity at each timestep
onto a candidate plane that reflects reach related variance, after which a simple rotation would allow
generalized decoding. If we were fitting neural activity from all conditions, the top PCs from Principal
Components Analysis (PCA) would typically be sufficient to identify this plane. Since we would like
to find our general decoding plane without fitting all conditions, PCA alone is not reliable enough
to extract the plane we desire. We thus first fit PCA to the three held-in conditions, and then used
Linear Discriminant Analysis (LDA) on the top 10 PCs to find the 2D plane that best separated the
three directions. This yields a plane where neural activity is well separated by their reach direction in
a consistent manner for train and test directions (Fig. [f Neural Data and Behavior). This allows a
ridge regression to generalize to from held-in trajectories (variance accounted for (VAF): 0.70 £ 0.0)
to both the interpolated (VAF: 0.48 + 0.02) and extrapolated held-out (VAF: 0.44 + 0.05) directions
(Fig.[6|Linear Regression). In contrast, NDT3 trajectories are, as before, clearly constrained to held-in
directions.

B.2 ABLATIONS

We ablate the major design decisions made to enable NDT3’s large scale pretraining. These ablations
give us confidence that NDT3 overcomes the basic challenges we encountered in development, but
compute restrictions prevent more exhaustive comparisons or exploration of model design space.
We encourage further work exploring the influence of different hyperparameters. In these plots, we
distinguish validation split performance and evaluation split performance, which is computed by
batch-mode prediction (not the costly streaming evaluation used throughout main experiments).

Covariate dropout We find the default next-step prediction objective fails for learning decoding
of highly autocorrelated covariate timeseries, perhaps because simply relying on teacher-forced
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Figure 8. Ablations evaluated based on upstream evaluation split. A., B. Ablation of BCI control tokens C.
Ablation of neural objective and covariate MSE objective in favor of classification over quantized covariates.

behavioral inputs provides a severe shortcut that prevents learning of a proper neural to behavior
decoding map (Bachmann and Nagarajan, [2024)). Different time-series models have addressed
this by adopting convolutional input-output layers (Lea et al. 2016), tokenizing along temporal
dimensions (Das et al., [2024)), or learning with contrastive objectives (Chau et al.| [2024; [Kostas
et al.;|2021). We avoid introducing architectural modifications and instead adopt a simple dropout
procedure that masks a portion of covariate inputs some fraction of the time. Specifically, on every
training batch, two random numbers are drawn. The first, M ~ U[0, 1], determines what fraction of
covariate inputs should be masked. On 90% of batches, we also sample 7' ~ U0, 2] seconds, such
that the mask is only applied after timestep 7". That is, on 90% of batches, the model is provided a
prefix-prompt. We do not block losses on this prefix as in prefix-LMs (Wang et al.,[2022)). Pretraining
metrics for validation and evaluation are always computed with a prefix and full masking of non-prefix
timesteps. In Fig.[7} we ablate covariate masking (which also removes the prefix logic), and tune on a
2D Cursor + Click task. The ablated model performs subtrivially with student-forced predictions
provided as input at test time. Note that the ablated model performs trivially with masked inputs (not
shown).

BCI-phase and return conditioning NDT3’s pretraining includes several hundred hours of BCI
control data, where the covariates were set by another decoder. We introduced phase and return
conditioning tokens to differentiate the several types of BCI control data from recorded behavior.
Specifically, in BCI data, NDT3 receives input tokens specifying what fraction of the behavior reflects
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neural input (BCI control is on) vs programmatic input (BCI control is off, as in open loop BCI
calibration). Further, we provide inputs encoding reward (trial success) when trials change, and return
(future reward over a 10 second horizon, which crosses data boundaries). This design is intended to
evaluate the potential for a Decision-Transformer like offline learning strategy for improved online
control, but we do not discuss this in this work. In Fig. @A, B, we focus on whether these inputs
improves pretraining loss and R? in validation splits, which has contains BCI data, and the held-out
evaluation split containing only monkey behavior. The figures show that the ablation significantly
decreases validation split performance, and causes a slightly earlier stopping point leading to worse
evaluation performance. Note both models early before the full training budget of 400 epochs.

Neural reconstruction objective All main NDT3 models used a neural reconstruction objective
inherited from the self-supervised learning pretraining from NDT2. We ablate this choice post-hoc
and see it may actually minorly harm pretraining (validation split), though the neural objective doesn’t
harm evaluation split decoding (Fig. [B[C). Note the scalar weighting of neural vs covariate objectives
were set to be roughly balanced in pretraining.

MSE over classification In robotics and certain generalist models (Schubert et al.| 2023), continuous
action spaces are sometimes better decoded and controlled when quantized (Shafiullah et al.| [2022).
This is because MSE is an insufficient objective when the output distribution is multimodal (e.g.
one of two possible paths in robotics). While it seems unlikely that the close relationship between
movement behavior and motor cortex is multimodal, multimodal behavior may be appropriate when
pretrained on heterogeneous data, i.e. when similar neural activity corresponds to different behavior
in two datasets. We attempted such a quantization, including HL-Gauss smoothing (Farebrother
et al.,|2024) which we found to help; but this does not recover the performance of the default MSE
objective (Fig.[8[C) on the evaluation split. We found this performance gap persisted under fine-tuning
(not shown). This suggests that NDT?3 is differentiates neural data inputs from different datasets.

Patch size NDT2 and NDT3 both tokenize neural data by patching them into fixed size clusters. It
is unclear whether transfer learning might occur for sub-token features, which motivates the use of
smaller tokens in larger datasets that might afford it (Caron et al.,[2021)). We change patch size to
16 and show this performs slightly worse in the 45M 200h model (Fig. [8)C. Smaller patches (and
subsequent increased neural tokens) may be more beneficial in the larger scale models, but their
benefit must be weighed against their increased compute burden.

B.3 PRETRAINING DOES NOT BENEFIT FALCON H2 (HANDWRITING)

We also evaluated NDT3 for decoding of letters in a human-open loop handwriting task (FALCON
H2). Although this is also a motor cortical decoding task, we excluded H2 from NDT3’s aggregate
evaluation since it is a sequence-to-sequence as opposed to continuous task. To apply NDT3 to this
task, we pool neural tokens at each timestep and add a linear projection and optimize with a CTC
loss (Graves et al., 2006). We maintain the default neural reconstruction loss and causal attention
mask, and do not apply data augmentation.

Note that RNNs are the current standard architecture for communication tasks like H2 (Karpowicz
et al.,[2024; [Willett et al.|[2021). Training and tuning was less stable than for our continuous decoding
tasks and required more extensive hyperparameter tuning, perhaps because the overall dataset size
remains small (<1k samples), specific parameters are listed in the codebase. We observe three regimes
in both training and fine-tuning. First, the model can fail to achieve an initial learning period. Second,
the model can achieve reasonable nontrivial solutions, comparable to expected performance for
unaugmented RNNs (though we do not quantify this). Third, some models will exhibit learning
instabilities that resolve in significantly improved performance. We illustrate these regimes in example
validation curves below. Overall, the third regime is rarely achieved. More relevant to the main
narrative of this work, fine-tuning appears to degrade both final solution quality and reduces the range
of nontrivial hyperparameters (not shown). Investigating a sequence to sequence objective over CTC
loss would be valuable future work.

B.4 MULTISCALE DECODING ON INDIVIDUAL MOTOR TASKS

Fig.[I0A plots model performance for each of the 31 evaluation settings we study in the eight primary
evaluation datasets we use. Studying any individual dataset will yield variable conclusions on whether
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Figure 9. Three regimes of NDT3 training for handwriting decoding. We show validation loss and character
error rates for example runs of from-scratch and fine-tuned NDT3s.

pretraining structure is helpful, underscoring the need for proposed foundation models to be evaluated
across many different datasets. Here specifically we see the most clear scaling with pretraining data
(color gradient with red on top) in the Critical Stability Task and Bimanual Task. FALCON tasks
and Self-paced Reach appear minimally affected by scaling pretraining data, in that either pretrained
models are generally slightly above a from scratch model at all data scales with no particular best
pretrained model. The 2D + Click and Grasp datasets show uniquely show high variability in model
performance and strong degradation of the 350M 2 khr model at low data scales. Grasp instability was
so high that we trained 9 seeds instead of the standard 3 to better estimate model performance. We
propose this degradation is due to the instability of full fine-tuning of large models at the extremely
low data scales these datasets present (e.g. 2.5 minutes at the 25% scaling). Finally, we remind that
the 2D + Click, FALCON H1, and 1D Grasp Force tasks are datasets from human participants that
are included in the 2 khr pretraining. Surprisingly, we see no particular benefit to the 2 khr model.

These scaling plots also provide more precise context for baseline performance. NDT2 performs
particularly poorly in the low data regime, while Wiener Filters perform poorly in the high data
regimes.

In Fig. [TOB, we illustrate qualitative predictions on private datasets. These visualizations show a
diversity in covariate timescales and structure. They also illustrate that the summary R? obscure
several features of model predictions. For example, pretrained models in Cursor Y tend have false
positive deflections in movement. R? also is not easily comparable in tasks with continuous dynamics
(CST) vs. transient dynamics (Cursor G1).

B.5 SEQUENTIAL TUNING IS SIMILAR TO JOINT TUNING

During the input shuffling analysis in Section[3.2] we showed that sequential transfer was vital for
enabling cross-subject transfer in a from-scratch model Fig. [TTIA. In contrast, the pretrained NDT3s
do not appear affected by this choice of sequential vs joint tuning. We show in Fig.[TTB that in the
different input shuffling conditions, pretrained model performance is similarly largely unaffected.

21



Under review as a conference paper at ICLR 2025

Human Human held-out of 2kh
2D+Click 7D Reach/Grasp Kinematics 1D Grasp Force 4D Bimanual
R?-Cursor i R? (FALCON H1) & R% . R? B
+ 0.6- Y 0.3- *
e Y 4 : ) Q: PS ,/,g' % % g
0.2 &, 3® o P
e 4 0.4l /?( + 0.3- i %
; s A i ¥ o * ® o ® 0.2 *{._ / ®
0.0-% % ¢ * 0210 % @
® > x
0.2- % o + 01 ¥
02 01"
Session: 60s 0.0~ Session: 80 s Session: 8 min Session: 4 min Session: 5 min
0.4- Task: 10 min Task: 1 hr Task: 1 hr |y Task: 12 min 0.0- Task: 42 min
U s 50 100% 25 50 100% 25 50 100% C 25 50 100% 10 25 50 100%
Monkey 2D Finger Pose (FALCON M2) 16D Reach/Grasp EMG (FALCON M1)
R?. ® R2 . LEGEND
| %} | &!/‘§~ 4 R v Pretrained
0.4l . I - I I . lghls (NDT3)
. %/yr e e | 14 Sfe asm—e
| » % . .
0.2 y T L 1 g1 |2 M-t
e * >
S ello NDT3 Scratch
4 D, ~E e
0.0- ¢ £
= NDT2 Scratch
i |8
- -
0.2 L . i . ¢ 1 . Q  Wiener Filter
1 Session: 64 s Session: 10 min - Session: 2 min Session: L hr [, fla ..
-0.4- Tas‘k:‘44‘r"r‘1‘in — Tas‘k:‘4‘4‘m‘in 0.2 ‘ ‘Ta‘sk:‘ 4ﬂhr i ‘ "I'a‘sk:w4“hr I
310 25 50100% 3 10 25 50100% 10 25 50 100%10 25 50 100%
1D Critical Stability Task 2D Self-paced reach B, cursor
4 1 [
2 - 3 2 o — e R
R ; 5 2 g’ R%. 3 ;3** E 0 A, A "f“ g L Prr:frained (0.23)
0.4- § N 0.6 =7 g 7 "; \ ---- Scratch (0.29)
] -1
| / o | /g x 1
0.3- X7 P x 0.5 S/ =) —— True
1 % * IR x o0 —-— Pretrained (0.69)
0.2- 0.4- x N | ---- Scratch (0.40)
14 i > _ —i
0.1 ¥ 0.3- 5 e
{ K L 0 —-— Pretrained (0.61)
1 2 — ---- Scratch (0.07)
0.0 Session: 60 s 0 2, Session: 60 s o_7- | | | -
01 Task: 42 min 01 Task: 12 hr 0.0 4.0 8.0 12.0 16.0
““T10 25 50 100% *73 10 25 50100% Time (s)

Figure 10. A. Fine-tuning evaluations for individual datasets. Performance on both held-out (left) and held-in
(right) splits are shown side by side by FALCON datasets. We shade the standard deviation of 3 model seeds
in fine-tuning. Different tasks show substantial variability in benefit from pretraining. B. We show example
predictions of a pretrained (45M 200h) and from-scratch NDT3 for the 2D + Click Cursor task to give a sense of
what different prediction performances mean in terms of open loop data prediction. Numbers in legend are the
R? for that model’s predictions in the shown snippet.
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Figure 11. A replication of Fig. E but additionally providing sequential transfer results for input shuffling
conditions in B.
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Figure 12. For 3 monkeys datasets at 10% scale, we extend a HP sweep to 5 LRs and dropout in [0.0,0.1,0.3]
(vs default 0.1). For fine-tuning, we also sweep weight decay in [0.0001,0.01,0.1] (vs default 0.1), while for
from-scratch models we also sweep Transformer width ([256, 512, 1024]) vs default 512. This yields a 45-model
sweep on 1 seed. We compare the range of scores achieved by this larger sweep against the standard 3 LR x 3
seed sweep.

C METHODS

C.1 METRICS AND EVALUATION

Throughout this work we evaluate offline decoding of continuous covariates timeseries. The metric
we specifically use is the coefficient of determination, R?, as computed by scikit-learn’s r2_score
function. R? is a useful metric over MSE as 1 represents perfect prediction and 0 is the score achieved
by best-guess baseline, the mean of the data. In pretraining, R? is computed over the flat average of all
covariate dimensions, since each datapoint has differing covariate dimensionalities. In evaluation, R?
is computed as a variance-weighted average of R?s in each covariate dimension. Another difference
between training and evaluation metrics is that training predictions are made over batched data, while
evaluation predictions are mostly computed in a streaming fashion. Streaming requires continuous
neural data across different behavioral epochs, and so cannot be performed for the Oculomotor and
CST datasets. We also omit it for the motor cortex self-paced reach dataset, which has a very large
evaluation split. Streaming allows timesteps at the beginning of each sequence to leverage neural
context from the preceding sequence, which raises performance slightly, as shown in the continuous
vs trialized analysis (Section [3.3]). We limit history in streaming evaluations to the max history seen
in tuning (1 second).

C.2 TRAINING

Pretraining hyperparameters were manually tuned in preliminary experiments at the 45M parameter
models on small datasets. 350M models diverged at the chosen 4e — 4 peak LR, so we lowered peak
LR to le — 4. For tuning, the explored LRs are le — 4,3e — 4, 5e — 4 for training from scratch
and 3e — 5, 1le — 4,4e — 4 for fine-tuning. While this is far from an exhaustive search, we show
in Fig. [T2] that other regularization hyperparameters are set to reasonable defaults such that this
sweep finds near optimal results for both a from scratch model and fine-tuning the 45M model.
Fine-tuning, like pretraining, is early stopped with a patience of 100 epochs. Batch size is uniformly
set to 16K in pretraining, and scaled to be roughly 10-20% of dataset size in fine-tuning. NDT3
from-scratch models were trained at the 11M parameter range. Exact model configurations for
different experiments are documented in the codebase.

NDT3’s simple architectural design allows us to train on batches from different tasks and dimen-
sionalities. To avoid excess padding in training, we concatenate pretraining data that is otherwise
discontinuous (trialized) into 2 second data. We do not add any separator tokens, as this does not
appear to have a performance impact for language models (Geiping and Goldstein, 2022). With
mixed-precision training, the 350M parameter NDT3 can fit the 4-8K tokens in each input context in
the memory of 40G NVIDIA A100 GPUs. Thus we can restrict NDT3’s pretraining parallelism to
data-parallelism.

Using Kaplan et al.| (2020)’s equation for FLOP computation, Ctorward = 2N + 2NayerMetx datin, We
compute the footprint of the 350M 2kh model. We use about 0.9B FLOPs per token in the forward
pass, and about 0.9T neural tokens processed over training, which yields a pretraining footprint of
about 2.4e21 FLOPs.
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C.3 BASELINES

Wiener Filter The Wiener Filter baseline was cross-validated over regularization strength. We also
swept history of neural input up to the max length provided to NDT, and reported the R? of the
best WF according to test data in primary evaluation (slightly advantaging the WF). Generalization
plots in Section [3.3]report the performance of WF models at these different histories. For evaluating
angular generalization, WFs were only swept up to 1s history due to memory limits; performance
was not varying substantially with history so we do not expect this to have impacted conclusions. The
WF was for simplicity directly fit on the concatenated trial data, which may have slightly negatively
impacted its performance in trialized datasets (Oculomotor, CST, Generalization analyses).

In the primary evaluations in Section we considered WFs fit either independently per session in a
dataset or jointly on all sessions, which is helpful for sessions in very low data regimes. We report
the better of the 2. In generalization analyses, for simplicity, we only report joint fits, which may
cause a slight downward bias in performance.

Dataset Patience Held-In R> Held-Out R?
H1 100 0.5674+0.034  0.453+0.030
H1 (reproduction) 250 0.6280.011 0.517+0.016
H1 ((Karpowicz et al.,[2024)) 250 0.62 0.52

M2 100 0.563:|:(),015 0~352:|:0.O28
M2 (reproduction) 250 0.5820.002 0.391+0.009
M2 ((Karpowicz et al., 2024)) 250 0.63 0.43

Table 1. NDT2 H1 and M2 results when trained with 100 epochs of patience (this work) in fine-tuning vs 250 as
in|Karpowicz et al.| (2024). We report mean and standard deviation of 3 model seeds on the FALCON evaluation
(which is in turn a cross-session mean).

NDT2 NDT?2 baselines were prepared with its public codebase. Max context length and patience were
held constant across the models. This restriction to a patience of 100 accounts for some difference
with the reported FALCON benchmark results in [Karpowicz et al| (2024), as we note in Table [T}
Other choices were left to NDT2 defaults. For example, NDT2 uses z-score normalization, which
we kept. A major change to the NDT?2 approach, for simplicity, is that we jointly trained NDT2
with its neural reconstruction loss (masking of 25%) and supervised decoding loss. This is true for
all eight evaluation tasks except CST, where we used only the supervised decoding loss as the the
token dropout used in reconstruction can dropout all neural input. NDT2 hyperparameters were not
explored widely, which likely is a source of its mediocre performance in this work. We did however
sweep NDT2 over 2 model sizes (20M and 72M parameters) in addition to the standard 3 learning
rates, which provides it twice the budget as NDT3.

C.4 PRETRAINING AND EVALUATION DATASETS

Pretraining datasets were comprised of historical data from several labs, the rough composition
of which is shown in Fig. 2B. The evaluation behavior used during pretraining was reaching in 2
monkeys. The first monkey dataset came from a public release (Flint et al.| 2012), and the second
from a private dataset ( REDACT lab). The latter had center-out reach in standard conditions and
under visual feedback perturbations. The monkey in the second dataset is also present in the 1khr
monkey and 2kh and up model dataset sizes, though performing in a different set of experiments.

Inherent to the process of large-scale scraping is a loss of detail on what precise tasks were used, so
we only have a qualitative description of tasks we believe are well represented. NDT3 trains on a wide
variety of reaching behaviors from relatively constrained (2D center-out reaching to fixed number of
targets) to relatively unconstrained (self-paced, more targets, potentially 3D) and under experimental
manipulations (delayed onset, multiple targets, different error thresholds requiring more precision).
These reaching behaviors are described in both endpoint kinematics and as EMG. A smaller fraction
of pretraining data are isometric and force related (force exerted against manipulandums) for wrist
and arm motion. Human datasets contain a variety of iBCI tasks, with closed loop datasets reflecting
both high and low quality control. These tasks include reach and grasp behavior from 1-10 degrees of
freedom, as well as some individuated finger tasks for clicking.
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‘We detail evaluation datasets in Table@ Three datasets come from the FALCON benchmark (Kar-
powicz et al., [2024), two are based on public datasets ((O’Doherty et al., 2017 |Deo et al.| [2024))),
and three are private. Note we avoid the Neural Latents Benchmark (Pei et al.| [2021) as it does not
directly measure decoding performance. For each evaluation dataset, we specify a tuning split and an
evaluation split. Only tuning split data is changed when varying data scale. Tuning and evaluation
splits are block-contiguous, i.e. trials are not interleaved, for better downstream applicability.

C.5 GENERALIZATION ANALYSES AND FURTHER EVALUATIONS

Intra-session generalization Posture, spring, and angular generalization evaluate OOD performance
in the standard setup of comparing in-distribution and out-of-distribution performance directly (with
changes in the underlying evaluation dataset) The intra-session temporal shift analysis is evaluated in
an inverted, slightly more rigorous setting. Specifically, we trained two sets of models on the two
different temporal blocks, and evaluated on an evaluation split in the later block, rather than only
training on the early block and evaluating on both blocks. This way, the OOD shift is measured with
respect to the same evaluation dataset.

C.6 ARCHITECTURAL DETAILS

NDT3 adopts several architectural innovations used in recent Transformer models. These were
compared against baselines in preliminary experiments, but formal ablations in the final experimental
setting were not conducted. We defer full description of the Transformer dimensions to the public
codebase.

* FlashAttention 2 (Dao, |2023)) is used to increase training and inference speeds. On the
NERSC Perlmutter cluster, with FA2, 45SM NDT3 trained at about 270M neural tokens per
40G A100 hour, 350M NDT3 trained at about 70M neural tokens per A100 hour. FA2 also
enables use of the 350M model for real-time (<20ms) inference latency for iBCI control
results.

* Positional Embeddings (Su et al., 2023)): Rotary embeddings are applied to indicate the
real-world timestep of every input token. Additionally, 48 categorical learned embeddings
are reserved to distinguish token modality and position within a timestep (10 for neural,
16 for covariates, 16 for covariate constraints, 1 for reward/return, 1 for dummy tokens,
remainder unused).

* QK Normalization (Dehghanti et al., 2023 [Wortsman et al., 2024)): An additional layer norm
is applied to the query and key embeddings, before the rotary embeddings, which helped
stabilize training of the 350M parameter models.

* No context embeddings (Ye et al.| 2023): Differing from NDT2, no learned embeddings
for disambiguating input datasets were prepended to each input. This was removed for
simplicity. Per GATO (Reed et al.,[2022) and language modeling practices, we instead leave
task / dataset disambiguation to the modeling process: In pretraining, the covariate maskout
strategy allows for many tasks to be specified in-context (as later behavior can be inferred on
the basis of earlier neural-behavioral token relationships). In fine-tuning, the tuning dataset
already uniquely specifies the function to be learned.

* Cross entropy loss for spiking data prediction: We used the standard cross entropy loss to
classify spike count over the Poisson loss common in many neural data architectures. Since
the overall ablation of neural objective shows no large impact in this work, it is likely that
this decision should be evaluated with neural data related tasks rather than decoding.

We document the Transformer model shapes considered in our work in Table[3] This shape is not
systematically explored in our work, and is by historical artifact, slightly different than the shapes
used in NLP/CV. Embedding parameters are negligible. One possible area of interest is that the
feedforward expansion factor is 1 in our model, i.e. the MLP dimension is low. If MLPs do serve as
memory stores in Transformers (Geva et al.| [2021)), increasing this shape may yield more performant
model size scaling, given the heterogeneity of our datasets.
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D NDT3 MoDEL CARD

The card is currently only provided in the codebase.
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Table 2. Evaluation datasets used for multiscale decoding and generalization analyses. The references provide
extended description of the behavioral task. Dashed line separates datasets for Section [3.1] and for analysis.
Datasets use unsorted multi-unit activity and are processed in 1s chops unless otherwise mentioned.

Dataset

Description

FALCON HI, M1,
M2 (Karpowicz et al.|
2024)

Self-paced reach
(RTT) (O’Doherty
et al.l 2017)

Bimanual Cursor
Control (Deo et al.,
2024)

2D Cursor + Click
(private)

Grasp force (private)

Critical Stability
Task (Quick et al.,
2018) (private,
trialized, sorted)

Posture-varied
Center-Out (Marino
et al.| 2024)) (private,
trialized, sorted)
Spring-load (Mender
et al.| [2023)
Center-out, Monkey
J (Ma et al.,|[2022))
(trialized)
Center-out, Monkey
V (private, trialized)
Oculomotor

pursuit (Noneman
and Mayo, |2024))
(private, trialized,
sorted)

FALCON H2

3 separate single-subject multi-session datasets for different iBCI tasks.
Data comes in a high data split (held-in), and a low-data split (held-
out), with the intention on identifying methods that can achieve parity in
the two settings. H1 is an open loop human dataset for calibrating 7D
reach-and-grasp in a robot arm. M1 is a monkey reach-and-grasp task
to different objects with EMG recordings. M2 is a monkey 2D finger
movement task with manipulandum-measured kinematics. Scaling scores
are reported on the test set.

Monkeys reach for random targets one at a time in a small planar
workspace. We decode 2D arm velocity in monkey Indy. Has neu-
ral data from M1 and S1, we use M1 in Section[3.T]and Section[3.2]and
S1in Section@

A human open loop dataset where the participant attempts movement of
one or both hands to control two cursors.

Cursor control is a classic iBCI endpoint (Pandarinath et al., 2017} [Wol4
paw et al., 2002} Jarosiewicz et al., 2015). Two human participants
attempt movement according to visually cued cursor movement and au-
diovisual click cues. We also use this dataset for trial structure analysis
in Section

A open-loop dataset with two human participants attempting isometric
power grasps. Specifically, participants were asked to match force output
according to visual cues in a Mujoco environment. Grasps cued were both
static (instant onset, hold, and offset) or dynamic (gradually increasing
force). This dataset is valuable for human iBCI study because force
modulation is required in many motor behaviors, and grasp force has
primarily only been characterized in monkeys until now (Branco et al.,
2019)). Uses 2 second intervals due to long behavior timescale. We expect
this dataset can be released by end of 2024.

A monkey dataset collected to study continuous control relative to ballistic
movement. The monkey balances a virtual cursor on a 1D workspace for
up to 6 seconds.

A monkey center-out task, but the monkey’s hand is adjusted to one of 6
different starting positions. We use the central position as center and the
rest as edge.

A monkey moves fingers, clamped together in a manipulandum for effec-
tive 1DoF, is neutral or under spring load.

Used in Section A monkey performs an isometric center out task.
Forces are measured by the manipulandum and converted to cursor veloc-
ity signals.

Used in Section A monkey reaches to one of 8 radially arranged
targets by moving a manipulandum (Kinarm).

A monkey visually tracks (via smooth pursuit) a target that moves from
center of workspace to one of four directions. A few dozen neurons
are recorded on probes in each of frontal eye field (FEF) and area MT.
We decode pupil velocity. The small number of neurons in this dataset
required resetting NDT3 neural readin/readout layers.

Human open loop dataset where a participant attempts movement to
write letters cued on a screen (Willett et al., 2021; [Fan et al., [2023). The
large number of timesteps in this dataset required resetting NDT?3 neural
readin/readout layers (to use fewer neural tokens).
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Model Layers Width MLP Size Heads Parameters (M)
NDT3 Base 6 1024 1024 8 45
NDT3 Big 12 2048 2048 16 350

Table 3. Transformer Model Shapes used in this work.
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