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ABSTRACT

Self-supervised pre-training of language models usually consists in predicting prob-
ability distributions over extensive token vocabularies. In this study, we propose an
innovative method that shifts away from probability prediction and instead focuses
on reconstructing input embeddings in a contrastive fashion via Constrastive Weight
Tying (CWT). We apply this approach to pretrain Headless Language Models in
both monolingual and multilingual contexts. Our method offers practical advan-
tages, substantially reducing training computational requirements by up to 20 times,
while simultaneously enhancing downstream performance and data efficiency. We
observe a significant +1.6 GLUE score increase and a notable +2.7 LAMBADA
accuracy improvement compared to classical LMs within similar compute budgets.

1 INTRODUCTION

Natural Language Processing (NLP) has seen tremendous progress in recent years thanks to the
development of large-scale neural language models. These models have been shown to be effective in a
wide range of NLP tasks such as text classification, question answering, and machine translation, either
in fine-tuning, few-shot and zero-shot settings. These approaches usually involve a self-supervised
pre-training step, based on tasks requiring predictions of contextual probability distributions over a
large vocabulary of tokens.

However, the need for a language modeling projection head can be a limitation as it requires additional
memory, slows down training and impedes scaling up to large token vocabularies. In this paper, we
propose a novel pretraining approach called Headless Language Modeling, which removes the need
to predict probability distributions and rather focuses on leveraging contrastive learning to reconstruct
sequences of input embeddings. Instead of adding a projection head towards a high-dimensional
vocabulary space in order to make a prediction about a given token, we teach those models to
contrastively output static embeddings corresponding to this token. The static embeddings we use for
this are the model’s own input embeddings. Due to its resemblance with the well-established weight-
tying trick (Press & Wolf} 2017} He et al., 2023)), we call this pre-training technique Contrastive
Weight Tying (CWT).
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Figure 1: Masked Headless Language Modeling (HLM) using Contrastive Weight Tying. The CWT
objective aims to contrastively predict masked input representations using in-batch negative examples.
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We find that our approach outperforms usual language modeling counterparts in several aspects
and by substantial margins. First, it drastically speeds up training by freeing up GPU memory and
avoiding the costly language modeling projection, thus allowing up to 2 x acceleration of the training
throughput, and up to 20x less compute requirements to achieve similar performance. Moreover,
given the same amount of training tokens, headless language models (HLMs) significantly outperform
their classical counterparts on downstream tasks, as shown by a 2.7 gain in LAMBADA accuracy for
our headless generative model. Finally, given similar compute budgets, HLMs bring substantial gains
for NLU tasks, with our BERT reproduction scoring 1.6 points above its classical counterpart on the
GLUE benchmark. We also show that headless models can benefit from larger token vocabularies at
a much more reasonable cost than classical models.

In terms of implementatioﬂ our approach can be used as a drop-in replacement in usual pretraining
codebases, as it only requires a change in the loss computation that can be applied to any kind of
language model.

Overall, we make several contributions in this article:

* We introduce a pretraining objective that replaces cross-entropy, thus removing the need
to project on the vocabulary high-dimensional space and instead learning to contrastively
predict latent representations of tokens;

* Using this technique, we pretrain encoder and decoder models for English, and a multilingual
encoder model;

* We show the various benefits of headless training in terms of data-efficiency, compute-
efficiency, and performance;

* We explore the effects of micro-batch size and vocabulary size on downstream performance,
and provide an ablation study of our contrastive objective.

2 RELATED WORK

Efficient pre-training With the dawn of pretrained language models, such as BERT (Devlin
et al., 2019), RoBERTa (Liu et al.| [2019), GPT-2 (Radford et al., 2019) or TS5 (Raftel et al., 2020),
improving training efficiency has become an important stake in NLP. Subsequent works have focused
on changing the training objectives to improve performance. ELECTRA (Clark et al.l |2020b)
uses Replaced Token Detection as the unsupervised training task, and substantially improves data-
efficiency, compute-efficiency, and downstream performance. Their work has also been extended
using energy-based models (Clark et al.,|2020a) or disentangled weight sharing (He et al.| 2020).

Contrastive approaches in NLP The idea of relieving language models of the need to predict
probabilities over the whole token vocabulary has been explored in the importance sampling literature
(Bengio & Senecall, 2003; Mnih & ‘Teh,[2012; Jean et al.,|2015; Ma & Collins, [2018). These methods
approximate the denominator of the softmax by using only a subset of the possible tokens. Those
approaches usually rely on variants of the Noise-Contrastive Estimation objective (Gutmann &
Hyvarinen, [2010) that use unique negative samples, contrary to our approach that samples represen-
tations uniformly from the batch. Kumar & Tsvetkov|(2019) and [Tokarchuk & Niculae|(2022) use
contrastive objectives based on cosine-similarity to match pre-trained static embeddings for Machine
Translation. We instead use the model’s input embeddings as trainable target representations.

Contrastive self-supervised learning The Contrastive Predictive Coding loss (van den Oord et al.|
2019) initiated the use of pretraining approaches based on a contrastive learning objective, an idea
that has obtained success in many modalities over the years (Sermanet et al., 2018} Schneider et al.,
2019; Baevskai et al.l 2020; |Algayres et al., 2022). In NLP, contrastive learning has proven efficient in
the training of sentence-level models (Gao et al.| 2021} |Yan et al.} 2021} Klein & Nabi, 2023). Token-
level approaches rely on contrastive auxiliary objectives that are added to the usual cross-entropy
loss. SimCTG (Su et al.l 2022a) introduces a token-level contrastive objective using in-batch output
representations as negative samples, and adds this objective to a sentence-level contrastive loss and a
regular causal LM loss. TaCL (Su et al.| 2022b) relies on a similar technique for encoder models,

'Our pretraining and fine-tuning code is published in https://github.com/NathanGodey/headless-1m
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where a teacher model is used to produce negative samples. ContraCLM (Jain et al.} 2023) uses an
auxiliary contrastive loss for code generation.

Tokenization and frequency The importance of tokenization for language models has been
discussed by several works (Rust et al., 2021} |[Zouhar et al., 2023). As discussed in Zouhar et al.
(2023)), tokenization choices impact token probability distributions both at contextual and general
scales. It has been shown that skewed token distributions can impact the quality of representations
(Gao et al., 2019a; Zhou et al., [2021}; |Puccetti et al., [2022; |Yu et al., [2022). Removing the language
modeling head could mitigate these issues. In the case of multilingual models, |Liang et al.| (2023)
have shown that increasing the vocabulary size leads to better performance, at the cost of added time
and memory complexity.

3 METHOD

3.1 CLASSICAL FRAMEWORK

We consider a batch X' = (z; j)ic[1,n],je[1,2] Of N token sequences of length L. We also produce
a slightly altered version of these sequences X = (%i5); €1, N].jel, D] optionally using masking or
random replacement for instance, as some pretraining objectives require. We introduce an embedding

matrix eg € RV*P where V is the token vocabulary size and D is the hidden dimension, and a
sequence-to-sequence model Ty : RV XEXD _y RNXLXD hoth based on a set of parameters 6 € RP.

A classical language modeling approach consists in selecting a subset of tokens Xs = (2 ;)i jes.
and then estimating a probability distribution over the token vocabulary for these tokens from the
(Z;,;) sequences, using eg and Ty. Learning occurs as X is partially altered in (Z; ;) (e.g. in Masked
Language Modeling) or internally in Tj (e.g. decoder models), and contextual information is essential
for ey and Ty to accurately estimate the tokens in Xs.

A trick that has been used in many such approaches relies on using ey’s transpose (69 ) as a projection
from the output space of Ty to RY. This approach, called weight tying, can be written for a given
sequence at index ¢ € [1, N] as:

Pij = softmaz (e (To(eq(:));))

where p; ; is the estimated distribution for the j-th word of the sequence. Weight tying has been
shown to improve performance while reducing the number of parameters (Clark et al., [2020b).
Cross-entropy loss is then used as an objective function:

L0, X, X) Z 1, - log(ps ;)
’LJES

3.2 HEADLESS MODELING

While weight tying does not use additional parameters, the projection e} actually has a non-negligible
computational cost, which increases as the token vocabulary grows. Like |Gao et al.[|(2019a), we
advocate that the weight tying approach tends to maximize the scalar product between the input
embedding of the original token eq(z; ;) and the output representation at the same position 0?7 ;=

Ty(eq(Z;)),, under the contrastive regularization of the softmax function.

Based on this understanding, we design an objective that directly optimizes this scalar product while
not requiring the computation of the e projection. As we do not use this projection, we cannot
rely on softmax regularization anymore, and instead introduce a contrastive loss using the in-batch
samples from S as negatives. All in all, our contrastive loss can be written as:

L0,X,X) = |S\Z

i,jES Zk les € o (w)

0; 7 ‘eq(zi,j)

We call this objective Contrastive Weight Tying (CWT), as weight sharing is not used per se but is set
as a contrastive objective. Across the paper, we do not combine this loss function with the classical
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cross-entropy objective as in |Su et al.[(2022a)), and rather use it as the only pretraining objective.
To the best of our knowledge, this work stands as the first attempt to pretrain language models in a
self-supervised fashion using an explicit contrastive loss as the sole objective.

3.3 THE CASE OF DECODERS: CAUSAL FINE-TUNING

We can easily adapt the Causal Language Modeling (CLM) objective using the Contrastive Weight
Tying approach. Negative samples correspond to every input embedding at a different position in
the batch. However, the resulting model is not directly able to generate text, as it has no projection
head towards RV. A way to retrieve language generation capacities is to use the input embedding
matrix transpose eg as a projection head (Kumar & Tsvetkov, 2019; |Tokarchuk & Niculae, [2022)).
Nevertheless, we observe that this approach yields poor performance (see [lable 3)). Instead, we
fine-tune the headless model and a language modeling head initialized with e using the predictive
CLM objective on a small portion (<2%) of the pre-training dataset. This method allows recovering
an effective language model.

3.4 THEORETICAL CONSIDERATIONS

In terms of time and memory complexity, Headless Language Models (HLMs) are more efficient
than classical language models under usual conditions. If we focus on the computation of the loss on
a single device from |S| = K output representations, a neural probabilistic LM requires O(K DV')
operations while our headless approach performs O(K?2D) operationsﬂ Hence, when K < V, which
is very common for micro-batch sizes that fit on one device, our CWT loss is more computationally
efficient than cross-entropy. With regard to memory requirements, our CWT loss is also more efficient
than its classical counterpart. On the one hand, the cross-entropy loss with weight tying stores the
outputs of the eeT projection of dimension K x V in the forward pass. On the other hand, our CWT
loss stores the scalar product matrix of dimension K x N, which is again smaller when K < V.
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Figure 2: Comparison of time and memory complexities of a BERT-base model on a single RTX
8000 GPU.

In we provide a preliminary empirical analysis of the speed and memory improvements
when training a BERT-base model using original hyperparameters, i.e. sequences of 512 tokens
and 15% masking. We use HuggingFace’s implementation for the Transformers blocks, and run
experiments on a single RTX 8000 GPU. We observe that training latency is significantly reduced
by roughly 25% for all batch sizes, and that the engine can handle a larger batch size due to the
improvement in memory consumption.

4 EXPERIMENTS

We use the Contrastive Weight Tying objective for medium-scale pre-training experiments in different
contexts. We focus on monolingual encoder and decoder architectures, but we also train one

2One could extend our CWT loss by picking a separate set Sy of negative samples. This allows to tune the
number of negative samples, which is important in Contrastive Learning. However, for the sake of simplicity,
and to avoid extensive hyperparameter tuning, we set Sy = S.
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MLM type Tokens (B) GPU hours \ MRPC COLA STS-B SST2 QNLI QQP MNLI Avg.
Vanilla 4.1 989 85.87 54.66 83.7 92.45 88.38 89.57 824 82.43 (£0.12)
Headless 4.1 444 85.31 58.35 84.54 93.23 89.49 89.62 82.54 83.29 (£0.15)
Headless 8.2 888 86.89 60.72 85.98 92.56  89.75  89.81  82.87 84.08 (+-0.14)

Table 1: Results of Masked Language Models (MLMs) on the dev sets of the GLUE benchmark.
Best results are bold and second best are underlined. We report Matthews’ correlation for COLA,
Spearman correlation for STS-B, and accuracy elsewhere. MNLI validation datasets are concatenated.
All scores are averaged over 3 different seeds.

MLM type \ BoolQ CB COPA  WiC Avg.

Vanilla 68.8 77.8 60.2 649  67.9(+04)
Headless 69.8 74.7 62.7 67.2  68.6 (+0.6)

Table 2: Results of Masked Language Models (MLMs) on the dev sets of datasets from the Super-
GLUE benchmark. We report accuracy for all tasks. Scores are averaged over 10 fine-tuning runs.

multilingual encoder as we believe the uniformity brought by our contrastive objective may improve
cross-lingual alignment. We compare our HLMs with classical language models that we pretrain on
the same data with roughly similar compute budgets.

4.1 HEADLESS MONOLINGUAL ENCODER

We pretrain BERT-base architectures (110M parameters) for English on the OpenWebText2 dataset
extracted from The Pile (Gao et al.,|2020). We use the tokenizer from the Pythia suite (Biderman
et al., 2023), which was trained on The Pile and uses a 50k tokens vocabulary. We mostly use
hyperparameters from BERT (Devlin et al.l [2019), although we remove the NSP objective as in
RoBERTa (Liu et al.,2019). For the sake of simplicity, we use a sequence length of 128 for the whole

training. We give a detailed overview of the hyperparameters in

We pretrain all models using 8 A100 GPUs, with a budget of roughly 1,000 hours each. To optimize
training, we use memory-efficient self-attention as implemented in xFormers (Lefaudeux et al.| [2022)
for all experiments. For the vanilla MLM, we set a micro-batch size of 32 for each A100 GPU,
then accumulate to the original 256 batch size at optimization level, and train on 1 million batches.
For our headless approach, we observed that we could remain within compute budget when using a
micro-batch size of 64. Hence, we use an effective batch size of 512 for the headless MLM (HMLM).
Although the HMLM uses more pretraining sequences, it does not gain additional information
compared to the vanilla MLM as both models perform several epochs on the OpenWebText2 dataset.

We evaluate on the GLUE benchmark, where we exclude the RTE dataset due to high standard
deviations in the obtained scores. We fine-tune our models for 10 epochs on every dataset, and
compute validation metrics once every fine-tuning epoch. We use the AdamW optimizer with a
learning rate of 1075, a weight decay of 0.01 and a balanced cross-entropy loss objective. See

[Appendix E|for more details.

In[Table T| we compare our headless MLM with the classical MLM on the GLUE benchmark. To
ensure fair comparison, we display evaluations at similar amounts of tokens seen during pre-training,
and at similar training durations on the same hardware. In both cases, the headless MLM outperforms
the vanilla MLM by significant margins, showing that our CWT loss is both more data-efficient and
compute-efficient in this setup. We extend this analysis at various intervals along pretraining, and
plot results in It shows that the headless MLM outperforms the downstream performance of
its vanilla counterpart after using 25% of its training compute. We notice that the performance gap is
near constant across pretraining steps.

4.2 HEADLESS MONOLINGUAL DECODER

We pretrain Pythia-70M architectures for English, sticking to the Pythia procedure (Biderman et al.,
2023)) as much as possible. We use OpenWebText2 as a pretraining dataset. We train on 143,000
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Figure 4: Comparison of LAMBADA metrics along pretraining. We display results for vanilla causal
language modeling and headless models before and after causal LM fine-tuning. The pretraining
token count for the fine-tuned HLM takes fine-tuning tokens into account.

batches of 1,024 sequences of length 2,048 split over 16 V100 GPUs. We use exactly the same
hyperparameters as in the Pythia suite. The micro-batch size is set to 32 in both cases.

As mentioned in we fine-tune our headless models for CLM with an LM head
initialized with eGT for 10000 steps using an effective batch size of 256 (4x smaller that during
pretraining), a learning rate of 10~%, and a constant learning rate schedule with 2000 linear warm-up
steps. All other hyperparameters are kept similar to pretraining. We evaluate our models on the
LAMBADA dataset and report accuracy and perplexity for zero-shot generation in [Figure 4

We find that the HLM fine-tuned for predictive language modeling outperforms the vanilla model by
a significant margin along training. We report language generation results in[Table 3] We observe
that despite having a higher validation perplexity even after fine-tuning, the HLM is improving the
zero-shot perplexity on the LAMBADA dataset.

We also study the zero-shot performance of the causal models on datasets taken from the LM
Evaluation Harness. At this model scale, many tasks are not relevant and thus discarded, as the
results do not always significantly outperform a random baseline. We also discarded tasks where the

LM type | Validation LAMBADA
| Ppl. Ppl. Acc.
Vanilla 3.143 17023 19.52
Headless - 524.44 18.26
Headless + FT 3.283 153.5 222

Table 3: Results of the causal language models on the validation set after training, and on the
LAMBADA dataset.
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LM type GPU hours \ BoolQ CrowS-Pairs | RACE SciQ PubMedQA QASPER
Vanilla 1712 (- 47.8 (+0.9) 57.3 (£1.2) 23.7(£13) 664 (£1.5 43.8 (+1.6) 41.9 (+£4.8)
HLM +FT 1052 (61%) | 53.01 (£0.9) 56.0 (£1.2) 26.0 (£1.4)  64.5(£15 4751 (£1.6)  66.07 (£3.1)

Table 4: Zero-shot evaluation of monolingual causal language models on datasets from the LM
Evaluation Harness. We report the stereotype percentage for CrowS-Pairs and accuracy elsewhere. T
best scores that are significantly better than the second best score according to a one-tailed t-test with
power 0.95.

sample size was below 1000 or where comparison was not meaningful due to low performance gaps
compared to the variance level. Hence, only a subset of the tasks is shown in[Table 4]

In we find that the fine-tuned HLM outperforms the vanilla causal model by significant
margins on BoolQ (Clark et al.| 2019), PubMedQA (Jin et al., 2019) and QASPER (Dasigi et al.,
2021). Although we observe less statistically significant gaps for the other datasets, we still note that
our HLM performs at least comparably to the vanilla baseline. We also note that the HLM seems
slightly less prone to stereotypes as measured by the CrowS-Pairs benchmark (Nangia et al., 2020).

Overall, using the Contrastive Weight Tying loss in the context of causal LM allows obtaining models
on par with vanilla counterparts at a lower compute cost. We notice that the resulting models can get
surprisingly good results in challenging datasets, hence showing language understanding capabilities,
while being outclassed in language generation benchmarks (before predictive fine-tuning). We believe
that this study shows that language generation needs to be considered as a downstream task for HLMs,
as they are designed to generate representations instead of words.

5 MULTILINGUAL ENCODER

In this section, we pretrain small multilingual MLMs and evaluate their performance on the XNLI
dataset (Conneau et al.,[2018). Due to compute limitations, we consider architectures similar to the
distilled multilingual BER trained by [Sanh et al.|(2019). This model has 137M parameters, and
uses a vocabulary of 119k tokens. As in we train a vanilla MLM and a headless
counterpart. However, we share training hyperparameters such as batch size and total number of steps
between both models, without compute considerations. For both experiments, we pretrain our models
on 400k batches of 64 sequences of 128 tokens taken from the multilingual Wikipedia dataset using a
single RTX8000 GPU. We select 90 million entries from 10 languages (Arabic, German, English,
Spanish, French, Hindi, Italian, Japanese, Korean, and Chinese). Training hyperparameters can be

found in[Appendix D3]

Models are then fine-tuned on the XNLI dataset, for both cross-lingual zero-shot transfer from English
and target language fine-tuning. Fine-tuning hyperparameters can be found in

MLMtype | ar de en es fr hi zh Avg.

Fine-tuned on English only

46.83 5671  71.66 5993 5834 43.16 5099  55.37 (£0.11)
48.06 57.32 7403 62.72 62 4525 5215 57.36 (+0.2)

Vanilla
Headless

Fine-tuned on target language

51.32 64.09 70.4 6698 6588 5595 64.63 62.87 (+0.2)
5425 6695 7396 69.14 67.22 60.04 67.22  65.54 (+0.22)

Vanilla
Headless

Table 5: Evaluation of multilingual models on the XNLI benchmark. We report dev accuracy,
averaged over 3 runs.

We display final results in [Figure 5] We find that the headless approach leads to significantly better
performance for every language in both cross-lingual transfer and language-specific fine-tuning.
In average, the headless MLM outperforms its vanilla counterpart by 2 accuracy points in the
cross-lingual scenario, and by 2.7 points in the language-specific fine-tuning experiments.

3Available at https://huggingface.co/distilbert-base-multilingual-cased
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Figure 5: Comparison of XNLI average scores along pretraining for different setups. Models are
fine-tuned/evaluated in Arabic, German, English, Spanish, French, Hindi and Chinese.

In we evaluate the models at intermediate pretraining checkpoints and plot the XNLI
average score as a function of used GPU hours. We observe that our HLM finishes training within
45% of the time required by the vanilla mode, and that its performance level outperforms the fully

trained vanilla model after only using 5% as much compute in and 22% in

6 DISCUSSION

Token vocabulary Training language models without output vocabulary projection makes using
large vocabularies more affordable in terms of compute. As a matter of fact, the time complexity
of HLMs during training is theoretically constant as we increase the vocabulary size. With input
embedding lookup tables that do not require fully loading the ey weights, the memory complexity
can also be kept constant with respect to the size of the vocabulary. This property could be useful for
multilingual models relying on considerable vocabulary sizes, such as XLM-V (Liang et al.,|[2023).

To verify this hypothesis, we pretrain models for different vocabulary sizes using the BERT-Small
architecture from Turc et al.[{(2019) and the CC-News dataset (Hamborg et al.|[2017). Hyperparameter
details can be found in For each vocabulary size, we train a BPE tokenizer similar to
the BERT tokenizer, and pretrain a vanilla MLM and a headless MLM. We then compare average
GLUE results, excluding RTE, MRPC and COLA, due to high variance at that model scale.
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Figure 6: Comparison of downstream performance and training speed for small models trained using
different token vocabulary sizes.

shows that HLMs can actually benefit from larger token vocabularies up to a certain extent,
and that they outperform their vanilla counterparts for every vocabulary size. demonstrates
that increasing the vocabulary size comes at almost no decrease in training speed for the HLMs,
contrary to vanilla MLMs. However, we observe a sudden throughput increase between 85k and 100k
tokens vocabularies for both vanilla and headless models, which we attribute to a different handling
of GPU memory and operations as the models get bigger.
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Batch size As discussed in[Subsection 3.4] the micro-batch size used to compute the CWT loss is
important as it impacts the training complexity by increasing the number of negative samples. Recent
work on Contrastive Learning shows that there usually exists an optimal number of negative samples
in terms of model performance (Awasthi et al.|[2022; [Ash et al.,[2022)). As a consequence, increasing
the batch size when using CWT may not always be beneficial.

To study the impact of batch size on downstream performance, we pretrain small decoder models using
different batch sizes. Our models are inspired from the smallest architecture of GPT2 (Radford et al.|
2019) where many hyperparameters are divided by 4. More details about the pretraining procedure of

these models can be found in[Appendix D.5] HLMs are fine-tuned similarly to
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Figure 7: LAMBADA accuracy along pretraining for different batch sizes.

In|Figure 7| we observe that increasing batch size leads to better performance for our HLMs. While
smaller batch sizes train even faster, the headless model with the greatest batch size (128) is the only
one that is able to significantly outperform its vanilla counterpart at the end of training.

Ablation study In we conduct an ablation study by training small models using the
hyperparameters described in[Appendix D.4]for different objectives. We observe that adding Cross-
Entropy to CWT leads to slightly worse performance, at the cost of reduced throughput. We also notice
that using a contrastive objective without using input embeddings as targets decreases performance,
despite adding parameters during training. This shows the relevance of our weight tying approach.

Objective Parameters ~ Throughput T  GLUE avg.
Cross-Entropy x1 x1 82.45
Cross-Entropy + CWT x1 x0.87 82.93
NCE (wo/ WT) x1.57 x2.47 8291
CWT x1 x2.13 83.37

Table 6: Ablation study using variants of the CWT objective. In CWT + Cross-Entropy, we add
the objectives without specific weights. In NCE (wo/ WT), we adapt our CWT objective with an
additional static embedding matrix instead of the model’s input embeddings, which resembles Ma &
Collins| (2018)).

CONCLUSION

In this paper, we present a new pretraining approach called headless language modeling, that removes
the need to predict probability distributions over token vocabulary spaces and instead focuses on
learning to reconstruct representations in a contrastive fashion. Our method only relies on changing
the objective function, allowing for straightforward adaptations of classical language modeling
pretraining objectives.

Using our contrastive objective, we pretrain headless monolingual and multilingual encoders, and
a headless monolingual decoder. We demonstrate that headless pretraining is significantly more
compute-efficient, data-efficient, and performant than classical predictive methods.

A major advantage of our approach is that it enables the use of very large token vocabularies at
virtually no increased cost. We believe that this paper paves the way for the exploration of contrastive
techniques as a replacement of cross-entropy based pretraining objectives for NLP.
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A MODELING CONSIDERATIONS

From a linguistic point of view, we hypothesize that an important difference between our approach
and classical predictive modeling is the fact that headless modeling mostly pushes for discrimination
between co-occurring tokens, instead of imposing a contextual hierarchy over the whole vocabulary.
For instance, in the case of synonyms A and B, each occurrence of A (or B) is pushing the input
representations of A and B apart for predictive modeling, due to weight tying. For headless modeling,
an occurrence of A will only push the representations apart if B appears in the same batch. Hence,
the CWT objective could let models identify A and B as synonyms more easily. This argument is
already mentioned in/Jean et al.| (2015)).

To provide empirical evidence of this behavior, we study the representation similarity for pairs of
synonyms for classical and headless models. We use WordNet (Fellbaumy, |1998)) to extract synonym
pairs and we then compute the cosine-similarity between the input embeddings corresponding to the

two synonyms. Resulting cosine-similarity distributions are displayed in [Figure §|
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Figure 8: Cosine-similarity distributions for pairs of WordNet synonyms.

In we observe that HLMs tend to generally represent synonyms in a more similar way
than vanilla LMs, as cosine-similarity distributions slightly drift towards higher values. In average,
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cosine-similarity between synonyms is 1.4 points higher for the encoder and roughly 7 points higher
for both the original HLM decoder and its fine-tuned version.

However, we do not observe a radical difference between HLMs and classical LMs in this analysis of
the input representations. A more thorough analysis of the latent spaces of both types of models could
be relevant. For instance, comparing contextual representations of similar words across examples
could help clarify this matter. We leave such analyses for future work.

Another advantage of pushing discrimination between co-occurring tokens only may be an improved
feedback quality, as we expect distinguishing between co-occurring tokens to be more linguistically
relevant than distinguishing between all tokens.

Finally, we believe that our method avoids the issue of cross-entropy regarding rare and unused
tokens. |Gao et al.| (2019b) prove that cross-entropy pushes the representations of rare and unused
tokens in a shared direction, thus distorting the resulting embedding space. The CWT objective only
updates these embeddings when they appear in the negative samples, which should result in more
meaningful representations.

B LIMITATIONS

One key limitation of this paper is the scale of the used architectures. In recent months, the dawn of
Large Language Models using billions of parameters reshaped the language modeling paradigm. The
research process that led to this paper is empirical and required extensive experimentation that could
not be done at large scale in our academic compute budget. We believe that the results presented in
this paper are still sufficiently promising to be communicated and useful to the community. We leave
the scaling of these techniques to future work.

It could be opposed to this paper that as architectures grow in size, the proportion of compute that is
associated with the output vocabulary projection shrinks. While we acknowledge that this effect may
reduce the advantage of HLMs in terms of training throughput, our experiments show that HLMs are
more performant for a given number of pretraining steps.

We chose not to compare with other efficient encoder architectures such as ELECTRA or DeBERTa
in this paper. We also chose not to apply our method to encoder-decoder architectures, or to subtle
masking methods such as SpanBERT (Joshi et al., [2020). As a matter of fact, we argue that our work
could be combined to these methods, and we thus believe that comparison is not relevant as these
works are orthogonal to ours. We leave the intersection of these approaches for future work.

Finally, we decided to pick English for all monolingual experiments. Different behaviors could be ob-
served for other languages, although our multilingual experiments gave no sign of such discrepancies.

C ETHICS STATEMENT

To the best of our knowledge, this paper does not raise any specific ethical concern that is not already
inherent to the open-data pre-training paradigm. Our results on the CrowS-Pairs dataset indicate
that headless language modeling may mitigate some of the biases that are measured in this task.
Due to considerations that are discussed in|[Zhou et al.|(2021])), and for reasons evoked in[Section 6]
we believe that alternatives to cross-entropy as an objective for language modeling could mitigate
some of the biases that are observed in LLMs, and hope that our work can pave the way for such
alternatives.
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D PRETRAINING HYPERPARAMETERS

D.1 MONOLINGUAL ENCODERS

Dataset OpenWebText2
Architecture bert-base-uncased
Tokenizer pythia-70m-deduped
Optimizer AdamW
Learning rate le-4
Precision 16
Weight decay 0.01
Gradient clipping 1
Device batch size 32/64
Batch size 256 /512
Sequence length 128
LR schedule Triangular
‘Warmup steps 10000
Nb. steps 1000000

Table 7: Pre-training hyperparameters used for the monolingual encoders. When they differ between

vanilla and headless models, we provide separate values formatted as (vanilla / headless). Model
names written as model-name refer to their HuggingFace release.

D.2 MONOLINGUAL DECODERS

Dataset OpenWebText2
Architecture pythia-70m-deduped
Tokenizer pythia-70m-deduped
Optimizer AdamW
Adam € le-8
Adam (51, 82) (0.9, 0.95)
Learning rate le-3
Precision 16
Weight decay 0.1
Gradient clipping 1
Device batch size 8/8
Batch size 1024 /1024
Sequence length 2048
LR schedule Cosine
Warmup steps 1430
Nb. steps 143000

Table 8: Pre-training hyperparameters used for the monolingual encoders. When they differ between
vanilla and headless models, we provide separate values formatted as (vanilla / headless).
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D.3 MULTILINGUAL ENCODERS

Dataset Wikipedia (multilingual)
Architecture distilbert-base-multilingual-cased
Tokenizer distilbert-base-multilingual-cased
Optimizer AdamW
Learning rate 2e-4
Precision 16
Weight decay 0.01
Gradient clipping 1
Device batch size 64
Batch size 64
Sequence length 128
LR schedule Triangular
Warmup steps 10000
Nb. steps 400000

Table 9: Pre-training hyperparameters used for the multilingual encoders.

D.4 SMALL MONOLINGUAL ENCODERS

Dataset CC-News
Architecture google/bert_uncased_L-4_H-512_A-8
Tokenizer google/bert_uncased_L-4_H-512_A-8
Optimizer AdamW
Learning rate 2e-4
Precision 16
Weight decay 0.01
Gradient clipping 1
Device batch size 64
Batch size 64
Sequence length 128
LR schedule Triangular
Warmup steps 10000
Nb. steps 400000

Table 10: Pre-training hyperparameters used for the small monolingual encoders used in
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D.5 SMALL MONOLINGUAL DECODERS

Dataset CC-News
Architecture gpt2
Hidden size 192

Number heads 3
Number layers 3
Tokenizer gpt2
Optimizer AdamW
Learning rate 2.5¢-4
Precision 16
Weight decay 0.01
Gradient clipping 1
Sequence length 128
LR schedule Cosine
‘Warmup steps 2000
Nb. steps 1000000

Table 11: Pre-training hyperparameters used for the small monolingual decoders used in
These models rely on the GPT-2 architecture with a few changes. These changes scale down the
model size to 11M parameters.

E FINETUNING HYPERPARAMETERS

E.1 BALANCED CROSS-ENTROPY

We have noticed that using balanced cross-entropy loss for fine-tuning could further improve the
performance of all our monolingual encoders, and increase the gap between headless models and
their vanilla counterparts. We also noticed empirically that it helped stabilize results for smaller
datasets such as MRPC and COLA.

Let’s consider a classification problem where the class distribution is described by frequencies

(We)eep1,0)- We can group the cross entropy loss L. as such:

C
Leo(X,Y) =) Lo(X,Y)
c=1
where

N
EC(X7 Y) = Z 1yz‘:C : »Cce(xhyi)
i=1

Using this notation, the balanced cross-entropy loss can be defined as:

Loee(X,Y) ="

c=1

L(X,Y)
we

In practice, we approximate the (w.) using the batch labels. The purpose of the balanced cross-entropy
loss is to mitigate general and in-batch class imbalance.

We reproduce fine-tuning experiments with the more usual categorical cross-entropy loss only, and
using moderately optimized hyperparameters for this loss (see[Table 12)).
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Optimizer AdamW
Learning rate Se-6
Weight decay 0.01

Batch size 32

LR schedule Constant
Linear warm-up 10%
Epochs 10

Table 12: Fine-tuning hyperparameters for monolingual encoder models trained with regular cross-
entropy on the GLUE benchmark.

STS-B  SST2 QNLI QQP MNLI Avg.

82.06 9237 88.62 8949 8235  81.5 019
89.67 89.77 83.05 83.19 (+0.09)

MLM type | MRPC ~ COLA

Vanilla 86.27 49.33
Headless 85.8 56 84.85 93.23

Table 13: Results of Masked Language Models (MLMs) on the dev sets of the GLUE benchmark for
the regular cross-entropy loss. Results are averaged over 3 runs.

E.2 MONOLINGUAL ENCODERS

Optimizer AdamW
Learning rate le-5
Cross-entropy | Balanced
Weight decay 0

Batch size 32

LR schedule Constant
Linear warm-up 10%
Epochs 10

Table 14: Fine-tuning hyperparameters for monolingual encoder models trained with balanced cross-
entropy on the GLUE benchmark.

E.3 MONOLINGUAL DECODERS

Dataset OpenWebText2
Optimizer AdamW
Learning rate le-5
Cross-entropy Regular
Weight decay 0
Batch size 256
LR schedule Constant
Linear warm-up 2000
Nb. steps 10000

Table 15: Fine-tuning hyperparameters for the headless monolingual decoder model using the causal

language modeling objective.
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E.4 MULTILINGUAL ENCODERS

Optimizer AdamW
Learning rate 2e-5
Cross-entropy Regular
Weight decay 0

Batch size 128

LR schedule Constant
Linear warm-up 10%

Table 16: Fine-tuning hyperparameters for the multilingual encoder models in Translate-Train and
Translate-Test scenarios.

F REPRESENTING SYNONYMS

In this section,

G IMPLEMENTATION

def cwt_loss(input_embs, target_embs):

exp_cosine_sim = torch.exp(torch.mm(input_embs, target_embs.T))

self_dist = exp_cosine_sim.diagonal()
neg_dist = exp_cosine_sim.sum(-1)

return - (self_dist/(neg_dist + 1e-9)).log().mean()

Figure 9: PyTorch implementation of the Contrastive Weight Tying loss.

The figures were generated using the Carbon tool (https://carbon.now. sh/).
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def compute_loss(lm_model, input_batch):

labels = input_batch[..., 1:]

Ilm_result = lm_model(input_batch, output_hidden_states=True)
last_hidden_state = lm_result.hidden_states[-1][:, :-1]

emb_mapping = lm_model.get_input_embeddings( )
target_1input_embeddings = emb_mapping(labels)

batch_loss = cwt_loss(
emb_prediction.flatten(0, 1),
target_input_embeddings.flatten(0, 1)

return batch_loss

Figure 10: PyTorch implementation of the computation of the training loss for headless causal LMs.
The implementation of the MLM equivalent is straightforward.
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