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1. Introduction
This paper presents a new approach to solving

Bayesian inverse problems using generative artifi-
cial intelligence models. Bayesian inverse problems
are found in various applications in physics, mathe-
matics, and other natural sciences.
Our method directly generates the posterior dis-

tribution, avoiding intermediate steps to provide a
more accurate representation of uncertainty, a crit-
ical aspect of Bayesian inference. We propose a
model architecture capable of accommodating an
arbitrary number of observations, making it adapt-
able to diverse problem settings.

2. Related works
The table 1 provides methods comparing for solv-

ing Bayesian inverse problems. Deep learningmeth-
ods for solving Bayesian inverse problems exhibit
distinct strengths and limitations. MDGM [1] lever-
ages a VAE-based convolution neural network with
MCMC for multiscale inference, excelling in high-
dimensional PDE-based problems but lacking ex-
act likelihood estimation and flexibility for arbitrary
observations. MCGAN [2] combines MCMC with
GANs for high-fidelity posterior sampling but suf-
fers from computational complexity, lack of explain-
ability, and fixed observation models. PI-INN [3]
employs physics-informed flow-based models, en-
abling exact likelihood estimation and end-to-end
training but struggleswith variable observation sizes
due to architectural constraints. In contrast, CFM-
Tr integrates conditional flow matching with trans-
formers, offering exact likelihood estimation, end-
to-end training, and adaptability to arbitrary obser-
vations.

3. Methodology
Consider a forward model defined as:

d = F(m, e) + η,

wherem is the model parameters, sampled from
their prior distribution, e is the experimental con-
ditions or design, also sampled, η is random noise,
sampled from a predefined noise distribution.
Using this process, we construct a dataset com-

prising samples (d,m, e), which are drawn from the
conditional distribution ρ(d,m, e). The primary ob-
jective is to address the inverse problem: given d
and e, infer the model parametersm. Sincem is not
uniquely determined by d and e, it is characterized
by the conditional distribution ρ(m|d, e). Our goal is
to estimate this conditional distribution.
To achieve this, we employ a conditional flow

matching (CFM) framework from original work [4].
This involves first sampling an unconditional prior
distribution for m (denoted as m0). Next, we define
a conditional interpolation path between (m0, d, e)
and (m, d, e), where (d,m, e) is a sample from the
dataset. The interpolation path is given by:

mt = (1− t)m0 + t ·m, t ∈ [0, 1]

In the CFM approach, we learn a velocity field
vθ(mt, t, d, e) that minimizes the following objective:

Et,m0,(m,d,e)∼ρ

[
∥vθ(mt, t, d, e)− (m−m0)∥2

]
→ min

θ

Here, vθ represents a learnable function param-
eterized by θ, which predicts the velocity field given
inputs (mt, t, d, e). The input dimension correspond-
ing to mt, t, d, and e, while the output dimension
matches the dimensionality ofm.

Fig. 1: Scheme of using the forward model and pre-
trained flow matching model for solving Bayesian
inverse problem

The figure 1 illustrates schematically the infer-
ence method of a trained flow matching neural net-

https://orcid.org/0000-0003-2071-2163
https://orcid.org/0009-0006-8327-5625
mailto:DSSherki@sberbank.ru
mailto:Daniil.Sherki@skoltech.ru


AI4X 2025, Singapore, 8–11 July 2025

Method Base model
Exact

likelihood
estimation

Nomiddle-man
Training

Arbitrary
number of
observations

MDGM VAE based on CNN × ✓ ×
MCGAN MCMC + GAN × × ×
PI-INN PI + flow-based model ✓ ✓ ×
CFM-Tr (ours) CFM + Transformer ✓ ✓ ✓

Table 1: Comparison of methods for solving Bayeisan Inverse problems. *MDGM use the PDE solution as a
holistic observation; the problem was not formulated as the recovery of the forward model from a small
number of observations

work. In this example, the forward problem involves
solving a two-dimensional coefficient equation m,
where the experimental parameters e represent the
boundary conditions, and the observations d corre-
spond to the values of the solution to the equation at
arbitrary points.

4. Numerical Experiments
TheBayesian inverse problemcaseswere adopted

from the article [5] and consist of the following: ex-
periments on the reconstruction of parameters in a
system of ODEs, used to model the spread of a dis-
ease (based on the SEIRmodel) within a population,
as detailed in Appendix B. The second example in-
volves the reconstruction of a coefficient in a PDE
for Darcy Flow using a limited number of solution
points from the PDE. Technical details and mathe-
matical derivations are provided in Appendix C.

5. Results and Discussions
Table 2 presents the results of numerical exper-

iments for our proposed method using the relative
error metric for differential equations solution, gen-
erated and ensembled in 10 times.
The true solution of the ODE system and the re-

constructed parameter distribution, obtained using
only 4 data points, are illustrated in Figure 2. The re-
sults of the restoration of the 2D coefficients of the
PDE (Permeability field inverse problem) are shown
in the Figure 3.

Table 2: The relative inference error of the trained
model for SEIRproblem (AppendixB) andPerme-
ability Field (Appendix C)

N SEIR Problem Permeability Field

2 10.88%± 2.39% 28.84%± 3.43%
3 3.31%± 1.47% 16.23%± 1.53%
4 2.80%± 1.37% 17.80%± 1.99%
5 2.15%± 0.99% 16.86%± 1.76%
6 1.97%± 0.91% 7.21%± 1.26%
7 1.59%± 0.75% 7.48%± 1.23%
8 1.48%± 0.71% 2.75%± 0.60%

Fig. 2: Probabilistic solutions to the inverse problem
formtrue = [0.4, 0.3, 0.3, 0.1, 0.15, 0.6]

Fig. 3: PDE coefficient and solution: true (left) and
reconstructed using Flow-matching (right)

6. Conclusions
Thus, ourmethod is universal and can be adapted

to a large number of problems in a short time if
the problem is reduced to the standard Bayesian In-
verse Problem formulation, since it can learn com-
plex nonlinear distributions. Also a great advantage
is the possibility of using an input that is not fixed in
terms of the number of observations, where increas-
ing the number of observed points increases the ac-
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curacy of the method in terms of recovering the so-
lution from the generated parameters.
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Appendix A. FlowMatching Algorithm

Algorithm 1: Conditional Flow Matching
Training Algorithm
Input: Dataset of paired samples (x1, e, d),

neural network model vθ(t, x, e, d),
Conditioning data e and d, time
t ∼ Uniform(0, 1).
Output: Trained conditional flow field

vθ(t, x, e, d).
for each minibatch of samples (x1, e, d) do

t ∼ U(0, 1) // Sample t
x0 ∼ prior distribution
xt ← t · x1 + (1− t) · x0

ut ← x1 − x0 // Compute the target
velocity
vt ← v(t, xt, e, d) // Predict the
velocity
L(θ)← E

[
(vt − ut)

2
]

// Compute the
loss
Update θ using the optimizer and∇L(θ)

end
return vθ(t, x, e, d)

Appendix B. SEIR disease model problem state-
ment

SEIR (Susceptible-Exposed-Infected-Recovered)
model is a mathematical model used to mathemat-

ically simulate the spread of infectious diseases. In
this case study we simulate a real situation where,
during the spread of a disease, we measure the
number of infected and dead people at random
times and use this information to try to recover the
control parameters of the ODE system.
In this experiment, we adopt the susceptible-

exposed-infected-removed (SEIR) model as pre-
sented by Koval et al., a widely used framework for
modeling the transmission dynamics of infectious
diseases. Assuming a constant population size, the
SEIR model is described by the following system of
ordinary differential equations:

dS

dt
= −β(t)SI, dE

dt
= β(t)SI − αE

dI

dt
= αE − γ(t)I,

dR

dt
= γ(t)I

where the variables S(t), E(t), I(t), R(t) are used
to denote the fractions of susceptible, exposed, in-
fected and removed individuals at time t, respec-
tively, and are initialized with S(0) = 99, E(0) = 1,
I(0) = R(0) = 0.
The parameters to be estimated are β(t), α, γr,

γd(t), where the constants α and γr denote the rate
of susceptibility to exposure and infection to recov-
ery, respectively. To simulate the effect of policy
changes or other time-dependent factors (e.g., quar-
antine and overcrowding of hospitals), the rates at
which exposed individuals become infected and in-
fected individuals perish are assumed to be time-
dependent and parametrized as follows:

β(t) = β1 +
tanh(7(t− τ))

2
(β2 − β1)

γ(t) = γr + γd(t)

γd(t) = γd
1 +

tanh(7(t− τ))

2
(γd

2 − γd
1 )

i.e., the rates transition smoothly from some ini-
tial rate (β1 and γd

1 ) to some final rate (β2 and γd
2 )

around time τ > 0.
In the following, wefix τ = 2.1 and anoverall time

interval of [0, 4]. The experiment consists of choos-
ing such four time intervals e = [a1, a2, a3, a4] ∼
U [1, 3] to measure the number of infected and de-
ceased individuals di = [Iei , Rei ] for i ∈ [1, 4] (d ∈
R2×4) for optimal inference of the 6 rates m =
[β1, α, γ

r, γd
1 , β2, γ

d
2 ]. After training MLP and solving

the flow matching problem, we learned to smoothly
transition from the distribution U [0, 1]6 to the distri-
bution m̂ ∼ ρ(m|e,d).

• e = [a1, a2, a3, a4] ∼ U [1, 3] random times, when
measurements are performed

• di = [Iei , Rei ] for i ∈ [1, 4] (d ∈ R2×4) the num-
ber of infected and deceased individuals

• m = [β1, α, γ
r, γd

1 , β2, γ
d
2 ] is ODE model parame-

ters.
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Appendix C. Permeability field inversion prob-
lem statement

−∇ · (κ∇u) = 0

with boundary conditions

u(x = 0, y) = f(y, e1) = exp

(
− 1

2σw
(y − e1)

2

)

u(x = 1, y) = g(y,2 ) = − exp

(
− 1

2σw
(y − e2)

2

)
was solved using the finite element (FE) method

with second-order Lagrange elements on a mesh of
size h = 1

64 in each coordinate direction, where κ is
a custom 2Dmatrix.
This is a common problem, for example in the oil

industry, when there are a small number ofwells and
pressure observations across them, and from these
data one needs to reconstruct the permeability field
of an oil field.
In this example, the inverse problem consists of

estimating the spatially-dependent diffusivity field
κ, given measurements of the pressure u at some
pre-determined locations (xi, yi) ∈ Ω. To ensure κ is
nonnegative, we impose a Gaussian prior on the log
diffusivity,m = log(κ) ∼ N(0, Cpr), with covariance
operator Cpr defined using a squared-exponential
kernel

c(x, z) = σ2
v exp

[
−∥x− z∥2

2ℓ2

]
for x, z ∈ Ω,

with σv = 1 and ℓ2 = 0.1. Employing a truncated
Karhunen-Loève expansionof theunknowndiffusiv-
ity field yields the approximation

m(x,m) ≈
nm∑
i=1

mi

√
λiϕi(x),

where λi and ϕi(x) denote the i-th largest eigen-
value and eigenfunction ofCpr, respectively, and the
unknown coefficientsmi ∼ N(0, 1). The Karhunen-
Loève expansion is truncated after nm = 16modes,
resulting in an approximation that captures 99 per-
cent of the weight of Cpr.
The input consists of a vector of values d of ar-

bitrary length and two corresponding vectors of co-
ordinates x, y. The final input is a matrix D =
(d,x,y)T with shape (n, 3). e vector parametrizing
smooth functions for boundary conditionwith shape
(2, ) andm vector of 16 parameters (16, ).

Appendix D. Transformermodel architecture

Timestep Embedder Linear projection Linear projection

RMSnorm

Causal Attention

RMSnorm

MLP

RMSnorm
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Fig. A1: Transformer model architecture for SEIR
model case(n is number of observation points,m
is a embedding size)
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