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A VERIFICATION OF ASSUMPTION 1

Mathematically, we can write the exact p(y | x̃) as

p(y | x̃) =
∫

p(y | x)p(x | x̃)dx, (19)

where from the Bayes’ rule,

p(x | x̃) = p(x̃ | x)p(x)∫
p(x̃ | x)p(x)dx

. (20)

For NCSN/NCSNv2, recall that the likelihood p(x̃ | x) follows a Gaussian distributionN (x̃;x, β2I),
where β is the variance of the perturbed Gaussian noise and, by definition, β → 0 in later steps of
the reverse diffusion process in NCSN/NCSNv2. As a result, from (20), the likelihood p(x̃ | x) will
dominate the posterior p(x | x̃) as β → 0 and therefore p(x | x̃) ∝ p(x̃ | x), indicating that the prior
p(x) becomes uninformative. Note that this is particularly the case when the entropy of p(x) is high,
which is usually the case for generative models capable of generating diverse images. While this
assumption is crude at the beginning of the reverse diffusion process when the noise variance β is
large, it is asymptotically accurate as the process goes forward. The effectiveness of this assumption
is also empirically supported by various experiments in Section 4.

Figure 6: Comparison of the exact mean and variance of p(x | x̃) with the pseudo mean and variance
under the uninformative assumption, i.e., p(x | x̃) ∝ p(x̃ | x) in the toy scalar Gaussian example. In
this plot, we set βmax = 90, βmin = 0.01, T = 500, which are the same as the setting of NCSNv2
for CelebA. The x̃ and the prior standard deviation σ0 is set to be σ0 = 15. It can be seen that
the approximated values approach the exact values very quickly, verifying the effectiveness of the
Assumption 1 for this toy example.

A toy example: In the following, we illustrate the assumption in a toy example where x reduces
to a scalar random variable x and the associated prior p(x) follows a Gaussian distribution, i.e.,
p(x) = N (x; 0, σ2

0), where σ2 is the prior variance. The likelihood p(x̃ | x) in this case is simply
p(x̃ | x) = N (x̃;x, β2). Then, from (20), after some algebra, it can be computed that the posterior
distribution p(x | x̃) is

p(x | x̃) = N (x̃;mexact, vexact) (21)

where

mexact =
σ2
0

σ2
0 + β2

x̃, vexact =
σ2
0β

2

σ2
0 + β2

. (22)

Under the Assumption 1, i.e., p(x | x̃) ∝ p(x̃ | x), we obtain an approximation of p(x | x̃) as follows

p(x | x̃) ≃ p̃(x | x̃) = N (x̃;mpseudo, vpseudo), (23)

where

mpseudo = x̃, vpseudo = β2. (24)
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By comparing the exact result (22) and approximation result (24), it can be easily seen that for a
fixed σ2

0 > 0, as β → 0, we have mpseudo → mpost and vpseudo → vpost. In Figure 6, similar to
NCSN/NCSNv2, we anneal β as βt = βmax(

βmin

βmax
)

t−1
T−1 geometrically and compare mpseudo, vpseudo

with mexact, vexact as t increase from 1 to T . It can be seen in Figure 6 that the approximated values
mpseudo, vpseudo, especially the variance vpseudo, approach to the exact values mexact, vexact very quickly,
verifying the effectiveness of the Assumption 1 under this toy example.

B VERIFICATION OF ASSUMPTION 2

Before verifying it in the i.i.d. Gaussian case, we first briefly add a comment on the general case
when AAT is not an exact diagonal matrix. As demonstrated later in Appendix C, the Assumption
2 is introduced to ensure that the covariance matrix σ2I + β2

tAAT of Gaussian noise is diagonal
so that we can obtain a closed-form solution for the likelihood score in the quantized case, which is
otherwise intractable. If

Suppose that the elements of A follow i.i.d. Gaussian, i.e., Aij ∼ N (0, σ2). Next, we investigate the
elements of the matrix C = AAT = {Cij}, i, j = 1...M .

Regarding the diagonal elements Cii, by definition, it reads as

Cii =
∑

n=1...N

A2
in, i = 1...M. (25)

As Cii is the sum of square of N i.i.d. Gaussian random variables Aij , j = 1...N , Cii follows a
Gamma distribution, i.e., Γ

(
N
2 , 2σ

2
)
. The mean and variance of Cii can be computed as Nσ2 and

2Nσ4.

Regarding the off-diagonal elements Cij , i ̸= j, by definition, it reads as

Cij =
∑

n=1...N

AinAjn, i, j = 1...M, i ̸= j. (26)

As Ain and Ajn are independent Gaussian for i ̸= j, it can be computed that the mean and variance
of Cij are 0 and Nσ4, respectively. When σ2 = 1/M and M = αN , where α > 0 is the constant
measurement ratio, the variance of Cij is 1

α2N → 0 as N → ∞. As a result, all the off-diagonal
elements of AAT will tend to zero as N →∞. From another perspective, in Figure 7, we compute
the ratio between the average magnitude of off-diagonal elements Cij and the diagonal elements Cii

when M = αN with α = 0.5. It can be seen that as N increases, the magnitude of the off-diagonal
elements becomes negligible. As a result, when A is i.i.d. Gaussian, the matrix AAT can be well
approximated as a diagonal matrix in the high-dimensional case.

C PROOF OF THEOREM 1

Proof. Let us denote z = Ax. For each noise scale βt > 0, under the Assumption 1, we obtain

pβt
(x | x̃) ∝ pβt

(x̃ | x)
∼ N (x; x̃, β2

t I) (27)

then we can equivalently write

x = x̃+ βtw, (28)

where w ∼ N (0, I). As a result, z = Ax = A(x̃ + βtw) = Ax̃ + βtAw. Then, from (2), we
obtain

y = Q (Ax̃+ ñ) , (29)

where ñ = n+ βtAw. Since n ∼ N (0, σ2I) and w ∼ N (0, I) and are independent to each other,
it can be concluded that ñ is also Gaussian with mean zero and covariance σ2I + β2

tAAT , i.e.,
ñ ∼ N (ñ;0, σ2I+ β2

tAAT ).
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Figure 7: The ratio between the average magnitude of the diagonal elements Cii and off-diagonal
elements Cij when M = αN with α = 0.5.

Subsequently, under the Assumption 2, i.e., AAT is a diagonal matrix, each element ñm ∼
N (ñm; 0, σ2 + β2

t

∥∥aTm∥∥2
2
) of ñ will be independent to each other and thus from (38) we can

obtain a closed-form solution for the likelihood distribution (we will refer it as a pseudo-likelihood
due to the assumptions used) p(y|ẑ = Ax̃) as follows

p(y|ẑ = Ax̃) =

M∏
m=1

p
(
ym | ẑm = aTmx̃

)
(30)

where, from the definition of quantizer Q,

p
(
ym | ẑm = aTmx̃

)
= p (lym

≤ ẑm + ñm < uym
) (31)

= Φ

 −ẑm + uym√
σ2 + β2

t ∥aTm∥
2
2

− Φ

 −ẑm + lym√
σ2 + β2

t ∥aTm∥
2
2

 (32)

= Φ(−ũym
)− Φ

(
−l̃ym

)
(33)

where Φ(z) = 1√
2π

∫ z

−∞ e−
t2

2 dt is the cumulative distribution function of the standard normal
distribution and

ũym
=

aTmx̃− uym√
σ2 + β2

t ∥aTm∥
2
2

, l̃ym
=

aTmx̃− lym√
σ2 + β2

t ∥aTm∥
2
2

. (34)

As a result, it can be calculated that the noise-perturbed pseudo-likelihood score ∇x̃ log pβt(y | x̃)
for the quantized measurements y in (2) can be computed as

∇x̃ log pβt
(y | x̃) = ATG(βt,y,A, x̃) (35)

where G(βt,y,A, x̃) = [g1, g2, ..., gM ]T ∈ RM×1 with each element being

gm =

exp
(
− ũ2

ym

2

)
− exp

(
− l̃2ym

2

)
√
σ2 + β2

t ∥aTm∥
2
2

∫ ũym

l̃ym
exp

(
− t2

2

)
dt

, m = 1, 2, ...,M, (36)

which completes the proof.
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(a) Cosine Similarity (b) PSNR

Figure 8: Averaged Cosine Similarity and PSNR of reconstructed MNIST images of ALD in Jalal
et al. (2021a) and ours (with formula (18) and (16), respectively) when M = 200, σ = 0.1 for the
different condition number of the matrix A is cond(A) = 1000. It can be seen that our method with
(16) significantly outperforms ALD in Jalal et al. (2021a) at high condition number while performing
similarly at low condition number. Ours with diagonal approximation (18) is about the same as ALD
as expected.

D PROOF OF COROLLARY 1.2

Proof. Similarly in the proof of Theorem 1, let us denote z = Ax. For each noise scale βt > 0,
under the Assumption 1, we can equivalently write

x = x̃+ βtw, (37)

where w ∼ N (0, I). As a result, z = Ax = A(x̃+ βtw) = Ax̃+ βtAw. Then, in the case of the
linear model, from (1), we obtain

y = Ax̃+ ñ, (38)

where ñ = n+ βtAw. Since n ∼ N (0, σ2I) and w ∼ N (0, I) and are independent to each other,
it can be concluded that ñ is also Gaussian with mean zero and covariance σ2I + β2

tAAT , i.e.,
ñ ∼ N (ñ;0, σ2I + β2

tAAT ). Therefore, a closed-form solution for the likelihood distribution
p(y|ẑ = Ax̃) can be obtained as follows

p(y|ẑ = Ax̃) =

exp

(
− 1

2 (y −Ax̃)
T
(
σ2I+ β2

tAAT
)−1

(y −Ax̃)

)
√

(2π)M det (σ2I+ β2
tAAT )

. (39)

As a result, we can readily obtain a closed-form solution for the noise-perturbed pseudo-likelihood
score ∇x̃ log pβt

(y | x̃) as follows

∇x̃ log pβt
(y | x̃) = AT

(
σ2I+ β2

tAAT
)−1

(y −Ax̃) . (40)

Furthermore, if AAT is a diagonal matrix, the inverse of matrix
(
σ2I+ β2

tAAT
)

become trivial
since it is a diagonal matrix with the m-th diagonal element being σ2+β2

t

∥∥aTm∥∥2
2
. After some simple

algebra, we can obtain the equivalent representation in (18), which completes the proof.

E COMPARISON WITH ALD IN JALAL ET AL. (2021A) IN THE LINEAR CASE

As shown in Corollary 1.2, in the special case without quantization, our results in Theorem 1 can
be reduced to a form similar to the ALD in Jalal et al. (2021a). However, there are several different
important differences. First, our results are derived in a principled way as noise-perturbed pseudo-
likelihood score and admit closed-form solutions, while the results in Jalal et al. (2021a) are obtained
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(a) Truth (b) ALD (Jalal et al.,
2021a)

(c) Ours (approx (18)) (d) Ours (with (16))

Figure 9: Tyical recovered MNIST images of ALD in Jalal et al. (2021a) and ours (with formula
(18) and (16), respectively) when M = 200, σ = 0.05 and the condition number of matrix A is
cond(A) = 1000. It can be seen that our method with (16) significantly outperforms ALD in Jalal
et al. (2021a), which performs about the same as ours with diagonal approximation (18).

heuristically by adding an additional hyper-parameter (and thus needs fine-tuning). Second, the
results in Jalal et al. (2021a) are similar to an approximate version (18) of ours, which holds only
when AAT is a diagonal matrix. For general matrices A, we have a closed-form approximation
(16). We compare our results with ALD (Jalal et al., 2021a) and the results are shown in Figure 8
and Figure 9. It can be seen that when at low condition number of A when AAT is approximately a
diagonal matrix, our with diagonal approximation (18) performs similarly as (16), both of which are
similar to ALD (Jalal et al., 2021a), as expected. However, when the condition number of A is large
so that AAT is far from a diagonal matrix, our method with the (16) significantly outperforms ALD
in Jalal et al. (2021a).

F DETAILED EXPERIMENTAL SETTINGS

In training NCSNv2 for MNIST, we used a similar training setup as Song & Ermon (2020) for Cifar10
as follows.

Training: batch-size: 128 n-epochs: 500000 n-iters: 300001 snapshot-freq: 50000 snapshot-sampling:
true anneal-power: 2 log-all-sigmas: false.

Please refer to Song & Ermon (2020) and associated open-sourced code for details of training. For
Cifar-10, CelebA, and FFHQ, we directly use the pre-trained models available in this Link.

When performing posterior sampling using the QCS-SGM in 1, for simplicity, we set a constant value
ϵ = 0.0002 for all quantized measurements (e.g., 1-bit, 2-bit, 3-bit) for MNIST, Cifar10 and CelebA.
For the high-resolution FFHQ 256 × 256, we set ϵ = 0.00005 for 1-bit and ϵ = 0.00002 for 2-bit
and 3-bit case, respectively. For all linear measurements for MNIST, Cifar10, and CelebA, we set
ϵ = 0.00002. It is believed that some improvement can be achieved with further fine-tuning of ϵ for
different scenarios. For MNIST and Cifar-10, we set β1 = 50, βT = 0.01, T = 232; for CelebA, we
set β1 = 90, βT = 0.01, T = 500; for FFHQ, we set β1 = 348, βT = 0.01, T = 2311 which are the
same as Song & Ermon (2020). The number of steps K in QCS-SGM for each noise scale is set to be
K = 5 in all experiments. For more details, please refer to the submitted code.

G MULTIPLE SAMPLES AND UNCERTAINTY ESTIMATES

As one kind of posterior sampling method, QCS-SGM can yield multiple samples with different
random initialization so that we can easily obtain confidence intervals or uncertainty estimates of the
reconstructed results. For example, typical samples as well as mean and std are shown in Figure 10
for MNIST and CelebA in the 1-bit case.
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(a) MNIST, M = 200, σ = 0.05 (b) CelebA, M = 4000, σ = 0.001

(c) MNIST, M = 400, σ = 0.05 (d) CelebA, M = 10000, σ = 0.001

Figure 10: Multiple samples of QCS-SGM on MNIST (M = 200, 400, σ = 0.05) and CelebA
datasets (M = 4000, 1000, σ = 0.001) from 1-bit measurements. The mean and std of the samples
are also shown.
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H ADDITIONAL RESULTS

Some additional results are shown in this section.

Figure 11 and Figure 12 show results with relatively large value of M in the same setting as Figure 2
and Figure 4, respectively.

(a) MNIST, M = 400, σ = 0.05 (b) CelebA, M = 10000, σ = 0.001

Figure 11: Typical reconstructed images from 1-bit measurements on MNIST (M = 400) and CelebA
(M = 10000).

(a) Cifar-10, M = 4000, σ = 0.001 (b) CelebA, M = 16000 σ = 0.001

Figure 12: Results of QCS-SGM for Cifar-10 (M = 4000) and CelebA (M = 16000) images under
different quantization bits.

Figure 13 shows the quantitative results of QCS-SGM for different quantization bits.

Figure 13: Quantitative results of QCS-SGM for different quantization bits, σ = 0.001.

Figure 14 and Figure 15 show the reconstructed images of QCS-SGM for Cifar10 and CelebA in the
fixed budget case of Q×M = 3072 and Q×M = 12288, respectively.
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(a) Ground Truth (b) 1-bit, M = 3072

(c) 2-bit, M = 1536 (d) 3-bit, M = 1024

Figure 14: Reconstructed images of QCS-SGM for Cifar10 in the fixed budget case (Q×M = 3072).
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(a) Ground Truth (b) 1-bit, M = 12288

(c) 2-bit, M = 6144 (d) 3-bit, M = 4096

Figure 15: Reconstructed images of QCS-SGM for CelebA in the fixed budget case (Q×M = 12288)
in the same setting as Table 1.
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Cifar10 CS2 Cifar10 CS8 CelebA CS2 CelebA CS8

Method SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑
QCS-SGM (ours) 0.9712 34.33 0.8634 26.20 0.9694 36.80 0.9156 31.13

Neumann networks (Gilton et al., 2019) - 33.83 - 25.15 - 35.12 - 28.38

Table 2: Quantitative comparison (PSNR (dB) and SSIM) of QCS-SGM with the Neumann networks
in Gilton et al. (2019) for CS in the linear case, i.e., without quantization. Both Cifar10 32× 32 and
CelebA 64× 64 are considered. It can be seen that QCS-SGM outperforms the Neumann networks
(Gilton et al., 2019) in all cases. As in Gilton et al. (2019). the values reported are the median across
a test set of size 256. Reconstructed images of QCS-SGM are shown in Figure 16 - 19.

Figure 16: Results of QCS-SGM on Cifar10 for CS2, i.e., M = 1536, N = 3072. Noiseless case.

I COMPARISON WITH NEUMANN NETWORKS GILTON ET AL. (2019)

In the case of no quantization, we compare our method with one popular method called Neumann
Networks (Gilton et al., 2019). The results for Cifar10 are shown in Table 2. It can be seen that
our method outperforms Neumann Networks by a large margin. We do not show quantization
comparisons for quantized CS since Neumann Networks does not support it.
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Figure 17: Results results of QCS-SGM on Cifar10 for CS8, i.e., M = 1536, N = 3072. Noiseless
case.
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Figure 18: Results of QCS-SGM on CelebA for CS2, i.e., M = 6144, N = 12288. Noiseless case.
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Figure 19: Results of QCS-SGM on CelebA for CS8, i.e., M = 1536, N = 12288. Noiseless case.
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(a) MNIST, M = 200, σ = 1 (b) CelebA, M = 4000, σ = 0.01

Figure 20: Results of reconstructed images from 1-bit measurements on MNIST and CelebA images,
following exactly the same setting as Liu & Liu (2022), i.e., Aij ∼ N (0, 1), and ni ∼ N (0, σ2).

J COMPARISON IN THE EXACTLY SAME SETTING AS LIU & LIU (2022)

Note that there is a slight difference in the modeling of measurement matrix A and noise n between
ours and that in Liu & Liu (2022). In Liu & Liu (2022), it is assumed that A is an i.i.d. Gaussian
matrix where each element Aij follows Aij ∼ N (0, 1) and that n is an i.i.d. Gaussian with variance
σ2, i.e., ni ∼ N (0, σ2). However, in practice, the measurement matrix A is usually normalized so
that the norm of each column equals 1. As a result, in our setting, we assume that each element of i.i.d.
Gaussian matrix follows Aij ∼ N (0, 1/M). Mathematically, there is a one-to-one correspondence
between the two settings, but the simulation setting is different due to the different measurement
size M . As a result, for an exact comparison with results in Liu & Liu (2022), we also conducted
experiments assuming exactly the same setting as Liu & Liu (2022), i.e., Aij ∼ N (0, 1), and
ni ∼ N (0, σ2). The results are shown in Figures 20, 21, 22, 23.

(a) MNIST, σ = 1 (b) CelebA, σ = 0.01

Figure 21: Quantitative comparisons based on cosine similarity for 1-bit MNIST and CelebA images,
following exactly same setting as Liu & Liu (2022), i.e., Aij ∼ N (0, 1), and ni ∼ N (0, σ2).
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(a) MNIST, M = 400, σ = 1 (b) CelebA, M = 10000, σ = 0.01

Figure 22: Results of reconstructed images from 1-bit measurements on MNIST and CelebA images,
following exactly the same setting as Liu & Liu (2022), i.e., Aij ∼ N (0, 1), and ni ∼ N (0, σ2).

(a) MNIST, M = 200 (b) CelebA, M = 4000

Figure 23: Results of reconstructed images from 1-bit measurements on MNIST and CelebA images
for different σ, following exactly the same setting as Liu & Liu (2022), i.e., Aij ∼ N (0, 1), and
ni ∼ N (0, σ2).
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