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Appendix
Appendix A. Conversion of Function fx

A.1. Conversion to gx such that lim, , . gx(z) = +00

In this section, we firstly prove that any monotone increasing function fx that satis-
fies Assumptions 1 and 2 can be converted to a function gx such that the conversion
does not impact the propagation of BGLM, i.e., fx(z) = gx(z) for x € [0,|Pa(X)]],
limy 100 gx () = 400, gx is twice differentiable and Assumptions 1 and 2 still hold.

On one hand, if for all z > 2|Pa(X)|, f%(x) > 0, then fx(z) > fx(2|Pa(X)|) +
% (2|Pa(X)|)(x — 2|Pa(X)]|), which already satisfies limy_, o fx(2) = 4+o00. In this case,
no conversion is needed (let gx = fx). On another hand, we can find a z* > 2|Pa(X)|
such that f%(z*) < 0.

We define the conversion as

() {fxm r<a
9x\T) = oy o I (@)? (_fég(fr*)> _ fi@)? ( ook f&(x*)> *
Ix@)+ Fra i (-Ae) - e E - - fe) v
During the propagation of the BGLM, the input of fx is Pa(X) - 0%, which is in
the range [0,|Pa(X)|] C [0,z*]. Hence, when we replace fx by gx in the BGLM, the
propagation is not impacted.

Moreover, we can compute that

I () < z*
/ !/ *\2
gx()=1q — Ix (@) Ty >t
%(I*)((E—I*—fi(ﬁk))

and

Ix (@) z < a”

gx(z) = Ty @*)? > T >x"-
. o Ix@)

Therefore, we have lim,_,,.+ gx(z) = fx(2*) and lim,_, .- gx(x) = fx(z*). Hence, gx is
continuous. Moreover, lim,_, .+ ¢ () = fi(2*) = lim,_, .- ¢’ () and lim,_, .+ ¢% (x) =
Y (2*) =lim,_, .« g% (), so gx(z) is twice differentiable and g% is continuous.

Now we only need to verify Assumptions 1 and 2. Firstly, when z > z*, we have
gy (x) < g (z*) = fi(z*) < LSC;) and g% (z) < g% (z*) = f(z*) < L;i), so Assumption 1
holds. Secondly, max, 1 1jipa(x)| lo—65[<1?" 0 < 2|Pa(X)| < z*, so the conversion does

) ) x>

not impact the value of k. Until now, we complete the conversion.

A.2. Conversion to hy such that lim,, - hx(z) = —co and lim,_, . hx(z) = 400

Then we prove that the monotone increasing function gx that satisfies Assumptions 1
and 2 can be converted to a function hx such that the conversion does not impact the
propagation of BGLM, i.e., gx(z) = hx(x) for z € [0,|Pa(X)|], limy—_oo hx(x) = —00,
limy s 100 hx(z) = 400, hx is twice differentiable and Assumptions 1 and 2 still hold.
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On one hand, if for all z < —|Pa(X)|, f(z) < 0, then fx(z) < fx(—|Pa(X)|) —
% (—=|Pa(X)|)(—z—|Pa(X)|), which already satisfies lim,_, o~ fx(z) = —oo. In this case,
no conversion is needed (let hy = gx). On another hand, we can find a z* < —|Pa(X)|
such that f§(z*) > 0.

We define the conversion as

hx (x) {QX(:U) e
X €Tr) = " g/ (m*)2 g/ (x*) g/ (z*)2 " g/ (CC*) %"

During the propagation of the BGLM, the input of gx is Pa(X) - 6%, which is in
the range [0, |Pa(X)|] C [0,2*]. Hence, when we replace gx by hx in the BGLM, the
propagation is not impacted.

Moreover, we can compute that

g () x>zt
! / *\2
hx(z) = 9x (@) 7 T < x*s
1" * _ * x\T
and
g (@) z> 0
17 ’ *\2
hX({L‘) — gX(-'L' )g/ = . T < a:,* .
() (o= - 555 )

Therefore, we have lim,_, .+ hx(z) = gx(z*) and lim,_, .- hx(z) = gx(z*). Hence, hx is
continuous. Moreover, lim,_, .+ by (z) = ¢’ (z*) = lim,_, .- Iy (z) and lim,_, .+ b (z) =
g% (x*) = lim,_, . W% (x), so hx(x) is twice differentiable and A% is continuous.

Now we only need to verify Assumptions 1 and 2. Firstly, when z < z*, we have
By (x) < by (z*) = gy () < L(fi() and Py (z) < b (2%) = g (2*) < Lgci), so Assumption 1
holds. Secondly, minve[o,l}“’“(XN,HG—e;(Hgl v-0 > —|Pa(X)| > z*, so the conversion does
not impact the value of k. Until now, we complete the conversion.

In conclusion we have found a conversion from fx to hx such that the conversion
does not impact the propagation of BGLM, i.e., hx(z) = fx(z) for x € [0,|Pa(X)]],
Range(hx) = R, hx is twice differentiable and Assumptions 1 and 2 still hold.

Appendix B. Pseudocode of Algorithm 5

Here, we want to give a lemma to clarify why we can always find a solution for equation
S (XD — fx(VT0x))Vix = 0 in Line 5 of Algorithm 5.

Lemma 10 When lim, 1o fx(x) = 400, limy_o fx(z) = —00, and fx is monotone
increasing, equation Y ;_y(X® — fx (V] 0x))V; x =0 has a solution.

Proof We define mx () as

mx(x) = fox fx(c)de x>0
_fg?fX(C)dC <0’
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Algorithm 5: BGLM-Estimate

1: Input: All observations ((X1,Y1),..., (X, Y¥?)) until round ¢.

2: Output: {Bt,XaMt,X}XeXU{Y}

3: For each X € X U{Y}, i € [t], construct data pair (V; x, X)) with V; x the vector of

ancestors of X in round 4, and X the value of X in round i if X ¢ S;.

4: for X e X U{Y} do

5. Calculate the maximum-likelihood estimator ét, x by solving the equation 25:1 (X ()
fx(Vix0x))Vix =0.
M x = Z§=1 V;,XVi,TX

7: end for

Then we can compute
¢

D (XY — (VT 0x) Vi x
=1

as
t

Vo Z (X(i)‘/iTXOX - mX(Vi,TX‘)X)> .
i=1

Hence, we only need to prove that

t

Hy(0x) 2 3 (XOVI0x —mx (V] 6x))
i=1

is a concave function with respect to €x and lim(g, ) 00 Hx(0x) = —o0 or 85()5)(3)_{) =0
J

for all j € [|[Pa(X)|], which implies that Hx has a maximal point. Firstly, we know that

?mx (z)

so my is a convex function. Therefore, for any vectors 01,80, € RIPe(X) and \ ¢ [0, 1], we
have

mx (VI (01 + (1= N)82)) = mx (\V101 + (1= )V 6))
< dmx (Viix61) + (1 = Nmx (V;x62),

SO mX(V;TXOX) is also a convex function with respect to @x and the Hessian matrix
H[mx(V,'y0x)] of mx(V,'y0x) with respect to @x should be positive semidefinite. Now
we can compute the Hessian matrix H[Hx (0x)] as

¢
H{Hx (0x)] = Y (~Vi\Vix - Hlmx (VI 0x)] ).
i=1
Hence, H[H x (0x)] is negative semidefinite because multiplying a positive semidefinite ma-
trix by a negative scalar preserves the semidefiniteness. Thus Hyx is a concave function
with respect to Ox.
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Now for any j € [Pa(X)], we prove that limg,), oo Hx(0x) = —coand lim(g,), , oo Hx(0x) =
—00 or 8?{5%’; ) =, Firstly, we have
OHx(0x) <= (v
m = Z (X( )(szX)j - (W,X)jml)((v;,TXBX)>

=1

I
kM“

(X(i)(‘/i,X)j - (Vz‘,X)ij(Vi,TXHX)) '

=1

If (Vi,x); = 0 for all 7 € [t], we have 9Hx(6x) = (). Otherwise, we have

9(0x);
) 0Hx(6x) ) ! <
lim o= lim XD(Vix)j — (Vix); fx (Vi 0
(0x);—++o0 0(6x); (9x)j—>+°0iz_; (XOWi0)s = (Vo) 5V 0)
t
(Bx);rg—i-oo ;( X)i ( Ix( “X X))
= —0o0, (limgy); 400 [x (V;IxOx) = +00)
which indicates that limgg, ), 4 Hx(0x) = —0co. Also, we have
) 0Hx(6x) ) é ~
lim ———>—>=lim XDV, x)i — (Vix)ifx (V1.0
(0x);——0c  0(6x); (9x),7—>—00; ( Vix)i = Vix)ifx(Vix X)>
t
- L Vix)i (X9 — fx (V.0
(ex);gm;( X5 (X0 = fx(VTc6x))
= 400, (limgy); o0 [x (V;IxOx) = —00)
which indicates that limgg, ), o Hx(0x) = —oo0.
Until now, we have proved that Hx(0x) has at least one global maximum, which indi-
cates that the equation has at least one solution. |

Appendix C. Proofs for Propositions in Section 5

In this section, we give proofs that are omitted in Section 5 of our main text.

C.1. Proof of Lemma 2

Lemma 11 Let G be a BGLM with parameter @ that satisfies Assumption 2. Recall that
Omin = Minx: x)ep 0% x- If Xi € Pa(Xj), we have E[X|do(X; = 1)|—E[X[do(X; = 0)] >
k0%, x, = Kbmin if Xi is not an ancestor of X;, we have E[X;|do(X; = 1)] = E[Xj|do(X; =
0)].

Proof At first, we define an equivalent threshold model form of the BGLM as follows. For
each node X, we randomly sample a threshold vx uniformly from [0, 1], i.e., vx ~ U[0, 1].
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Then if fx(Pa(X)-0%)+ex > vx, X is activated, i.e., X is set to 1; otherwise, X is not
activated, i.e., X is set to 0. Therefore, if we ignore €, the BGLM model belongs to the
family of general threshold models (Kempe et al., 2003). For convenience, we denote the
vector of all vx, X € X U{Y}\{X;} by . The vector of fixing all entries in v except vx
is denoted by v_x
Now we prove the first part of this lemma: E[X;|do(X; = 1)] — E[X;|do(X; = 0)] >

Kb, X, = k0%, if Xi € Pa(X;). By the definition of our equivalent threshold model, we
know that after fixing all the thresholds vx’s and noises ex’s, the propagation result is
completely determined merely by the intervention. Therefore, we have

E[Xﬂdo(Xi =1)]= E7 eUo,1)» [X ‘d0< =1)]

=Ey xcwoate {Xj =1do(X; = 1),v_x;,¢}|

'YX NU[O 1] |
and
E[Xjldo(Xi = 0)] = Ey_, e, ) Nu[o X {Xj =1]do(X; = 0),7-x;,,¢}
Hence, in order to prove E[X;|do(X; = 1)] — E[X;|do(X; = 0)] > k0%, x, = Kb, we only

need to prove

{X; =1|do(X; =1),v-x;,€} — {X; =0|do(X; =0),v-x,,€} > KO-

VX ~u[0 1] ~u[0 1]

When v_x; and € are fixed, all the nodes in X U{Y }\ ({X;} U {Des(X})}) are already fixed
given an arbitrarily fixed intervention. Here, Des(X;) is used to represent the descendants
of Xj. Suppose under do(X; = 1),v_x; and €, the value vector of parents of X; is pa,(X;);
under do(X; = 0), v-x; and e, the value vector of parents of X; is pag(Xj). By induction
along the topologlcal order nodes in X U{Y }\ ({X;} U {Des( j)}) that is activated under
do(X; = 0),v-x, and € must be also activated under do(X; = 1) v-x; and €. Therefore,
entries in pal(X ) — pay(X;) are all non-negative and the entry in pal(X ) — pay(X;) for
the value of X is 1. From this observation, we can deduce that

Ix,(pay(X,) - 0%)) — fx,(pag(X;) - 0%)) = & (pay (X;) - 0%, — pag(X;) - 0%, )
> K, x;,-
Hence, we have

0,1] {X _1|d0( _1)77—Xja5} {X _0|d0( _0)77—Xja5}

VX ~M[ .~u[o 1]

= Pr {fXj (pal(Xj) : 9;(]) > VX, + ng‘ng}

_ Wx_fzﬁ[o 1] {f (pay(X;) - 0%,) > 7x;, +€Xj|axj}
(fx (pai(X;) - O%)) —8Xj> (fx (pao(X;) - 0%,) —€Xj)

*
XZ,X - Hlen?

| \/
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which is what we want. Until now, the first part of Lemma 2 has been proved.

Then we prove the second part of this lemma: E[X,|do(X; = 1)] = E[Xj|do(X; = 0)]
if X; is not a descendant of X;. In this situation, we know from the graph structure that
(X; L Xi)G{xi}’ where GW is the graph obtained by deleting from G all arrows pointing
to X;. According to the third law of do-calculus (Pearl, 2012), we deduce that

E[X;|do(X; = 1)] = Pr{X; = 1|do(X; = 1)} = Pr{X; = 1|}
= Pr{X; = 1|do(X; = 0)} = E[X;|do(X; = 0)].

Now Lemma 2 is completely proved. |

Corollary 12 (An Extension of Lemma 2) Suppose G is a BGLM with parameter 6*
that satisfying Assumption 2 and do(S = s) is an intervention such that X;, X; ¢ S. If
X; € Pa(X;), we have E[X;|do(X; = 1),do(S = s)] — E[Xj|do(X; = 0),do(S = s)]
k0%, x, = Khn; if Xi is not an ancestor of X;, we have E[X|do(X; = 1), do(S = s)]

E[X;|do(X; = 0), do(S = s)).

v

Proof According to Pearl (2012), Pr{X;|do(X;), do(S)} is equivalent to Pr{X;|do(X;)} in
a new model G’ such that all in-edges of S are deleted and all nodes in S are fixed by s.
We know that Lemma 2 holds in G’, so this corollary holds in G. |

C.2. Proof of Lemma 3

Lemma 13 (Positive Rate of BGLM-Order) Suppose Assumption 2 holds for BGLM
G. In the initialization phase of Algorithm 1, Algorithm 2 finds a consistent ancestor-

2m1/10
descendant relationship for G with probability no less than 1 —2("51) exp (—%) when
0 > 2 k71 T/5,

min
Proof We first assume that for every pair of nodes if X; € Pa(Xj;), Algorithm 2 puts X
as a descendant of X; in the ancestor-descendant relationship; if X; is not a descendant
of X;, Algorithm 2 do not put X; as an descendant of X; in the ancestor-descendant
relationship. This event is denoted by &£ for simplicity. We prove that when event £ does
occur, the ancestor-descendant relationship we find is absolutely consistent with the true
graph structure of G. Otherwise, suppose there is a mistake in the ancestor-descendant
relationship such that X; is an ancestor of X; but not put in Anc(X;). We denote a
directed path from X; to X; by X; — Xp, — X, — -+ = Xg, = X;. Therefore, Xy,
must be put in m(XZ-), Xk, must be put in m(Xkl), ..., X;j must be put in Zn\c(ka).
In conclusion, X; should be put in Anc(X;), which is a contradiction. Hence, there is no
mistake in the ancestor-descendant relationship given event £.

Now we only prove that using Algorithm 2, with probability no less than

1 271/10
1_2<n2 >exp <_00012 ,
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event £ defined in the paragraph above occurs. For a pair of nodes X;, X; € X\{X1},
if X; € Pa(X;), we know from Lemma 2 that E[X;|do(X; = 1)] — E[Xj|do(X; = 0)] >
k07 i,- We denote the difference between random variable X given do(X; = 1) and random
. 1/2 . 1/2
variable X; given do(X; = 0) by Z. In Z():Tlm <X»(2wOT ) _ X»((ZZH)COT +k) , each
((2i4+1)coT /% +k) (2icoT*/2+k)

j j
. 1)2
term Xj(chT ) _ X; is an i.i.d. sample of Z. We denote X; —
i 1/2
Xj((2 T 24k) by Z. We know that Z, € [—1,1] and E[Z;] > k6., so according to
Hoeffding’s inequality (Hoeffding, 1994), we have

T1/2
Pr COZ: (X(2i00T1/2+k) _ X((Q”l)CoTl/?Jrk)) > coey T30

J J
k=1
C0T1/2
= Pr Z Zy > CoClT3/10
k=1

CoT1/2
=1-—Pr Z Zk < 0001T3/10
k=1

* 2 *
>1—exp (_2 (COTl/QHHmin — COCng/lo) ) =1—exp <—CO (T1/4K0mm

. cm/m)?)

4coT1/? 2
2. m1/10
T 5
>1—exp (—CICO2> : (because T > 32 <HGC,3‘ ) )
Similarly, if X; is not a descendant of X;, we do not put X; in Zn\c(X ;j) in the ancestor-
. 1/2 . 1/2
descendant relationship if and only if Z?ZT;/Q Xj(zzcoT ) _ Xj((zzﬂ)COT k) < coey T3/19,

Now we still have Z;, € [—1, 1] but E[Z;] = 0. Therefore, according to Hoeffding’s inequality
(Hoeffding, 1994), we have

¢ T1/2
Pr OZ <X](2iCOT1/2+k) - Xj-((2i+1)COT1/2+k)> < coe T3/10
k=1
CDT1/2
=1-—Pr Z Zy > 6061T3/10
k=1
2
2 (coer TH1) 2o T1/10

Hence, by union bound (Boole’s inequality (Bonferroni, 1936)), the probability of £ is
2. m1/10
no less than 1 — 2(”;1) exp (—%) This is because when X;, X; € X\{X}, there

are 2(”51) possible choices of them that are tested by Algorithm 2. When £ happens,
Algorithm 2 gets the ancestor-descendant relationship correct, so Lemma 3 is proved. B
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C.3. Proof of Theorem 4

In the following proofs on a BGLM G, when X' € Anc(X) but X’ ¢ Pa(X), we add an
edge X’ — X with weight 6 x/ x = 0 into G and this does not impact the propagation results
of G. Let D = maxxexuy |Pa(X)| represent the maximum in-degree. After applying this
transformation, D = n and Anc(X) = Pa(X) for all X € X UY in this subsection. This
transformation effectively converts the ancestor-descendant relationship into an ancestor-
descendant graph.

Before the proof of this theorem, we introduce several lemmas at first. The first compo-
nent is based on the result of maximum-likelihood estimation (MLE). It gives a theoretical
measurement for the accuracy of estimated 0 computed by MLE. One who is interested
could find the proof of this lemma in Appendix C.2 of Feng and Chen (2022).

Lemma 14 (Lemma 1 in Feng and Chen (2023)) Suppose that Assumptions 1 and 2
hold. Moreover, given 6 € (0,1), assume that

512| Pa(X)| (L;‘i))?

>\min(Mt,X) Z H4

(|Pa(x)|2 +In ;) . (8)

Then with probability at least 1 — 39, the mazximum-likelihood estimator satisfies , for any
v € RIPa(X)]

) . 3
UT(0t7X - OX)‘ < ; IOg(l/(S) ||,U||Mt7)l( ’

where the probability is taken from the randomness of all data collected from round 1 to
round t.

The second component is called the group observation modulated (GOM) bounded
smoothness property (Li et al., 2020). It shows that a small change in parameters 0 leads to a
small change in the reward. Under our BGLM setting, this lemma is proved in Appendix C.3
of Feng and Chen (2022).

Lemma 15 (Lemma 2 in Feng and Chen (2023)) For any two weight vectors 6*,0? €

O for a BGLM G, the difference of their expected reward for any intervened set S can be
bounded as

|0(S,0%) —0(8,6%)| <Eery | Y |VI(Ok —0%)| LY ], (9)

XEXs,y

where X gy is the set of nodes in paths from S to'Y excluding S, and Vy is the propagation
result of the parents of X under parameter 8. The expectation is taken over the randomness
of the thresholds v and the noises €.

Thirdly, we propose a lemma in order to bound the sum of ||V, x||,,~1 _ at first. This

t—1,X
lemma is proved in Appendix C.4 of Feng and Chen (2022).
Lemma 16 (Lemma 9 in Feng and Chen (2022)) Let {W;}22, be a sequence in RY
satisfying |[W| < Vd. Define Wy =0 and M, = Z;:O W,W. Suppose there is an integer
t1 such that Amin(My, +1) > 1, then for all to > 0,
t1+t2

> Wil < V2t2dlog(tad + 1)

t=t1
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At last, in order to show that Amin(Mr,,x) > R after the initialization phase of Algo-
rithm 1 and thus satisfy the condition of Lemma 14, we introduce Lemma 17. This lemma
is improved upon Lemma 7 in Feng and Chen (2022) and enables us to use Lecué and
Mendelson’s inequality (Nie, 2022) in our later theoretical regret analysis.

Let Sphere(d) denote the sphere of the d-dimensional unit ball.

Lemma 17 For any v = (v1,02, ...,V pa(x)|) € Sphere(|Pa(X)|) and any X € X U{Y'}
in a BGLM that satisfies Assumption 3, we have

1

Pr {]Pa(X)-'v| > } > (¢,
e, XY 4D? — 3

where Pa(X) is the random vector generated by the natural Bayesian propagation in BGLM
G with no interventions (except for setting X1 to 1).

Proof The lemma is similarly proved as Lemma 7 in Feng and Chen (2022) using the idea

of Pigeonhole principle. Let Pa(X) = (Xi, = X1, Xiy, Xig,- -+ Xip,x) as the random

vector and pa(X) = (z1 = 1,2i;, iy, Tig, - - - Tip,(y, ) @S a possible valuation of Pa(X).

Without loss of generality, we suppose that |va| > |vg| > ... > |v| Pa( X)|‘. For simplicity, we
_ 1 D

denote Do = /D — 1 + NS If |vi| > \/ﬁ, we can deduce that

[pa(X) - v| > Jui] — |va| =[] =+ = [vipa(x)|

2
oal* + Jus|* + -+ + [vpa(x)| ) (10)

D
Z%—\/(D—l)(
D D2
ZD%OH\/(DI)<1D3i1> (11)
1

1
o /(DZr)(D-1) ADZ-3

where Inequality (10) is by the Cauchy-Schwarz inequality and the fact that |Pa(X)| < D,

. > DO
and Inequality (11) uses the fact that v € Sphere(|Pa(X)|). Thus, when |v;| > DT
) 1 C e . Do
the event |Pa(X)-v| > WV R holds deterministically. Otherwise, when |vi| < JoiT
we use the fact that |vy| is the largest among |vg], |us], ... and deduce that

2
[+ ()
1 Dg+1 2
\/lv2|2+lv3\2+-~ > - = : (12)

2
|vg| > —
n—1 n—1 4D? — 3

Therefore, using the fact that
e,f))(I:Y {le = 17Xz'2 = 372'27Xi3 = Tjgy - - }

= 5,1)3(1:)’ {Xzz = $i2|Xi1 = 1,X7;3 = Tizy - - } . €’§€Y{(Xi1 = 1,Xl'3 = Tizy - - }

Z C Pry{Xil = 1,Xi3 = Tz, - - }

57X7
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and )

PI'€7X7Y {)(11 = 17Xi3 = Tz, - - } = 1, we have

Tig Tiysee

1
{|Pa< >-v|z}
sXY 1D? _ 3

1
= Z PT{Xil:].,XiQ:].,XiS_:l'is,...}'H{|(1,1,$i3,$i4,...)‘(’0171)2,’03,...)>}

Tiy s 4D? 3
i3 Tig e
1
+ Z Pr{Xil:1,X@'2:O,XZ'3:.’E1'3,...}~]I{(1,071'1-37‘%1-4’.”).(Ul’v%vg’“.”> 2 3}
Lig s Liysee- -
1
2 Z CPI‘{X“ _1,X7;3_ﬂfi3,X1‘4_937;4...}']1{|(1,1,(£i3,$1‘4,...)'(’01,1)2,”03,...)|2 4D2 3
Lig s Liyyeee -
1
+I.; CPr{X,, =1, X, =2, X4, = x4y, {| (1, ()3313,5014,...)~(vl,1}2,1)3,...)|ET_3
i3 %igsee
1
= Cw wz Pr{X;, =1, X, = iy, Xiy = Tiy,---} <]I{| L@y, iy .) - (V1,02,03,...)] > ZW—Z’;}
igiTigr
+H{|(1,0,£Ei3,l‘i47...)'(1}171}2,’03,...) \/73})
2 C Z Pr{)(i1 = 17Xi3 :xiS,XM :LCZ‘4,...} (].3)
x'i37xi47"'
=¢,
which is exactly what we want to prove. Inequality (13) holds because otherwise, at least
for some z;,,x;,, ..., both indicators on the left-hand side of the inequality have to be 0,

which implies that

(1,1, 255, @iy, .- .) - (V1,02,03,...) — (1,0, Z4ig, Tiyy - - ) - (V1,02,03,...)| = |v2] < ,  (14)

ViD? =3
but this contradicts to Inequality (12). [ |
Having these four lemmas above together with Lemma 3 proved in Appendix C.2, we

are finally able to prove the regret bound of BGLM-OFU-Unknown algorithm (Theorem 4)
as below.

Theorem 4 (Regret Bound of BGLM-OFU-Unknown) Under Assumptions 1, 2 and
3, the regret of BGLM-OFU-Unknown (Algorithms 1, 2 and 5) is bounded as

R(T)=0 ( n2 L) /Tlog T> : (5)

K

where ngx = maxxexu{y} L(l) and the terms of o(ﬁln T) are omitted, and the big O

5
notation holds for T > 32 ( o > )

min

min

5
Proof We only consider the case of T > 32 ( P ) in this proof because the big O notation
is asymptotic.
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Let H; be the history of the first ¢ rounds and R; be the regret in the t*h round.
Because the reward node Y is in interval [0, 1], we can deduce that for any ¢t < Ty, R; < 1.
Now we consider the case of t > Tj. According to Lemma 3, with probability at least

n—1 CUC%Tl/lo . . .
1— 2( 9 ) exp (——15 , Algorithm 2 returns a correct ancestor-descendant relationship,

ie., @(X) = Anc(X) for X € X U{Y'}. Next we bound the regret conditioned on the
correct ancestor-descendant relationship. When ¢ > T, we have

E[Ry|H,_1] = E[0 (S, 0%) — o(Ss, 0%)| Hy_1], (15)

where the expectation is taken over the randomness of S;. Then for T7 < t < T, we define
&ﬂxhﬁXGXU{Yngixz{%qaqx—ﬂ§ﬂSpWﬂMﬂxﬁméwaw}
t—1,

According to the definition of Algorithm 1, we can deduce that Amin (Mi—1,x) > Amin (M7, x).
By Lecué and Mendelson’s inequality (Nie, 2022; Feng and Chen, 2022) (conditions of this
inequality satisfied according to Lemma 17), we have

(T, — To)¢?
Pr{Amin(Mr, x) < R} <Pr{dmin(Mm, x — M1, x) < R} <exp | ——————

C

where ¢, ¢ are constants. Then we can define §—1 = Axexu{y}&-1,x and let &1 be its
complement. By Lemma 14, we have

Pr{& 1} < (3(5 + exp <—(Tl_CTO)C2) + 3dexp <—(T1_TO)C2>> n 2 Perror-

C

Because under &_1, for any X € XU{Y'} and v € RIP¢NI we have ‘vT(ét_LX —-0%) <
Pl R Therefore, by the definition of ;, we have (S, 8;) > o(S°Pt, 6*) because 0*
t—1

is in our confidence ellipsoid. Hence,

E[R:] < Pr{&_ 1} - E[o(S°P",0%) — o(Sy, 0%)] + Pr(&_1)
< E[o(S°",0%) — 0(St, 0%)] + Perror
< E[U(St7 ét) - U(Sty 0*)] + Perror-

Then we need to bound o(S;, ;) — (S;, 8*) carefully.
Therefore, according to Lemma 14 and Lemma 15, we can deduce that

E[Rt] S E Z ’W,X(ét,X - 0;()’ Lgclx) + DPerror
_XGXst,y

- . 1
<E Z ||‘/757X”M;_11’X HOt,X - 0X LS“; + Perror

_XGXst,y

M _1,x

1
< 2P -E Z HV;,XHM;_ll X LS”}? =+ Perror-
XGXst,Y ’
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The last inequality holds because

Hémx - H}H < Hét,X - ét—l,XH +

M1 x

ét—l,X - 9§(H < 2p.

Mtfl’X Mtfl,X

Therefore, conditioned on the correct ancestor-descendant relationship, the total regret
can be bounded as

T
R(T) < 2P ‘E Z Z ”W,X”M;ll X Lgfg + perror(T - Tl) + T17.
t=To+1 X€Xsg, v ’

For convenience, we define W; x as a vector such that if X € S;, W, x = 0lPa(X)l. if

X &S, Wy x = Vi x. Using Lemma 16, we can get the result:

T
R(T) < QPE Z Z ||W,X”Mt:11 X LS?Q + perror(T - Tl) + 11
t=Tp+1 XGXSt,Y ’

n—1 C()C%Tl/lo n—1 coc%Tl/lo
-11-=2 - 2 - | T
( < 9 ) exp ( 5 + 9 exp 5

T
<E| D D Wil LE)| 4 pere(T = T1) + Ty
t=To+1 Xe X U{Y} ’

-1 2T1/10
—|—2(n2 )exp(—cocl2 T

<2 max (L;Q) E| Y V2T - T)[Pa(X)[log (T - To)| Pa(X)] + To)
Xexulyy XeXU{Y}

1 271/10
+perror(T_T1)+T1+2<n )exp (_C()Cl T

2 2

K Y

_0 (%&/ﬂggx In T> _6 (%wﬁggx)

because p = 2/log(1/6), exp (—ﬂ) T = o(VT) and perrorT = o(V/T). [ |

K

Appendix D. A BLM CCB Algorithm with Minimum Weight Gap Based
on Linear Regression

As BLM is a special case of BGLM, the initialization phase in BGLM-OFU-Unknown to
determine the ancestor-descendant relationship can also be used on BLMs. Feng and Chen
(2023) propose a CCB algorithm for BLMs using linear regression instead of MLE to remove
the requirement of Assumption 3. Furthermore, BLM takes the identity function as fx'’s,
so Assumptions 1 and 2 is neither required. The specific algorithm BLM-LR-Unknown-SG
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Algorithm 6: BLM-LR-Unknown-SG for BLM and Linear Model CCB Problem

1: Input: Graph G = (X U{Y}, E), action set A, positive constants ¢y and ¢; for initial-
ization phase such that cgv/T € NT.

2: /* Initialization Phase: */

3: Initialize Ty < 2(n — 1)coTY/2.

4: Do each intervention among do(X2 = 1), do(X2 = 0),...,do(X,, = 1), do(X,, = 0) for
coT? times in order and observe the feedback (X, Y;) for 1 <t <Ty.

5: Determine a feasible ancestor-descendant relationship Zn\c(X )’s for X € X U{Y} by
BGLM-Ancestors((X1,Y1), ..., (Xn,, Y7, ), c1) (see Algorithm 2).

6: /* Parameters Initialization: */

7: Initialize Mg, x + I € RIAneX)X[Ane(X)" g o o A for all X € X U

Y), O x « 0 € RACl for all X € X U{Y), § « — and p,
{ o, p

VT
\/nlog(l +tn) +2log 3 +/nfort=0,1,2,...,T.
8: /* Iterative Phase: */
9 fort=Ty+ 1,79 +2,...,7 do
10:  Compute the confidence ellipsoid C; x = {6y € [0, 1]
pt—1} for any node X € X U{Y}.
1 (S, 81,0:) = argmaxg,s—s)c 4,6, e, B[Y|do(S = s)].
12:  Intervene all the nodes in S; to s; and observe the feedback (X4, Y}).
13: for X € X U{Y} do

Al oy x| <
M _1,x

14: Construct data pair (V x, X(t)) with V; x the vector of ancestors of X in round ¢,
and X® the value of X in round ¢ if X ¢ S.

15: Myx = My-1,x + Vi xV/i, by x = b1 x + X0V, x, 0, x = M{)l(bt,x'

16:  end for

17: end for

(BLM-LR-~Unknown Algorithm with Safety Gap (Minimum Weight Gap)) is demonstrated
in Algorithm 6.

The following theorem shows the regret bound of BLM-LR-Unknown-SG. It is not sur-
prising that this algorithm could also work on linear models with continuous variables as
Appendix F in Feng and Chen (2022). The dominant term in the expected regret does not
increase compared to BLM-LR in Feng and Chen (2023).

Theorem 18 (Regret Bound of BLM-LR-Unknown-SG) The regret of BLM-LR-
Unknown-SG running on BLM or linear model is bounded as

R(T) =0 (n%ﬁlog T) :

5
where the terms of o(v/T InT)) are omitted, and the big O notation holds for T > 32 (598*1‘ ) .
Proof In the following proof on G, when X’ € Anc(X) but X’ ¢ Pa(X), we add an edge
X' — X with weight 6x/ x = 0 into G and this does not impact the propagation results of
G. After doing this transformation, D = n and Anc(X) = Pa(X) for all X € X U{Y'}.
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CQC%TI/IO

According to Lemma 3, with probability at least 1 — 2(";1) exp (— 3 ), Algo-

rithm 2 returns a correct ancestor-descendant relationship, i.e., Anc(X) = m(X ) for
X € X U{Y}. Moreover, by Lemma 11 in Feng and Chen (2022), with probability at
most nd, event {EITO <t<T,xe XU{Y}: HB}, — ét’XH > pt} occurs. Now we bound

the expected regret conditioned on the absence of this event and finding a correct ancestor-
descendant relationship. For Ty < t < T, according to Theorem 1 in Li et al. (2020) and
Theorem 15, we can deduce that

E[R]=E [o—'(sopt, 0*') — o' (S, 9*’)]

<E [a’(st, 8,) — o'(S,, e*’)}

<E| ) )Vt,Tx(ét,X - 9%)‘
_XGXstyy

~ /
<E| Y WVixlyo,  [0rx - 6%
| XeXs, v ’

<E Z 2pt-1 HV;‘/,XHM;ll <l
| XeXs, v ’

My_1,x

since ét, x, 0% are both in the confidence set. Thus, we have

T
Sn
t=1

T
<E Z Ryl +Tp
t=Tp+1

R(T)=E

T
CoprE| Y Y Wil | 4T
t=T0+].X€XSt’Y ’

For convenience, we define W; x as a vector such that if X € S;, W; x = 0lPa(X)l. if
X ¢S5, Wy x =V, x. According to Cauchy-Schwarz inequality, we have

[T
RT)<20r-E| Y > Wexlly- | +To
[ t=To+1 XeXU{Y} ’

T

2
<pr VT Y Y Wl [

XexXu{y} \t=To+1

[ T
<2 -E (VT ) > ||Wt,X||§V[:1 L 2 DeoT 2
XeXu{y} \t=1 ’

Note that M; x = My_1 x + Wiy x W] and therefore,

det (My.x) = det(My_y x) (1 Wil X) ,
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we have

T T

n
E 1%% 2 < E — .1 (1 %% 2 >
t=1 I t7XHMt_11,X N t=1 log(n +1) og (141 t’XHMz—ll,X

< n o det(Mzj)
Slogn+ 1) %7 det(1)
7”L|PCL(X>‘ tl“(MTg()

Slogn+1) % TPa(X)
T 2
n|Pa(X)| W x5
<———log |1+ o=
log(n + 1) tzl |Pa(X)|

< —n-———log(l1+T).
~ log(n+1) og(1+7)

Therefore, the final conditional regret R(7") is bounded by

R(T) < 2an\/T1 log(14T) +2(n — 1)eTY2,

nD
og(n+1)

because pr = \/D log(1+TD)+ Qlog% ++/D. When

{Hte (To, T),z € X U{Y} : ’

ot 05| 0]

does occur or Algorithm 2 finds an incorrect order, the regret is no more than T'. Therefore,
the total regret is no more than

nD 1/2 n—1 coc3TH/10
<2an\/Tlog(n—|— 0 log(1+1T) +2(n — 1)cT ) (1 nd 2( 5 > exp ( 5
-1 2T1/10
+T(n6+2(n2 )exp (_60012 ))

nD
< P
< QPTn\/Tlog(n Y log(14+T) + o(VTInT)

=0 (n%\/flogT),

which is exactly what we want.
Replacing Lemma 11 in Feng and Chen (2022) by Lemma 12 in Feng and Chen (2022),

the above proof for BLMs is still feasible for the regret on linear models without any other
modification. |

Remark 19 According to the transformation in Section 5.1 of Feng and Chen (2023),
this algorithm also works for some BLMs with hidden variables. Using that transformation,
running BLM-LR-Unknown-SG on G is equivalent to running on a Markovian BLM or
linear model G, where parameter 0% is also transformed to a new set of parameters 0* .
Here, we disallow the graph structure where a hidden node has two paths to X; and X;’s
descendant X; and the paths contain only hidden nodes except the end points X; and X;.
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Appendix E. Proofs for Propositions in Section 6
E.1. Proof of Lemma 6

Lemma 20 In Algorithm 3, if the constants ¢y and c1 satisfy that co > max{ 25 (7= 01)2}
with probability at least 1 — (n — 1)(n — Q)W’ after the initialization phase we have

1). If X' is a true parent of X in G with weight 0% x = T3, the edge X' — X will
be identified and added to the estimated graph G'.

2). If X' is not an ancestor of X in G, X' — X will not be added into G'.

Proof First, for each node X; and its parent X; with weight 9}2,7)(1, > T-1/3 by Lemma 2,
we can have

E[X; | do(X; = 1)] = E[X; | do(X; = 0)] > 0%, x,

co(2i)T?/3 co(2i 2/3
Then each element XJ( (2T +k) —X.( 0@+ DT 4k is an ii.d sample of Z = X |go(x,=1)

J
—Xj lao(x;=0) With E[Z] > 9;{1‘7Xj > T-1/3. By the Hoeffding’s inequality, if we choose
c1 < 1and cp(l —cp)? > %, we have

60T2/3 )
Z (XJ<CO (23) T2/3+/€> XJ(CO(21+1)T2/3+k)> > COCIT1/3 lOg(TQ)
>1—ex ~ 2log(T?) (coT**E[Z] - COClT1/3)2
p 4egT?/3
. . 210g T2 COT1/3 . COClT1/3)2
p 4egT?/3
o(1 — c1)?log(T?)
1 —
exp < 9
Z 1 — T—co(1—01)2
s1- L
- T

Taking the union bound for all X and X', with probability at least 1 — ( )T27 the edge
X' — X with 6%, y will be identified and added to the estimated graph G . Also, assume
X; is not an ancestor of X, then

E[X; | do(X; = 1)] — E[X; | do(X; = 0)] = 0.
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\2/3 . 2/3
Thus the element X(CO(Ql)T +*) X(Co(zlﬂ)T ) | is an i.i.d sample of Z’ = X |45(x,=1)

—Xj |do(x,—0) With ]E[Z’ | = 0. Thus by Hoeffding’s inequality,

coT?/? NT2/3 : 2/3
Pr Z <Xj(c0(21)T +k) . X](Co(21+1)T +k')> > CoClT1/3 log(TQ)
k=1

2log(T?) (coT*/3E[Z] — cocr TH3)?
S exp | - 4cg T2/

< exp (—coc% log T)

and then with probability at least 1 — ("51)%, we will not add the edge X’ — X in the

graph G. Combining these two facts, we complete the proof. |

E.2. Proof of Lemma 7

For each node X, consider the estimated possible parent Pa’(X), then our observation
V,.x € {0,1}7%(X) are the values of Pa'(X). Since we have ¢ that

E[X; | Vix] = 0 x Vi.x. (16)

Thus applying Lemma 1 in Li et al. (2020), we can have

0 — 6; |, < v/nlog(L+ tn) + 210g(1/0) + /. (17)

E.3. Proof of Lemma 8

Note that M represents the model with true graph G and true weights 8, and M’ represents
the model with estimated graph G’ and estimated weights M’, then difference

0%, x — Ox, x| < nr (18)

Now we construct a auxillary model M”, which has graph G’ and weights 6 on it. The
parent of X in model M Pa”(X) is equivalent to Pa’(X). Then we prove the following two
claims:

Claim 1 |Ey[Y | do(S = 1)] — Ep[Y | do(S = 1)]] < n?r.

Proof Let the topological order be Xi, Xs,..., X,. First, Ey[X;1 | do(S)] — Eppr[ X7 |
do(S)] = 0 < nr because X is always 1. Assume X1 ¢ S Ep[X; | do(S)] — Epn [ X5 |
do(S)] < gnr for all i < g, then if Xy11 € S, Epr[Xgq1 | do(S)] — Eppr [ Xgq1 | do(S)] =0 <
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(g + 1)nr holds trivially. Thus now we assume X1 ¢ S.

Eat[Xge1 | do($)] — Enpo[Xgr1 | do(S)]

:EM Z HXZ-,X(H_lXi dO(S) —]EM// Z HXi,Xq+1Xi dO(S)
XiGPa(Xqul) XiEPa//(Xq+1)

= > 0x.x,. (BulXi | do(S)] = Enpv[X; | do(S)])+
X;€Pa" (Xq41)

Z 0x;, X, En[Xi | do(5)]
Xi€Pa(Xg41)\Pa"(Xq41)

< Z Ox; x,1qnr + 1N
X;€Pa(Xqt1)
<(¢+ )nr

where the first equality follows the definition of linear model, the second equality is because
03(,’ = 0if X" is not a true parent of X in G. The third inequality is derived by induction,

and the last inequality is because ||0x/ x, /1 < 1. [

Claim 2 |Eyp[Y | do(S = 1)] — Ep[Y | do(S = 1)]| < n®r.

Proof First, Ey[ X | do(S)] — Epym[X1 | do(S)] = 0 < n?r Then similarly, assume Ej/[X; |
do(S)] — Epm[Xi | do(S)] < gnr for all i < g and X,11 ¢ S. Then

Enr[Xgp1 | do(S)] — Eapr[Xyi1 | do(S)]

= Eap > Oy x,. Xildo(S) | — Eap Y Ox,x, Xi|do(S)
XiEPa/(Xq+1) XiGPa//(Xq+1)

= Z eg(i,X(r',lEM/ [Xl | dO(S)] - aXi,Xq+1EM” [XZ | do(s)]
XiGPa//(Xq+1)

= Y (0% x — Ox0X, ) Ear [ X | do(S)]+
X;€Pa" (Xq41)

Yo Oxxn EarlXi [ do(8)] — Exm[ X | do(S)))
XZ‘EPO,"(X(H_l)

_ 2 2

=n"r+n-qr

< (g + 1)n’r.
where the first equality follows the definition, the second equality is because Pa’(X) =
Pa’(X) for any node X. The fourth inequality derived from induction , inequality (18)
and X; € [0,1]. By induction, we complete the proof. [ |

Now we prove the Lemma 8:
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Proof Combining Claim 1 and Claim 2, we have

Eyp[Y | do(S)] — Eppr[Y | do(S)] < n?(n + 1)r. (19)

E.4. Proof of Theorem 9

Proof Denote the original model and estimated model as M and M’ The initialization
phase will lead to regret at most Ty = 16(n—1)T%/3. At Iterative phase, denote the optimal
action to be do(S* = 1), by Lemma 6 and the guarantee of BLM-LR, with probability at
least 1 — (n — 1)(n — 2) 4

ZEM [V | do(8* =1)] — En[Y | do(S; = 1)]

T
Z (Eyp[Y | do(S* = 1)] = Exp[Y | do(S* = 1)])
(EM’[Y | do(S™ =1)] —Epp [Y | do(S; = 1)]))

<To+ Z T3+ Z (Err[Y | do(S™ =1)] — Epp[Y | do(S; = 1)])
t=Tp+1 t=To+1

< Ty + n?(n+1)T%3 + en®\/nTlog T

= O((n*T?3 + n®*VT)1ogT)

= 0(n*T?*logT),

where the first inequality is derived from Lemma 8, and the second inequality is the guar-

antee of BLM-LR in Theorem 3 of Feng and Chen (2023).
Thus the total regret will be bounded by
(n—1)(n—2)
RT) < —t— .
)< 0=
= O((n*T?3)1og T).

T + O((n*T?3)1og T)

The first inequality is because our regret have an upper bound T |

E.5. Proof of Theorem 1

Proof Consider the causal bandit instances 7; with parallel graph (F ={X; —» Y,1 <i <
n}.) and A = {do(),do(X = z),do(X = x)} for all node X, x € {0,1}, € {0,1}" be all
observation, atomic intervention and actions that intervene all nodes.

For T, we assume X; are independent with each other and P(X; =1) = P(X; =0) =
0.5. Define

PlY=1) =
( ) {0.5 otherwise
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Then for 7;,2 < ¢ < 2", consider the binary representation of ¢ — 1 as b1bs...b,. Then
assume X; are independent with each other and P(X; = 1) = 0.5, and define

PY=1)=<05+2A it X;=0bjforalll1 <j<n
0.5 otherwise

Now in 7T;, do (X =bibsy... bn) is the best action, and other actions will lead to at least
A regret.

Denote T,(t) for action a € A as the number of times taking a until time ¢. To simplify
the notation, we denote a; as do(X = x), where x is the binary representation of i — 1,
{b1,ba,...,b,}. Then for instances 71 and 7;, we have

tA

B (R()] > Pr (1, (1) <123, ErlBW) > Pr(L, (1) > 1/2)'5

Thus
Er [R(8)] + E7[R(t)] > %(Pﬁ (Ta, () < 1/2) + Pr;(Ta, (t) > 1/2))
> % exp (—KL(P7,P7)) .

Now we need to bound KL(P7, P).

L(P7,Pr) < ) B [Tu(t)]KL(Pr (X,Y | a)|P7(X,Y | a)) (20)
acA

=Y En[TuOKLP7 (Y | a)|[P7 (Y | a)) (21)
acA

< Ex[Tw, ()] - KL(0.5]|0.5 4+ 2A) + Z Er [T.(t)] - KL(0.5/0.5 + %)
a=do(X;=x),do()
(22)
< Ep [T,,(n)]-2A% +t- i (23)

22n— 92n—37

where (22) is because for a = do(X; = x) or a = do(), P(Y | do(a)) > 0.5 in 77, and
P(Y | do(a)) < 0.5+ =05+ QTLA,Q in 7;. Now we choose

2n

i = argmin E7; [T5,, (2)], (24)
7>1

then we have
T

Ern Ty, (1)) < . 2
HlTa (0] € 5o (25)
Then by (23), choosing A = /%=L, we have
2tA? A2 5 3
KL(P7,Pr) < + <tAZ. =1 (26)

o1 ' 2203 2n —1
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Thus

En[R(0)] + Er A1) > "2 exp (-KL(PR Br))
S tA
~ 4de
@ — 1)t
4+/3e
21
8e

v

I3

>

Then max{Er, [R(t)], E7;[R(t)]} > @. We complete the proof when ¢ > 716(2;:71).

Now suppose t < %, choose A = i, then based on (23) and (25), we have

t t
KL(P- ,Pr) <
( U 7;) — 8(2” _ 1) + 922n+1
< 2 16 2" -1
< 1.
Then we have
tA
Er[R(t)] + E7[R(t)] 2 -~ exp (-KL(P7;, Pry))
tA
>
~ 4e
t
> PSR
— 16e
and max{Ex, [R(t)], E7;[R(t)]} > ﬁ [ |

Appendix F. An Explanation of Weight Gap Assumption

The weight gap assumption states that the parameter 6,,;, is larger than a term relative
to T'. In Lemma 2, the parameter O, represents the minimum difference between E[X; |
do(X; = 1)] and E[X | do(X; = 0)], where X; and X; form a causal edge. Intuitively, this
assumption suggests that the causal relationship represented by each edge is sufficiently
significant, making it a stronger version of the causal faithfulness assumption. If the causal
relationship is too weak to be observed, it may indicate the presence of intermediate factors
not accounted for in practice. In such cases, one could address the issue by collecting and
observing additional intermediate factors.

Furthermore, it is important to note that the weight gap assumption on 67, depends
on T'. Therefore, if the weight gap assumption is not satisfied and the intermediate factors
are unobservable, the user has two options. The first is to increase the number of rounds
until 6%, > 25~ T~1/5. Alternatively, BGLM-OFU-Unknown can guarantee an O(v/T)
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5
regret bound for 7" > 32 ( Ka‘i}_ ) . The second option is to use BLM-LR-Unknown if T’

cannot be increased. In this case, a theoretical regret bound of O(T %) can be achieved.

Therefore, our results account for both scenarios, whether the weight gap assumption is
satisfied or not.

Appendix G. Experiments
G.1. Experiment Results

We conduct our experiments on a parallel BLM consisting of 7 nodes, Xi,...,Xg, and Y,
with X7 being the unique always-1 node. To simplify the analysis, we apply Algorithms 1
and 3 solely to identify the edges between Xs,...,Xg and Y. As per the definition of
our algorithms, if a node X;,2 <4 < 6 is not a parent of Y, it will never be selected for

interventions. We set A to be all interventions budgeted by 2 nodes. The parameters are
set as follows:

* _ * _ * _ * _ * _
GXLXQ - 9X1,X3 - 0‘3’9X1,X4 - 0X1,X5 - 9X1,X6 =02,

0}273/ = Q}S,Y = 0.3,9}—4’3/ = 0;(5’1/ = 0}673/ =0.13.

We run BGLM-OFU-Unknown and BLM-LR-Unknown on this BLM and compare them
to the standard Upper Confidence Bound (UCB) algorithm and the e-greedy algorithm
(e = 0.02) as baseline methods. Additional implementation details can be found in the
Appendix G.2. Due to computational resource constraints, we run these 4 algorithms on
this BLM for 7' = 10000, 20000, 40000, 80000, each executed 50 times, and compute the
average regrets as follows.

500 4 BGLM-OFU-Unknown 500
BLM-LR-Unknown
200 ® Standard UCB 400 1
] & &Greedy ]
o o
& £ 300
o 3001 ©
2 =4
= z 200
S 200 4 3 1
E £
3 3 BGLM-OFU-Unknown
100 100 4 BLM-LR-Unknown
® Standard UCB
&-Greed
0 04 * y
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We can observe from the results that when T is small, BGLM-OFU-Unknown struggles
to accurately learn the graph structure, leading to a significant regret. In contrast, BLM-
LR-~-Unknown performs well under these conditions. However, when T is sufficiently large,
BGLM-OFU-Unknown is able to consistently identify the correct graph structure, resulting
in superior performance compared to all other algorithms.

G.2. Experiment Settings

Due to the limited number of rounds, we adjust p; and p to be % of our original pa-
rameter settings for BGLM-OFU-Unknown and BLM-LR-Unknown. Both algorithms have
constants cg and c; set to 0.1. We employ the pair-oracle implementation as described in
Appendix H.1 of Feng and Chen (2022). When BGLM degenerates to BLM, we remove
the second initialization phase (line 8 of Algorithm 1) of BGLM-OFU-Unknown by setting
T1 = Tp. This is because the second-order derivative of a linear function is 0, making Lg?}z
and R in BGLM-OFU-Unknown arbitrarily small; thus, the minimum eigenvalues of M; x’s
should satisfy Lemma 14’s condition after Ty rounds. Additionally, for completeness, we
provide the specific BLM used to test our algorithms in Fig. 1.

Figure 1: The BLM Employed for Evaluating Algorithms 1 and 3

For the standard UCB algorithm, we use the commonly adopted upper confidence bound

}%i, where ¢ is the current round number and n;; is the number of times arm ¢ has been
2,

played up to the ¢! round (Slivkins et al., 2019). For the e-greedy algorithm, we set ¢ = 0.02,
a typical implementation. We tested various settings for these two baselines, and our choices
are near-optimal for BLMs. For both baselines, we treat each possible 2-node intervention
set as an arm, resulting in a total of (752) = 10 arms. All experiments were executed
using Python in a multithreaded environment on Arch Linux, utilizing 4 performance cores
of an Intel Core™ i7-12700H Processor at 4.30GHz with 32GB DDR5 SDRAM. The total
execution time amounts to 1687 seconds. Our Python implementation can be found in the
supplementary material.

Appendix H. Pure Exploration of Causal Bandits without Graph
Structure

Another performance measure for bandit algorithms is called sample complexity. In this
setting, the agent aims to find an action with the maximum expected reward using as
small number of rounds as possible. This setting is also called pure exploration. To be
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more specific, the agent is willing to find e-optimal arm with probability at least 1 — § by
sampling as few rounds as possible for fixed parameter € and §. For pure exploration, we
consider the general binary causal model with only null and atomic interventions, and study
the gap-dependent bounds, meaning that the sample complexity depends on the reward gap
between the optimal and suboptimal actions. Moreover, let a* be one of the optimal actions.
For each action a = do(X; = x), define u, = E[Y | a] and the gap for action a to be

Ay = { Ha* = MaXaeA\(a}{Ha}, @ =05 (27)
Ha* — Ha, a#a".

Here, A, can be 0.

According to the causal discovery literature (Pearl, 2009b), by passive observations
alone one can obtain an essential graph of the causal graph, with some edge directions
unidentified. We assume that the essential graph is known but the exact graph structure is
unknown, which is also considered by Lu et al. (2021), with additional assumptions on the
graph.

One naive solution for this problem is to first identify the graph structure and then
to performed the pure exploration algorithm of causal bandits with known graph (Xiong
and Chen, 2023). Define ¢, = |P(X | do(X' = 1)) — P(X’ | do(X = 0))| for each edge
e=(X,X') and cx = ming. x_, x é Then this naive solution admits a sample complexity
about

~ 1 1
S et S ) -

a€s zeX

where S is a particular set defined following the previous work (Xiong and Chen, 2023)
and the definition is provided in Appendix I. The first term is the sample complexity in
Xiong and Chen (2023), while the second term is the cost for identifying the directions of
all edges in the essential graph.

This naive solution separates the causal discovery phase and learning phase, so it cannot
discover the directions adaptively. In Appendix I, we propose an adaptive algorithm to
discover the edges’ directions and learn the reward distribution in parallel, which can provide
a lower sample complexity for some cases.

However, when the A, and cx is small, both the naive algorithm and our algorithms
provided in Appendix I suffers (2 log(1/§)) sample complexity. We claim that pure ex-
ploration for the general binary causal model is intrinsically hard due to unknown graph
structure. To show this, we state a negative result for pure exploration of causal bandits
on unknown graph structure with atomic intervention. It states that even if we have all
observation distribution P(X,Y") as prior knowledge, we still cannot achieve better sample
complexity result than the result in the classical pure exploration problem for the multi-
armed bandit O(Z; log(1/6)).

Theorem 21 (Lower bound) Consider causal bandits with only essential graph and
atomic intervention, for any algorithm which can output c-optimal action with probabil-
ity at least 1 — 9§, there is a bandit instance with expected sample complezity Q(Z log(1/4))
even if we have all observational distribution P(X,Y).
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Algorithm 7: Causal-PE-unknown(G, A, ¢, J)
1: Initialize t = 1, T,(0) = 0, i, = 0 for all arms a € A, Aknown =0
2: fort=1,2,...,do

t—1 _ nt—1
3: Qy, = = argmax,c  f

1 _
a ' = argmaxaeA\azﬂ(Ufl b
if U1 < L1 + € then

l h

Return az_l

end if

Perform do() operation and observe X; and Y;. For a = do(), T,(t) = Ta(t — 1) + 1,
Dalt) = Dalt = 1), rap(t) = 725 301 ¥y, pap(t) = 1.

9:  for a=do(X =z) € Agpown do

10: Toz(t) =T, (t—1)+{X; = 2, P = 2z}, T,(t) = min {7, »(t)}, where P = Pa(X).
Dy (t) = Dg(t —1).

11: Update 74,2(t) = 7ty 2o HX; = 2, Py = 2}Yj.

12: Update pq »(t) = %Z;Zl {P; = z}.

13: Estimate 10,4a(t) = Y-, 7a,2(t)pa,z(t) and calculate [Lf, ,, Uf Jby (34) and (35).

14:  end for

15:  RECOVER-EDGE(a} ™).

16: RECOVER-EDGE(a, ).

17 Update empirical mean fir ,(t) using interventional dataand interventional confidence
bound [L} ,,U; ]

18:  Update confidence bound [L!, Ul] by (33), i, = (L, + UL)/2, for each arm a.

19: end for

Note that if we know distribution P(X,Y) and the exact graph structure, we can com-
pute each intervention P(Y | do(X = x)) by do-calculus because the absence of hidden
variables. So Theorem 21 shows the intrinsic hardness provided by unknown graph struc-
ture. The detailed proof can be found in Appendix I.

Appendix I. General Causal Bandits without Graph Structure

In this section, we only consider the atomic intervention, and provide an algorithm to solve
causal bandits with the graph skeleton on binary model. We only consider the atomic
intervention setting. An atomic intervention is do(X = z), where X is a node of graph G
and = € {0,1}.

I.1. General Causal Bandit Algorithms

We first provide the positive results, which provides an algorithm to improve the sample
complexity comparing to applying the multi-armed bandit approach directly.

At each iteration we try to recover the edges’ direction in parallel using sub-procedure
"RECOVER-EDGE(a)” for a € A. For action a = do(X = =z), this sub-procedure first
performs two interventions do(X = 1) and do(X = 0), then chooses an undirected edge
(X, X') corresponding to X (if exists), and then perform do(X’ = 1), do(X’ = 0). The
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Algorithm 8: RECOVER-EDGE(a)

1. if a = do() then

2:  Return.

3: else

4:  Assume a = do(X = z). Sample action do(X = 1), do(X = 0).

50 Dg(t) =Dy (t) + 1 for a’ = do(X =1) and ¢’ = do(X = 0).

6: Estimate P(X' =1 | do(X = 1)) and P(X' =1 | do(X = 0)) using interventional
data for neighbor X', where the direction of (X', X) is unknown.

7. Update the confidence bound [L x/|qo(x=1): Ux"|do(x=1)] @0 [L x7|do(x=0)> Ux"|do(x=0)]
by (31).

8 if [Lxrdo(x=1), Uxldo(x=1)] N [Lx"|do(x=0), Ux’|do(x=0)] = 0 then

: recover X — X;.
10:  end if

11:  if 3X’ such that (X', X) is unknown then

12: Choose one such X" and perform do(X’ = 1) and do(X’ = 0).

13 Estimate P(X = 1| do(X’' =0)) and P(X =1 | do(X' = 1)) using interventional
data.

14: Update the confidence bound [L x|do(x7=1)s Ux|do(x"=1)] and
[Lx|do(x'=0)> Ux|do(x'=0)] by (31).

15: if [Lxjdo(x'=1): Ux|do(x'=1)] N [LX|do(x'=0)> Ux|do(x'=0)] = 0 then

16: recover X — Xj.

17 end if

18: Dy (t) = Dy (t) + 1 for o/ = do(X' =1) and o’ = do(X' = 0).
19:  end if
20: end if

goal of these operations is to estimate the difference between P(X = 1 | do(X' = 0))
and P(X = 1| do(X' = 1)), and also the difference between P(X' = 1 | do(X = 0)),
P(X'=1]do(X = 0)). which decides whether X’ — X or X — X’. By this sub-procedure
in parallel, the algorithm estimate the model and recover the edges’ direction simultaneously
and adaptively. To measure the difficulty for identified the direction of edges, for e : X — X’
we define

ce=P(X'=1|do(X =1)) = P(X' =1]|do(X =0)) (29)
Co =Cx = min c. (30)
eX—X'

ce measure the difficulty for distinguishing the direction for an edge, and ¢, = cx represents
the hardness for discovering all directions corresponding to X and its childs.

The main Algorithm 7 is followed from Xiong and Chen (2023). During the algorithm,
we add "RECOVER-EDGE” sub-procedure to identify the directions of the unknown edges.
This sub-procedure first perform intervention do(X = 0) and do(X = 1) on the node X.
Then if there is an edge (X', X) which direction has not been identified, it chooses one such
edge and perform do(X’ = 1) and do(X’ = 0). Then it constructs the confidence bound
for all P(X' =1 | do(X =1)), P(X' =1 ]| do(X =0)), P(X =1 | do(X'" = 1)) and
P(X = 1] do(X" = 0)) based on Hoeffding’s concentration bound. In fact, assume there
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are D,(t) samples for a = do(X' = ),z € {0,1} until round ¢, then the confidence bound
for X conditioning on do(X' = x) is defined by

R 2 4n2t?
Lx|do(x/— —o) = |P(X =1|do(X' = z)) - lo
[ X|do(X'=z)s UX|dO(X _x)] ( | dO( $)) \/Da(t) 0og 5 5

(31)

P(X =1]do(X' =z))+ \/Df(t) log 4n;t2] ,

where n is the number of nodes, and P(X = 1 | do(X’ = z)) are the empirical mean of
P(X = 1| do(X" = z)) using all these D,(t) samples for do(X’ = z). Other confidence
bounds define in this way similarly.

Moreover, at iteration ¢, Line 4-Line 6 first choose two actions a‘;;l and affl through
LUCBLI algorithm. Then, we use Agpown to represent all nodes actions do(X = z) where
all the edges corresponding to X are identified. In fact, if all the edges corresponding to
X are identified, we can find the true parent set Pa(X). Then we can use do-calculus to
estimate the causal effect:

EY |do(X =x)]=> P(Y |X =2,Z=2)P(Z=z). (32)

Line 9-14 enmurates all these actions, and calculate corresponding confidence bound.
The confidence bound is calculated by

[szvUé] [ Oa?UO a] [ IavUIa] (33)

where the first term [Laa, UtO,a] = (—00,00) for a = do(X = x) if the parents of X are not
sure at time t. In fact, if we do not discover all the edges corresponding to X, we cannot
estimate the causal effect E[Y | do(X = )] using do-calculus. For nodes which parent set
is identified, we calculate

[ O,a> UO a} [ﬂO,a(t) - ﬁO,a(t) MO a( ) + BO,a(t)]a
[ ILa» UI a} [ﬂf,a(t) — Br a(t) ( ) + BI,a(t)]

The term fip,, is calculated by estimating all terms at the right side of (32) empirically,
and confidence radius is given by

B 12 16n2Z t3 B 1 2nlog(2t)
BO@(t) - \/Ta(t) IOg 7/81 a( ) 2\/Da(t) lOg 5 (35)

Similar to Xiong and Chen (2023), we can prove it is a valid confidence radius, which
means that the true effect uo, will fall into the confidence bound [Lﬁ)’ w UtQ ) with a high
probability.

Line 15-16 try to recover the edge for action chosen by LUCBI algorithm. At the end
of this iteration, the algorithm updates all parameters and confidence bounds.

To represent the complexity result, we first provide the definition of gap-dependent
threshold in Xiong and Chen (2023): For a = do(X = z) and one possible configuration

(34)
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of the parent z € {0, 1}P*()l define Gaz = P(X =2, Pa(X) = z) and ¢, = min {q, 2}
Then sort the arm set as qq, - max{Ag,,&/2}? < qu, - max{A,,,/2}? < ... < aja)
max{Aq , £/2}2. Recall that A, = p* — pg, is the reward gap between the optimal reward
and the reward of action a. Then H, is defined by

- 1
H, = .
; max{A,,,e/2}?

(36)

Definition 22 (Gap-dependent observation threshold (Xiong and Chen, 2023))
For a given causal graph G and its associated q,’s and A,’s, the gap-dependent observation

threshold m. A is defined as:
{a cA < T} .

Denote action set S = {a € A : gy max{A,,e/2}? < ;=1 are all actions which ¢,
Me, A

is relatively small, then |S| < m. a. Intuitively, action a with smaller ¢, are harder to
be estimated by observation: If we assume ¢, = ¢, . for a fixed vector z, then P(X =
x,Pa(X) = z) is hard to observe and estimate by empirical estimation. Thus S contains
all actions that are relatively hard to observe, so it is more efficient to estimate u, by
intervention for a € S. Based on this definition, we can provide the final sample complexity
result:

T

gomax {A,,e/2}? < };}

Me A = Min {7’ :

Theorem 23 Denote H =3 ¢ m+2a¢s min{ma é+Ze:qu é}
With probability 1 — 46, Algorithm 7 will return a e-optimal arm with sample complexity

bound at most P
T:O(Hlog<n5 >),

where ce, ¢, is defined in (29) and (30).

The result can be explained in an intuitive way. The first term of H is the summation
of all actions in S. As we discussed above, it is more efficient to estimate the u, with
intervention for a € S. Thus, this summation can be regarded as the sample complexity
applying multi-armed bandit algorithm (e.g. LUCBI1) directly. The second term is to
estimate the actions by observation. For each action a = do(X = z) with larger ¢,, we
can first identify the edge’s direction corresponding to the node X, and then using do-
calculus to estimate the reward. The term é +> exinx é represents the complextity to
identify the directions, and the complexity for using do-calculus can be contained in the first
term ) ¢ m because of the definition of gap-dependent observation threshold.

Also, the term min{m, % + > e xinx é} is because when we are discovering the
edges’ direction, if the reward can be estimated by intervention accurately, we turn to use
interventional estimation and give up the causal discovery for this node. The detailed proof
can be found in the Section 1.2.

Even if these two mechanisms can reduce the sample complexity, at the worst case the
complexity also degenerates to O(n/e?), which is equal to the complexity for multi-armed
bandit. We provide a lower bound to show that this problem cannot be avoided.
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Theorem 24 (Lower bound) Consider causal bandits with only essential graph and
atomic intervention, for any (¢,6)— PAC algorithm, there is a bandit instance with expected
sample complezity Q(Z5log(1/9)) even if we have all observational distribution P(X,Y).

Theorem 24 states that even if we receive all observational distribution, which shows
the intrinsic hardness for unknown graph. Indeed, the proof of lower bound shows that the
unknown direction will lead to different interventional effects even when the observational
distribution are the same, leading to a unavoidable hardness.

1.2. Proof of Theorem 23

First, fixed an action a = do(X; = x), z € {0,117 then T, .(t) = Z;Zl H{X;; =

z, Pa(X;); = z} and the empirical mean G, »(t) = Ty 2(t)/t. Then denote 217Xl = 7, if
Ga,2(t) > Slog(2nZ,/d), with probability at least 1 — ﬁ, we can have

N 6qa,= (T 2nz,
oo () — e (®)] < 1) 22220 10

t 1)
Hence

. PR . 69, 2nZ, 64, 2nz,
Qa(t) = Inzln{Qa,z (t)} < mzln{Qa,z + W} ={qo + m (37)

When ¢, > %log %, flx)=o— \/6% log % is a increasing function.

. . /6q 2nZ, 6q 2nZ,
QG(t) > rnzln{Qa,z - Z’z log 5 a} =qa — Ta log S <. (38)

So define the event as

a1(t) = {Va € Avwith > 2 log (25 ) Jau(0) - 0 < \/63 log (2”5Za>}
qa

then Pr{&{(t)} < 0, where £¢ means the complement of the event &.
Now we consider the concentration bound. First, by classical anytime confidence bound,
with probability at least 1 — %, for any time D, (t) > 1

|fir,a(t) = pral < 2\/ Dal( 5 log <2n 1og(§Da(t))> <y ¢D j(t) o (2,1105(2,5) >

Thus define the event as

i A ) 1 2nlog(2t)
& = {w,a, |81.a(t) = piral < 2ﬁa(t) log( 0 >}

then Pr{&5} < 0.
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Consider the observational confidence bound. First, if a ¢ Agnown, [Lto,avUto,a] =
(—00,00) and then the fip(t) € [LS ,, U} . Now we consider that if a = do(X = z) €
Apnown and the parent of X is P. By H’oeffding’s inequality, with probability at least
1 —8/16n%2Z,t3, for a = do(X = z),

1 16n27,t3
t)-PY=1|X=2x2P= 1 39
ras(t) = PY = 1] X =, zﬂ>¢ﬂﬁwog : (39)

Also, by Chernoff’s inequality, since ¢, < P(P = z) for all z € {0,1}/P|, when t >
6 = log (M) with probability at least 1 — §/16n2Z,t> we will have

6P(P =z 16n227,t3
slt) — PP = 2 > [ LE =2 , (40

1)
then

o, = Z Ta,z (t)- Pa,z (t)

z

1 16n227,13

<S P(Y=1|X=2,P = 2)pasl - 1
_zz:( | X =2,P=2z)p +Zp \/2Ta,z(t) 0g —

1 16n2Z,t3
gZP(Y:1X:x,P:z)pa,z(t)+\/2T(t)10g 6a
2 a

6P(P=2z), 16n%Z,t3
< PY=1|X=z2,P=2)P(P= \/ 1
<SP =1 X =0 P= )PP =)+ 3 [ g HE

L 16027t
(0]
o) BT
a
a

<

16n2Z 13 1 16n227,t3
log
2T,(t) )

8

og
16n2Z,t3

O .

T.(0) °

+ 5

(t)
oy
< N 6 1 16n2Zat3+ 1 o 16n22Z,t3
= Ha TN T 1) 5 2T, T 5§

Also, if t < q% log %, first by Chernoff inequality, set @ = 6 log M then with
probability at least 1 — §/16n2Z,t3, we have

4a(Q) < 2¢a. (41)

by £1(Q).

1) S TQ) £ (@) @ < 200 Q= 2 tog L
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Then \/ Ti?t) log 16”25Z“t3 > 1 and the inequality

12 1612713
0. (1) — < ]
110,0(t) = p10.a| < \/Ta(t) 0g —

also holds. Thus we define the event

12 16n2Z,t3
= [0 — < 1
53 {Va?t? ’MO,a(t) Moﬂl‘ — \/Ta(t) og 5 }

then by taking the union bound of (39), (40) and (41),

oo 5
P&} <D D D3 gz

t=1acA =z
o0
5
<> 1B
t=1

<.

Now we consider how to bound our sample complexity based on events £1,& and &.
First, we provide the following lemma in Xiong and Chen (2023):

Lemma 25 (Lemma 6 in Xiong and Chen (2023)) Under the event £1,&2 and &3, at
round t, if we have

max{Aaz, e/2} maX{Aalt,E/Q}

I S < — 1

t

IBCLZ (t) S 4 ) al — 4

where al, al are the actions performed by algorithm at round t. then the algorithm will stop

at round t + 1.

Now assume the algorithm does not terminate at T} = 192H log(nZT}/6), where Z =
max, Z,. For a € S, D,(t). Note that H > H,,_,. Thus at round 71, for action a with

3
da 2 7 ~ma)1({A e > % log 16”?“T1 , if a € Aknown, then under event & (77), we have
mE,A ay
R 6q. , 16nZ, TP _ qq
Ty) > — 4/ —=—log ————— > —.
Ga(Th) > qa T, g 5 =)

Then

12 16n2Z,t3 [12g, _ max{A,,e/2}>
a(T1) < a(Th) = 1 < < .
Ba(T1) < Bo,a(Th) \/Ta(TI) 0og 5 2T, 4

Now we prove that if D,(t) is large for some a, then a € Agpown-

Lemma 26 With probability at least 1 — 6, denote C, = C% + > e xinx C% If Dy(t) >
320, log(4n*t?/5), a € Arnown-
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Proof If D,(t) > 8C,logt, we have called sub-procedure RECOVER-EDGE(a) for D,(t)
times. Then, for each edge e : X — X', we will perform intervention do(X = 1), do(X = 0)
for at least D, (t) times and observe the empirical difference |P(X’ | do(X = 1)) — P(X |
do(X = 0))|. By Hoeffding’s inequality and union bound on all time ¢ and the (”_1)

2
ordered-pair (X', X), with probability at least 1 — §, for all ¢t € [T] and all X', X we have

o B , B 2 4n?t?
[P(X" [ do(X = 1)) = P(X" | do(X = 1))| < \/Da(t) log —

DX | do(X = 0) — P(X" | do(X = 0))] < y| —— log 2728
= — 0O =
=\ D) % s

Then for the confidence bounds
(L x7|do(x=1)» Ux’|do(x=1)]
P S 2 aee B 2 4p2f?
= |P(X'|do(X =1)) AG) log 5 ,P(X' | do(X =1)) + X0 log 5|
[Lx71do(x=0), Ux"|do(x=0)]
= -P(X’|do(X—0))f 2 1og I pxT [ do(X = 0)) 4 1| =2 1og 2128
- - Do) 275 - Do(t) 5 |

the intersection

(L x/|do(x=1)> Ux"jdo(x=1)] N [Lx7|do(x=0)» Ux"|do(x=0)] = 0,

since

|P(X' | do(X =1) — P(X"| do(X = 0))]
>|P(X" | do(X =1) — P(X' | do(X = 0))| — |P(X' | do(X = 1) — P(X' | do(X = 1))|
—|P(X" | do(X = 0) — P(X" | do(X = 0))|

2 4n2t2
>cq — 2 1
=6 \/ Do(t) 275

=9 2 1 4n2t2
O .
=N Dat) %5

where we use D, (t) > C% log #. Then the edge’s direction will be identified correctly.
Consider the edge e X X, then if we sample do(X’ = 1) and do(X’' = 0) for
é log # times within sub-procedures RECOVER-EDGE(a), similarly we will identify
the edge X’ — X. Then because the RECOVER-EDGE(a) will perform intervention
do(X' = 0) and do(X’ = 1) for the X’ that the direction of (X’, X) has not been discovered

. 242
each time, after Y v/, v 2 log 4% [ |
: e
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Then we define
&4 = {Lemma 26 holds}

Then Pr{€f} < §. Also, under the event &, the following lemma shows that if Dg(t) is
really large, we can estimate the u, accurately.

Lemma 27 Under event &, if Dy(t) > max{AGj,e/2}2 log 16n25Zatfs  then

max{A,, e/2}>

ﬂa(Tl) S 4

Proof In fact,

- 1 2n log(2t) 1 161n27Z,t3  max{A,,¢e/2}?
Ba(t) < 6I,a(t) - 2\/Da(t) log < 5 ) < 2\/Da(t) log 5 < 4 .

Now we turn to our main result. From the Lemma 25, at least one arm a with §,(t) >
M will be performed an intervention at each round ¢ > 7i. Under the event

&1,&2, &3 and &4, these interventions will only performed in two types of action a:

16n2Z4t3
5 .

1 64
® ¢o < Hma’A-max{Aa,e/2}2 and D“(t) = max{Aq,e/2}? log

e D,(t) < min{MC,log(t), maX{Aﬁig/Q}Q log 16n2§Zat3 1

Note that ¢, < 5 e implies that a € S, then after at most 75 rounds, where

1
me A ‘max{A

1 1 1 1 16n2ZT3
T, =64 - ind = - log 22V 449
o (Zmax{%e/z}?*%mm{maxma,e/z}z’ca* > }> R

acsS eX'—»X €
1612273
5

the algorithm should terminates. The fist term is the summation of all actions in S, and
the second term is for the second type of actions, where

= 64H log

64 16n2Z,t3
log }.
max{A,,e/2}? J

D, (t) < min{MC, log(t),
Denote T' = Ty + 15, then

16n2Z73 16nZT
”f < 768H log T;

Then by the Lemma 28, with probability at least 1 — 49, the sample complexity has the

upper bound
T=0 (Hlog (niH))

T =T+ 1T> < 256H log
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Replace § to §/4, we derive the sample complexity in the Theorem 23. The correctness of
algorithm can be derived by LUCB1 algorithm. We provide a short argument here. Because
the stopping rule is i, + Bat (t) <pt, — Bat (t) + e, if a* # al, we have

l h

Maz +e> ﬂaz - /BaZ(t) +e2> l&’af + Baf(t) > ﬂa* + /Ba*(t) > Hax-

Hence either a* = a’;b or a’;l is e-optimal arm.

1.3. Proof of Lemma 25

For completeness, we provide the proof in Xiong and Chen (2023).
Proof If the optimal arm a* = az,

figr + Bat (t) < hgr + 284 (t)
max{A,,c/2}

+ l

l 2
maX{Aaf,s/Q}

2
max{A,,c/2}
B (T (1)) = By +

max{Ag,e/2} + HlaX{Aa;, e/2}
2 ST

Aa*—|—5/2+Aaf+e/2
2 ST

é:ua’;l_ af+

< ﬂa’;l - ﬂa* (Ta* (t)) +

- /Ba* (Ta* (t)) +
— Bax(Tyx (1)) + €.

IN
=
S

>

If optimal arm a* # a}, and the algorithm doesn’t stop at round ¢ + 1, then we prove

a* # a}. Otherwise, assume a* = af

max{A,, e/2}

o < Hyy 1 (42)
max{A,,e/2}
=y = gy S (43
P VAW
S Hoy =~ Te/4 (44)
A« 2 3A ¢
SﬂiteraX{ as€/2} L (45)
] 4 4
<t te)2— — 46

[LZ; + Bat (t) + Bat (t) < frat + e/2 < ﬂz}i + ¢, which means the algorithm stops at round ¢+ 1.

* t . x t
Now we can assume a* # a;,a” # a;. Then

From the definition of a}, we know & > Ay 2 Agr, Byt (t) < 5/4’/3a§(t) < ¢/4. Then

:U’af + 21811} (t) > /:Lalt + /Bazf (t) > fig + Bar (Ta* (t)) > Pa* = /J’af + Aalt' (47)
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Thus
max{A,,c/2}
Aaf S 25af(t) S +7

which leads to Ay < 5/2,5(1; (t) < e/8. Since
Also,

/”Laz + Baz (t) > laaz > ﬂalt 2> Hax — 6af (t) = Nafb + Ay

ap,
which leads to
max{A,:,e/2
CEL T

— B (t), (49)

(50)

and Ay < 5/2,ﬂa§1(t) < /8. Hence !, + 5a§(t) + B (1) < fige + /2 < ity + €, which
l h

means the algorithm stops at round ¢ + 1.

I.4. Proof of Theorem 24

Proof We construct n — 1 graphs with the same distribution P(X,Y) but different causal
graph. Indeed, We construct the bandit instances {§; }2<i<y as follows. For instance &2, the
graph structure contains edge X7 — Y, Xy — X7, X5 — X;(3<i <n) and Xy — X;(3 <
i < n). For instances §;(3 < i <n), we change X; — X; to X; — X;. The graph structure

are shown in the Figure 2 and Figure 3.
The observational distribution for all instance is:

P(X,Y)=pip2...pn,
where

pP1 = 05,

_J 05+e z2=m
271 05—¢ m#m

o 05+45 T, = X1
Pi= 9 05— 4¢ i # T

Figure 2: Causal Bandits Instance
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(r)—(x) (%)
(%)
®
Figure 3: Causal Bandits Instance 7;(i = 3)

It is easy to check that Z ,P(X =2, Y =y)=1and P(X; =1) = 0.5. The action
set is do(),do(X; = 1),do(X; = 0) where 2 < i < n, which means the action set does not
contain do(X; = x) for z = O 1.

Now in &, we consider P(Y = 1 | do(X2 = 1)). Actually, it is easy to show that
PY=1|do(Xo=1))=P(X;=1| do( 2 =1)) =0.5+¢. Similarly, P(Y =1 | do(X2 =
0)) = 0.5 — . For other actlons, PY | a) = P(X; =1|a)=0.5 since other actions a
will not influence the value of X;.

Now consider instance §; for 3 < i < n. For action do() and do(X; = x) with j # 2,1,
it will not influence the value of X; and then P(Y = 1| a) = 0.5. Now consider action
a = do(Xs = 1), we have

P(Y =1|do(Xs=1)) = P(X; = 1| do(Xs = 1))
:P(X1:1|X2:1):0.5+5.

Similarly, P(Y = 1| do(X2 =0)) = 0.5 —e¢.
Now we calculate P(Y =1 | do(X; = 1)) in instance &;. In fact, denote ¢ = 0.5+ 4¢ and
by do-calculus,

P(X1=1]|do(X; =1))

=Y PXi=1|X;=1X,=2)P(X; =)
z=0,1
=05(P(X1=1]X;=1,Xo=0+P(X1=1|X;=1,Xo=1)

P(X1=1,X;=1,Xo=0) P(X;=1,X;=1X,=1)
P(X;=1,X,=0) P(X;=1X,=1) )

(P
03
E (0.5 + 4¢)(0.5 — ¢) (0.5 + 4)(0.5 + €) )

(05 +42)(05 — ) + (05— 4)(05+2) | (05+42)(0.5 +2) + (0.5 — 42)(0.5 — &)

5

0.5 )
q(0.5 —¢) q(0.5 +¢)

0-5 205—2) +(1—)05+2)  q05+2)+(1—q)(05— 5)>

B q(0.5 —¢) q(0.5 4 ¢€)

=05 <0.5 —(2q — 1) o5+ (2q — 1)g>

0.5%2 — (2 — 1)&?
= < - 0.5 4 .
e <O.52 —(2¢q—1)%2) — 1 e
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Also, we prove that

0.5%2 — (2q — 1)&?
> 0.5+ 2e.
(0.52 (2122 )~
Actually, this inequality is equal to

(0.5 + 4¢)(0.5% — 83) > (0.5 4 2¢)(0.5% — 8¢%)
= 1> 56e% + 8% — 32

When ¢ is small enough, this inequality holds. In summary, we have
P(X1=1]|do(X; =1)) € [0.5+42¢,0.5 + 4e].
Similarly, we can get

P(Xi=1]do(Xi=0)=05P(X1=1|Xi=0,Xo=1)+ P(X1=1| X; =0, Xo = 0))

2 _ (] _ 9g)e2
—(1-g) (3?2 - ((11_ 225))252> € 0.5 — 4e,0.5].

Now in instance &3, the output action should be do(X2 = 1), while in instance §;, the output
action should be do(X; = 1).
Now by Pinkser’s inequality, for an policy m, we have

26 > P, (a® = do(X; = 1)) + P, (0 # do(X; = 1)) > exp(—KL(£7,&7)).-

Also, assume the stopping time as 7 for the environment &£, the KL divergence can be
rewritten as

KL(£S7§ZF) = EAthg ZKL(P§2 (Xtv}/;f | At)’P&(XhY;f | At)) (55)
=1
- P, (X, Yy | Ay)
= E¢r P (XY | A 1 2
3 ; ea (X1, Ye | Ay) (Og P (X, Y1 | Ay) (56)
. Pey (X, Xe1 | Ay)
=By | Y Pey(Xei, Xoa | Ap) (log St 2t 7
£3 ; e (Xti, Xo1 | Ap) (og Pe. (X Xoa | Ay) (57)

where the last equation is derived as follows:

P, (X1, Y1 | Ay) _ Pey(Xti, Xe1 | Ar) - Pey (X3, Ye | Xeio Xt 1, At)
Pe,(X4, Yy | Ar)  Pe(Xpi, Xun | Ar) - Pe, (X, Y | Xy Xe1, Ar)

where X},i = X; \ {Xt4, X1} Now since Xt,i is only decided by X7, X5 and X5 is only
decided by A, then

Pey( X3, Yy | Xeis Xe1, Ar) = Pe,( Xy, Ve | Xein Xe1, At)
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and then

Pe (X, Yi | Ar) _ Py (X, Xo | Ar)
Pe, (X4, Y1 | At) Pe,(Xei, Xea | Ay) .

Note that only when A; = do(X; = 1),do(X; = 0), Pey (X4, Xe1 | Ar) # Pe, (X3, Xt1 |
A;). Then the equation (57) can be further calculated as

(57) = Z Eer [Z {A; = do(X; = 2)}| - Pey(Xt,i, Xi1 | do(X; = )

=0,1 t=1

. <lo PSQ(Xt,hXt,l | dO(XZ' = l‘)))
P{i (Xt,iaXt,l | dO(Xi = x))

= ) Eg [ZH{At =do(X; = )}

=0,1 t=1

“ Pe, (X1 | do(X; = 7))

(1 P@(Xaldo(Xi:x)))
(1og

Pe,(Xt1 | do(X; = z))

. 0.5 0.5

< Eer I{A; = do(X; = 5. (1log —2 1]
_xg):l €3 LZ:; {A; o( a:)}] (05 (og 054z + log 0.5—45>>
<) Eg [Z {Ay = do(X; = :c)}] 96>

r=0,1 t=1

= 96e” - Eeg [N (do(X; = 1)) + N(do(X; = 0))].

where the E¢r N(a) represents that the number of times taking action a for policy 7 under
the instance &. Now we have

KL(£3,¢7) 1
Eer [N(do(X; =1 N(do(X; = > e > log —.
e5 [N (do(Xi = 1)) + N(do(X; = 0))) 2 == 2 > log
Hence the stopping time 7 under policy 7 can be lower bounded by
Eer[r] > zn:IE [N(do(X; = 1)) + N(do(X; = 0))] > "2 e L — 0 (2o
=Lt i PTN= g6z B T U 2 85 )

1I.5. Technical Lemma

Lemma 28 IfT = CHlog dTT for some constant C' and parameter d such that d > ed,
then T = O(H log £2).

Proof Let f(x) then for x > 1

= log(;x/é) )

, B log(dz/d) — 1
Jle) = log? dx /6 =0
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because dz/d > e. Then f(x) is non-decreasing for x > 1.
To prove T'= O(H log %), we only need to show that f(T") < f(C'H log %) for some
constant C’. Since

C'Hdlog 4 'Hd Hd
log bk B W log ¢ + loglog —
0 0 ]
we only need to prove
Hd C'H log %
f(C'Hlog ——) = — s >CH = f(T).

d log “H4 + loglog &4

If we choose C’ > 2C + C'log C’, then

!/

H '"H H
CH <logc d C'Hd d

Hd
+ log log 5) < CH(log

Hd
< 2CH log 5 +CHlog(C'

< (2C + Clog C")H log ?

< C'Hlog HTd
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