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Appendix

Appendix A. Conversion of Function fX

A.1. Conversion to gX such that limx→+∞ gX(x) = +∞

In this section, we firstly prove that any monotone increasing function fX that satis-
fies Assumptions 1 and 2 can be converted to a function gX such that the conversion
does not impact the propagation of BGLM, i.e., fX(x) = gX(x) for x ∈ [0, |Pa(X)|],
limx→+∞ gX(x) = +∞, gX is twice differentiable and Assumptions 1 and 2 still hold.

On one hand, if for all x ≥ 2|Pa(X)|, f ′′
X(x) ≥ 0, then fX(x) ≥ fX(2|Pa(X)|) +

f ′
X(2|Pa(X)|)(x− 2|Pa(X)|), which already satisfies limx→+∞ fX(x) = +∞. In this case,
no conversion is needed (let gX ≡ fX). On another hand, we can find a x∗ ≥ 2|Pa(X)|
such that f ′′

X(x∗) < 0.
We define the conversion as

gX(x) =

{
fX(x) x ≤ x∗

fX(x∗) +
f ′
X(x∗)2

f ′′
X(x∗) ln

(
−f ′

X(x∗)
f ′′
X(x∗)

)
− f ′

X(x∗)2

f ′′
X(x∗) ln

(
x− x∗ − f ′

X(x∗)
f ′′
X(x∗)

)
x > x∗

.

During the propagation of the BGLM, the input of fX is Pa(X) · θ∗
X , which is in

the range [0, |Pa(X)|] ⊆ [0, x∗]. Hence, when we replace fX by gX in the BGLM, the
propagation is not impacted.

Moreover, we can compute that

g′X(x) =


f ′
X(x) x ≤ x∗

− f ′
X(x∗)2

f ′′
X(x∗)

(
x−x∗−

f ′
X

(x∗)
f ′′
X

(x∗)

) x > x∗ ,

and

g′′X(x) =


f ′′
X(x) x ≤ x∗

f ′
X(x∗)2

f ′′
X(x∗)

(
x−x∗−

f ′
X

(x∗)
f ′′
X

(x∗)

)2 x > x∗ .

Therefore, we have limx→x∗+ gX(x) = fX(x∗) and limx→x∗− gX(x) = fX(x∗). Hence, gX is
continuous. Moreover, limx→x∗+ g′X(x) = f ′

X(x∗) = limx→x∗− g′X(x) and limx→x∗+ g′′X(x) =
f ′′
X(x∗) = limx→x∗− g′′X(x), so gX(x) is twice differentiable and g′′X is continuous.

Now we only need to verify Assumptions 1 and 2. Firstly, when x > x∗, we have

g′X(x) < g′X(x∗) = f ′
X(x∗) ≤ L

(1)
fX

and g′′X(x) < g′′X(x∗) = f ′′
X(x∗) ≤ L

(2)
fX

, so Assumption 1
holds. Secondly, maxv∈[0,1]|Pa(X)|,∥θ−θ∗

X∥≤1 v · θ ≤ 2|Pa(X)| ≤ x∗, so the conversion does

not impact the value of κ. Until now, we complete the conversion.

A.2. Conversion to hX such that limx→−∞ hX(x) = −∞ and limx→+∞ hX(x) = +∞

Then we prove that the monotone increasing function gX that satisfies Assumptions 1
and 2 can be converted to a function hX such that the conversion does not impact the
propagation of BGLM, i.e., gX(x) = hX(x) for x ∈ [0, |Pa(X)|], limx→−∞ hX(x) = −∞,
limx→+∞ hX(x) = +∞, hX is twice differentiable and Assumptions 1 and 2 still hold.
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On one hand, if for all x ≤ −|Pa(X)|, f ′′
X(x) ≤ 0, then fX(x) ≤ fX(−|Pa(X)|) −

f ′
X(−|Pa(X)|)(−x−|Pa(X)|), which already satisfies limx→−∞ fX(x) = −∞. In this case,
no conversion is needed (let hX ≡ gX). On another hand, we can find a x∗ ≤ −|Pa(X)|
such that f ′′

X(x∗) > 0.
We define the conversion as

hX(x) =

{
gX(x) x ≥ x∗

gX(x∗)− g′X(x∗)2

g′′X(x∗) ln
(
−g′X(x∗)

g′′X(x∗)

)
+

g′X(x∗)2

g′′X(x∗) ln
(
−x+ x∗ +

g′X(x∗)
g′′X(x∗)

)
x < x∗

.

During the propagation of the BGLM, the input of gX is Pa(X) · θ∗
X , which is in

the range [0, |Pa(X)|] ⊆ [0, x∗]. Hence, when we replace gX by hX in the BGLM, the
propagation is not impacted.

Moreover, we can compute that

h′X(x) =


g′X(x) x ≥ x∗

g′X(x∗)2

g′′X(x∗)

(
−x+x∗+

g′
X

(x∗)
g′′
X

(x∗)

) x < x∗ ,

and

h′′X(x) =


g′′X(x) x ≥ x∗

g′X(x∗)2

g′′X(x∗)

(
x−x∗−

g′
X

(x∗)
g′′
X

(x∗)

)2 x < x∗ .

Therefore, we have limx→x∗+ hX(x) = gX(x∗) and limx→x∗− hX(x) = gX(x∗). Hence, hX is
continuous. Moreover, limx→x∗+ h′X(x) = g′X(x∗) = limx→x∗− h′X(x) and limx→x∗+ h′′X(x) =
g′′X(x∗) = limx→x∗− h′′X(x), so hX(x) is twice differentiable and h′′X is continuous.

Now we only need to verify Assumptions 1 and 2. Firstly, when x < x∗, we have

h′X(x) < h′X(x∗) = g′X(x∗) ≤ L
(1)
fX

and h′′X(x) < h′′X(x∗) = g′′X(x∗) ≤ L
(2)
fX

, so Assumption 1
holds. Secondly, minv∈[0,1]|Pa(X)|,∥θ−θ∗

X∥≤1 v · θ ≥ −|Pa(X)| ≥ x∗, so the conversion does

not impact the value of κ. Until now, we complete the conversion.
In conclusion we have found a conversion from fX to hX such that the conversion

does not impact the propagation of BGLM, i.e., hX(x) = fX(x) for x ∈ [0, |Pa(X)|],
Range(hX) = R, hX is twice differentiable and Assumptions 1 and 2 still hold.

Appendix B. Pseudocode of Algorithm 5

Here, we want to give a lemma to clarify why we can always find a solution for equation∑t
i=1(X

(i) − fX(V ⊺
i,XθX))Vi,X = 0 in Line 5 of Algorithm 5.

Lemma 10 When limx→+∞ fX(x) = +∞, limx→−∞ fX(x) = −∞, and fX is monotone
increasing, equation

∑t
i=1(X

(i) − fX(V ⊺
i,XθX))Vi,X = 0 has a solution.

Proof We define mX(x) as

mX(x) =

{∫ x
0 fX(c)dc x ≥ 0

−
∫ 0
x fX(c)dc x < 0

.
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Algorithm 5: BGLM-Estimate

1: Input: All observations ((X1, Y1), . . . , (Xt, Yt)) until round t.
2: Output: {θ̂t,X ,Mt,X}X∈X∪{Y }
3: For each X ∈X ∪ {Y }, i ∈ [t], construct data pair (Vi,X , X(i)) with Vi,X the vector of

ancestors of X in round i, and X(i) the value of X in round i if X ̸∈ Si.
4: for X ∈X ∪ {Y } do
5: Calculate the maximum-likelihood estimator θ̂t,X by solving the equation

∑t
i=1(X

(i)−
fX(V ⊺

i,XθX))Vi,X = 0.

6: Mt,X =
∑t

i=1 Vi,XV ⊺
i,X .

7: end for

Then we can compute
t∑

i=1

(X(i) − fX(V ⊺
i,XθX))Vi,X

as

∇θ

t∑
i=1

(
X(i)V ⊺

i,XθX −mX(V ⊺
i,XθX)

)
.

Hence, we only need to prove that

HX(θX) ≜
t∑

i=1

(
X(i)V ⊺

i,XθX −mX(V ⊺
i,XθX)

)
is a concave function with respect to θX and lim(θX)j→∞HX(θX) = −∞ or ∂HX(θX)

∂(θX)j
≡ 0

for all j ∈ [|Pa(X)|], which implies that HX has a maximal point. Firstly, we know that

∂2mX(x)

∂x2
= f ′

X(x) > 0,

so mX is a convex function. Therefore, for any vectors θ1,θ2 ∈ R|Pa(X)| and λ ∈ [0, 1], we
have

mX

(
V ⊺
i,X(λθ1 + (1− λ)θ2)

)
= mX

(
λV ⊺

i,Xθ1 + (1− λ)V ⊺
i,Xθ2)

)
≤ λmX(V ⊺

i,Xθ1) + (1− λ)mX(V ⊺
i,Xθ2),

so mX(V ⊺
i,XθX) is also a convex function with respect to θX and the Hessian matrix

H[mX(V ⊺
i,XθX)] of mX(V ⊺

i,XθX) with respect to θX should be positive semidefinite. Now
we can compute the Hessian matrix H[HX(θX)] as

H[HX(θX)] =

t∑
i=1

(
−V ⊺

i,XVi,X ·H[mX(V ⊺
i,XθX)]

)
.

Hence, H[HX(θX)] is negative semidefinite because multiplying a positive semidefinite ma-
trix by a negative scalar preserves the semidefiniteness. Thus HX is a concave function
with respect to θX .
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Now for any j ∈ [Pa(X)], we prove that lim(θX)j→+∞HX(θX) = −∞ and lim(θX)j→−∞HX(θX) =

−∞ or ∂HX(θX)
∂(θX)j

≡ 0. Firstly, we have

∂HX(θX)

∂(θX)j
=

t∑
i=1

(
X(i)(Vi,X)j − (Vi,X)jm

′
X(V ⊺

i,XθX)
)

=
t∑

i=1

(
X(i)(Vi,X)j − (Vi,X)jfX(V ⊺

i,XθX)
)
.

If (Vi,X)j = 0 for all i ∈ [t], we have ∂HX(θX)
∂(θX)j

≡ 0. Otherwise, we have

lim
(θX)j→+∞

∂HX(θX)

∂(θX)j
= lim

(θX)j→+∞

t∑
i=1

(
X(i)(Vi,X)j − (Vi,X)jfX(V ⊺

i,XθX)
)

= lim
(θX)j→+∞

t∑
i=1

(Vi,X)j

(
X(i) − fX(V ⊺

i,XθX)
)

= −∞, (lim(θX)j→+∞ fX(V ⊺
i,XθX) = +∞)

which indicates that lim(θX)j→+∞HX(θX) = −∞. Also, we have

lim
(θX)j→−∞

∂HX(θX)

∂(θX)j
= lim

(θX)j→−∞

t∑
i=1

(
X(i)(Vi,X)j − (Vi,X)jfX(V ⊺

i,XθX)
)

= lim
(θX)j→−∞

t∑
i=1

(Vi,X)j

(
X(i) − fX(V ⊺

i,XθX)
)

= +∞, (lim(θX)j→−∞ fX(V ⊺
i,XθX) = −∞)

which indicates that lim(θX)j→−∞HX(θX) = −∞.
Until now, we have proved that HX(θX) has at least one global maximum, which indi-

cates that the equation has at least one solution.

Appendix C. Proofs for Propositions in Section 5

In this section, we give proofs that are omitted in Section 5 of our main text.

C.1. Proof of Lemma 2

Lemma 11 Let G be a BGLM with parameter θ∗ that satisfies Assumption 2. Recall that
θ∗min = min(X′,X)∈E θ∗X′,X . If Xi ∈ Pa(Xj), we have E[Xj |do(Xi = 1)]−E[Xj |do(Xi = 0)] ≥
κθ∗Xi,Xj

≥ κθ∗min; if Xi is not an ancestor of Xj, we have E[Xj |do(Xi = 1)] = E[Xj |do(Xi =

0)].

Proof At first, we define an equivalent threshold model form of the BGLM as follows. For
each node X, we randomly sample a threshold γX uniformly from [0, 1], i.e., γX ∼ U [0, 1].
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Then if fX(Pa(X) · θ∗
X) + εX ≥ γX , X is activated, i.e., X is set to 1; otherwise, X is not

activated, i.e., X is set to 0. Therefore, if we ignore ε, the BGLM model belongs to the
family of general threshold models (Kempe et al., 2003). For convenience, we denote the
vector of all γX , X ∈ X ∪ {Y }\{X1} by γ. The vector of fixing all entries in γ except γX
is denoted by γ−X .

Now we prove the first part of this lemma: E[Xj |do(Xi = 1)] − E[Xj |do(Xi = 0)] ≥
κθ∗Xi,Xj

≥ κθ∗min if Xi ∈ Pa(Xj). By the definition of our equivalent threshold model, we
know that after fixing all the thresholds γX ’s and noises εX ’s, the propagation result is
completely determined merely by the intervention. Therefore, we have

E[Xj |do(Xi = 1)] = Eγ∈(U [0,1])n,ε[Xj |do(Xi = 1)]

= Eγ−Xj
∈(U [0,1])n−1,ε

[
Pr

γXj
∼U [0,1]

{
Xj = 1|do(Xi = 1),γ−Xj , ε

}]
,

and

E[Xj |do(Xi = 0)] = Eγ−Xj
∈(U [0,1])n−1,ε

[
Pr

γXj
∼U [0,1]

{
Xj = 1|do(Xi = 0),γ−Xj , ε

}]
.

Hence, in order to prove E[Xj |do(Xi = 1)]− E[Xj |do(Xi = 0)] ≥ κθ∗Xi,Xj
≥ κθ∗min, we only

need to prove

Pr
γXj

∼U [0,1]

{
Xj = 1|do(Xi = 1),γ−Xj , ε

}
− Pr

γXj
∼U [0,1]

{
Xj = 0|do(Xi = 0),γ−Xj , ε

}
≥ κθ∗min.

When γ−Xj and ε are fixed, all the nodes inX∪{Y }\ ({Xj} ∪ {Des(Xj)}) are already fixed
given an arbitrarily fixed intervention. Here, Des(Xj) is used to represent the descendants
of Xj . Suppose under do(Xi = 1),γ−Xj and ε, the value vector of parents of Xj is pa1(Xj);
under do(Xi = 0),γ−Xj and ε, the value vector of parents of Xj is pa0(Xj). By induction
along the topological order, nodes in X∪{Y }\ ({Xj} ∪ {Des(Xj)}) that is activated under
do(Xi = 0),γ−Xj and ε must be also activated under do(Xi = 1),γ−Xj and ε. Therefore,
entries in pa1(Xj)− pa0(Xj) are all non-negative and the entry in pa1(Xj)− pa0(Xj) for
the value of Xj is 1. From this observation, we can deduce that

fXj (pa1(Xj) · θ∗
Xj

)− fXj (pa0(Xj) · θ∗
Xj

) ≥ κ
(
pa1(Xj) · θ∗

Xj
− pa0(Xj) · θ∗

Xj

)
≥ κθ∗Xi,Xj

.

Hence, we have

Pr
γXj

∼U [0,1]

{
Xj = 1|do(Xi = 1),γ−Xj , ε

}
− Pr

γXj
∼U [0,1]

{
Xj = 0|do(Xi = 0),γ−Xj , ε

}
= Pr

γXj
∼U [0,1]

{
fXj (pa1(Xj) · θ∗

Xj
) ≥ γXj + εXj |εXj

}
− Pr

γXj
∼U [0,1]

{
fXj (pa0(Xj) · θ∗

Xj
) ≥ γXj + εXj |εXj

}
=
(
fXj (pa1(Xj) · θ∗

Xj
)− εXj

)
−
(
fXj (pa0(Xj) · θ∗

Xj
)− εXj

)
≥ κθ∗Xi,Xj

≥ κθ∗min,
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which is what we want. Until now, the first part of Lemma 2 has been proved.

Then we prove the second part of this lemma: E[Xj |do(Xi = 1)] = E[Xj |do(Xi = 0)]
if Xj is not a descendant of Xi. In this situation, we know from the graph structure that
(Xj ⊥⊥ Xi)G{Xi}

, where G{Xi} is the graph obtained by deleting from G all arrows pointing

to Xi. According to the third law of do-calculus (Pearl, 2012), we deduce that

E[Xj |do(Xi = 1)] = Pr{Xj = 1|do(Xi = 1)} = Pr{Xj = 1|}
= Pr{Xj = 1|do(Xi = 0)} = E[Xj |do(Xi = 0)].

Now Lemma 2 is completely proved.

Corollary 12 (An Extension of Lemma 2) Suppose G is a BGLM with parameter θ∗

that satisfying Assumption 2 and do(S = s) is an intervention such that Xi, Xj /∈ S. If
Xi ∈ Pa(Xj), we have E[Xj |do(Xi = 1), do(S = s)] − E[Xj |do(Xi = 0), do(S = s)] ≥
κθ∗Xi,Xj

≥ κθ∗min; if Xi is not an ancestor of Xj, we have E[Xj |do(Xi = 1), do(S = s)] =

E[Xj |do(Xi = 0), do(S = s)].

Proof According to Pearl (2012), Pr{Xj |do(Xi), do(S)} is equivalent to Pr{Xj |do(Xi)} in
a new model G′ such that all in-edges of S are deleted and all nodes in S are fixed by s.
We know that Lemma 2 holds in G′, so this corollary holds in G.

C.2. Proof of Lemma 3

Lemma 13 (Positive Rate of BGLM-Order) Suppose Assumption 2 holds for BGLM
G. In the initialization phase of Algorithm 1, Algorithm 2 finds a consistent ancestor-

descendant relationship for G with probability no less than 1−2
(
n−1
2

)
exp

(
− c0c21T

1/10

2

)
when

θ∗min ≥ 2c1κ
−1T−1/5.

Proof We first assume that for every pair of nodes if Xi ∈ Pa(Xj), Algorithm 2 puts Xj

as a descendant of Xi in the ancestor-descendant relationship; if Xj is not a descendant
of Xi, Algorithm 2 do not put Xj as an descendant of Xi in the ancestor-descendant
relationship. This event is denoted by E for simplicity. We prove that when event E does
occur, the ancestor-descendant relationship we find is absolutely consistent with the true
graph structure of G. Otherwise, suppose there is a mistake in the ancestor-descendant

relationship such that Xi is an ancestor of Xj but not put in Ânc(Xj). We denote a
directed path from Xi to Xj by Xi → Xk1 → Xk2 → · · · → Xkp → Xj . Therefore, Xk1

must be put in Ânc(Xi), Xk2 must be put in Ânc(Xk1), . . . , Xj must be put in Ânc(Xkp).

In conclusion, Xj should be put in Ânc(Xi), which is a contradiction. Hence, there is no
mistake in the ancestor-descendant relationship given event E .

Now we only prove that using Algorithm 2, with probability no less than

1− 2

(
n− 1

2

)
exp

(
−c0c

2
1T

1/10

2

)
,
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event E defined in the paragraph above occurs. For a pair of nodes Xi, Xj ∈ X\{X1},
if Xi ∈ Pa(Xj), we know from Lemma 2 that E[Xj |do(Xi = 1)] − E[Xj |do(Xi = 0)] ≥
κθ∗min. We denote the difference between random variable Xj given do(Xi = 1) and random

variable Xj given do(Xi = 0) by Z. In
∑c0T 1/2

k=1

(
X
(2ic0T 1/2+k)
j −X

((2i+1)c0T 1/2+k)
j

)
, each

term X
(2ic0T 1/2+k)
j −X

((2i+1)c0T 1/2+k)
j is an i.i.d. sample of Z. We denote X

(2ic0T 1/2+k)
j −

X
((2i+1)c0T 1/2+k)
j by Zk. We know that Zk ∈ [−1, 1] and E[Zk] ≥ κθ∗min, so according to

Hoeffding’s inequality (Hoeffding, 1994), we have

Pr


c0T 1/2∑
k=1

(
X
(2ic0T 1/2+k)
j −X

((2i+1)c0T 1/2+k)
j

)
> c0c1T

3/10


= Pr


c0T 1/2∑
k=1

Zk > c0c1T
3/10


= 1− Pr


c0T 1/2∑
k=1

Zk ≤ c0c1T
3/10


≥ 1− exp

(
−
2
(
c0T

1/2κθ∗min − c0c1T
3/10

)2
4c0T 1/2

)
= 1− exp

(
−
c0
(
T 1/4κθ∗min − c1T

1/20
)2

2

)

≥ 1− exp

(
−c21c0T

1/10

2

)
. (because T ≥ 32

(
c1

κθ∗min

)5
)

Similarly, if Xj is not a descendant of Xi, we do not put Xi in Ânc(Xj) in the ancestor-

descendant relationship if and only if
∑c0T 1/2

k=1

(
X
(2ic0T 1/2+k)
j −X

((2i+1)c0T 1/2+k)
j

)
≤ c0c1T

3/10.

Now we still have Zk ∈ [−1, 1] but E[Zk] = 0. Therefore, according to Hoeffding’s inequality
(Hoeffding, 1994), we have

Pr


c0T 1/2∑
k=1

(
X
(2ic0T 1/2+k)
j −X

((2i+1)c0T 1/2+k)
j

)
≤ c0c1T

3/10


= 1− Pr


c0T 1/2∑
k=1

Zk > c0c1T
3/10


> 1− exp

(
−
2
(
c0c1T

3/10
)2

4c0T 1/2

)
= 1− exp

(
−c21c0T

1/10

2

)
.

Hence, by union bound (Boole’s inequality (Bonferroni, 1936)), the probability of E is

no less than 1 − 2
(
n−1
2

)
exp

(
− c21c0T

1/10

2

)
. This is because when Xi, Xj ∈ X\{X1}, there

are 2
(
n−1
2

)
possible choices of them that are tested by Algorithm 2. When E happens,

Algorithm 2 gets the ancestor-descendant relationship correct, so Lemma 3 is proved.
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C.3. Proof of Theorem 4

In the following proofs on a BGLM G, when X ′ ∈ Anc(X) but X ′ /∈ Pa(X), we add an
edge X ′ → X with weight θX′,X = 0 into G and this does not impact the propagation results
of G. Let D = maxX∈X∪Y |Pa(X)| represent the maximum in-degree. After applying this
transformation, D = n and Anc(X) = Pa(X) for all X ∈ X ∪ Y in this subsection. This
transformation effectively converts the ancestor-descendant relationship into an ancestor-
descendant graph.

Before the proof of this theorem, we introduce several lemmas at first. The first compo-
nent is based on the result of maximum-likelihood estimation (MLE). It gives a theoretical
measurement for the accuracy of estimated θ̂ computed by MLE. One who is interested
could find the proof of this lemma in Appendix C.2 of Feng and Chen (2022).

Lemma 14 (Lemma 1 in Feng and Chen (2023)) Suppose that Assumptions 1 and 2
hold. Moreover, given δ ∈ (0, 1), assume that

λmin(Mt,X) ≥
512|Pa(X)|

(
L
(2)
fX

)2
κ4

(
|Pa(X)|2 + ln

1

δ

)
. (8)

Then with probability at least 1− 3δ, the maximum-likelihood estimator satisfies , for any
v ∈ R|Pa(X)|, ∣∣∣v⊺(θ̂t,X − θ∗

X)
∣∣∣ ≤ 3

κ

√
log(1/δ) ∥v∥M−1

t,X
,

where the probability is taken from the randomness of all data collected from round 1 to
round t.

The second component is called the group observation modulated (GOM) bounded
smoothness property (Li et al., 2020). It shows that a small change in parameters θ leads to a
small change in the reward. Under our BGLM setting, this lemma is proved in Appendix C.3
of Feng and Chen (2022).

Lemma 15 (Lemma 2 in Feng and Chen (2023)) For any two weight vectors θ1,θ2 ∈
Θ for a BGLM G, the difference of their expected reward for any intervened set S can be
bounded as ∣∣σ(S,θ1)− σ(S,θ2)

∣∣ ≤ Eε,γ

 ∑
X∈XS,Y

∣∣V ⊺
X(θ1

X − θ2
X)
∣∣L(1)

fX

 , (9)

where XS,Y is the set of nodes in paths from S to Y excluding S, and VX is the propagation
result of the parents of X under parameter θ2. The expectation is taken over the randomness
of the thresholds γ and the noises ε.

Thirdly, we propose a lemma in order to bound the sum of ∥Vt,X∥M−1
t−1,X

at first. This

lemma is proved in Appendix C.4 of Feng and Chen (2022).

Lemma 16 (Lemma 9 in Feng and Chen (2022)) Let {Wt}∞t=1 be a sequence in Rd

satisfying ∥Wt∥ ≤
√
d. Define W0 = 0 and Mt =

∑t
i=0WiW

⊺
i . Suppose there is an integer

t1 such that λmin(Mt1+1) ≥ 1, then for all t2 > 0,

t1+t2∑
t=t1

∥Wt∥M−1
t−1
≤
√
2t2d log(t2d+ t1).
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At last, in order to show that λmin(MT1,X) ≥ R after the initialization phase of Algo-
rithm 1 and thus satisfy the condition of Lemma 14, we introduce Lemma 17. This lemma
is improved upon Lemma 7 in Feng and Chen (2022) and enables us to use Lecué and
Mendelson’s inequality (Nie, 2022) in our later theoretical regret analysis.

Let Sphere(d) denote the sphere of the d-dimensional unit ball.

Lemma 17 For any v = (v1, v2, . . . , v|Pa(X)|) ∈ Sphere(|Pa(X)|) and any X ∈ X ∪ {Y }
in a BGLM that satisfies Assumption 3, we have

Pr
ε,X,Y

{
|Pa(X) · v| ≥ 1√

4D2 − 3

}
≥ ζ,

where Pa(X) is the random vector generated by the natural Bayesian propagation in BGLM
G with no interventions (except for setting X1 to 1).

Proof The lemma is similarly proved as Lemma 7 in Feng and Chen (2022) using the idea
of Pigeonhole principle. Let Pa(X) = (Xi1 = X1, Xi2 , Xi3 , . . . , Xi|Pa(X)|) as the random
vector and pa(X) = (x1 = 1, xi1 , xi2 , xi3 , . . . , xi|Pa(X)|) as a possible valuation of Pa(X).

Without loss of generality, we suppose that |v2| ≥ |v3| ≥ . . . ≥
∣∣v|Pa(X)|

∣∣. For simplicity, we

denote D0 =
√
D − 1 + 1

2
√
D−1

. If |v1| ≥ D0√
D2

0+1
, we can deduce that

|pa(X) · v| ≥ |v1| − |v2| − |v3| − · · · −
∣∣v|Pa(X)|

∣∣
≥ D0√

D2
0 + 1

−
√
(D − 1)

(
|v2|2 + |v3|2 + · · ·+

∣∣v|Pa(X)|
∣∣2) (10)

≥ D0√
D2

0 + 1
−

√
(D − 1)

(
1− D2

0

D2
0 + 1

)
(11)

=
1

2
√
(D2

0 + 1)(D − 1)
=

1√
4D2 − 3

,

where Inequality (10) is by the Cauchy-Schwarz inequality and the fact that |Pa(X)| ≤ D,
and Inequality (11) uses the fact that v ∈ Sphere(|Pa(X)|). Thus, when |v1| ≥ D0√

D2
0+1

,

the event |Pa(X) · v| ≥ 1√
4D2−3

holds deterministically. Otherwise, when |v1| < D0√
D2

0+1
,

we use the fact that |v2| is the largest among |v2|, |v3|, . . . and deduce that

|v2| ≥
1√
n− 1

√
|v2|2 + |v3|2 + · · · ≥

√
1−

(
D0√
D2

0+1

)2

√
n− 1

=
2√

4D2 − 3
. (12)

Therefore, using the fact that

Pr
ε,X,Y

{Xi1 = 1, Xi2 = xi2 , Xi3 = xi3 , . . .}

= Pr
ε,X,Y

{Xi2 = xi2 |Xi1 = 1, Xi3 = xi3 , . . .} · Pr
ε,X,Y

{(Xi1 = 1, Xi3 = xi3 , . . .}

≥ ζ Pr
ε,X,Y

{Xi1 = 1, Xi3 = xi3 , . . .}
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and
∑

xi3
,xi4

,... Prε,X,Y {Xi1 = 1, Xi3 = xi3 , . . .} = 1, we have

Pr
ε,X,Y

{
|Pa(X) · v| ≥ 1√

4D2 − 3

}
=

∑
xi3

,xi4
,...

Pr{Xi1 = 1, Xi2 = 1, Xi3 = xi3 , . . .} · I
{
|(1, 1, xi3 , xi4 , . . .) · (v1, v2, v3, . . .)| ≥

1√
4D2 − 3

}

+
∑

xi3
,xi4

,...

Pr{Xi1 = 1, Xi2 = 0, Xi3 = xi3 , . . .} · I
{
|(1, 0, xi3 , xi4 , . . .) · (v1, v2, v3, . . .)| ≥

1√
4D2 − 3

}

≥
∑

xi3
,xi4

,...

ζ Pr{Xi1 = 1, Xi3 = xi3 , Xi4 = xi4 . . .} · I
{
|(1, 1, xi3 , xi4 , . . .) · (v1, v2, v3, . . .)| ≥

1√
4D2 − 3

}

+
∑

xi3
,xi4

,...

ζ Pr{Xi1 = 1, Xi3 = xi3 , Xi4 = xi4 , . . .} · I
{
|(1, 0, xi3 , xi4 , . . .) · (v1, v2, v3, . . .)| ≥

1√
4D2 − 3

}

= ζ
∑

xi3
,xi4

,...

Pr{Xi1 = 1, Xi3 = xi3 , Xi4 = xi4 , . . .}
(
I
{
|(1, 1, xi3 , xi4 , . . .) · (v1, v2, v3, . . .)| ≥

1√
4D2 − 3

}

+I
{
|(1, 0, xi3 , xi4 , . . .) · (v1, v2, v3, . . .)| ≥

1√
4D2 − 3

})
≥ ζ

∑
xi3 ,xi4 ,...

Pr{Xi1 = 1, Xi3 = xi3 , Xi4 = xi4 , . . .} (13)

= ζ,

which is exactly what we want to prove. Inequality (13) holds because otherwise, at least
for some xi3 , xi4 , . . ., both indicators on the left-hand side of the inequality have to be 0,
which implies that

|(1, 1, xi3 , xi4 , . . .) · (v1, v2, v3, . . .)− (1, 0, xi3 , xi4 , . . .) · (v1, v2, v3, . . .)| = |v2| <
2√

4D2 − 3
, (14)

but this contradicts to Inequality (12).

Having these four lemmas above together with Lemma 3 proved in Appendix C.2, we
are finally able to prove the regret bound of BGLM-OFU-Unknown algorithm (Theorem 4)
as below.

Theorem 4 (Regret Bound of BGLM-OFU-Unknown) Under Assumptions 1, 2 and
3, the regret of BGLM-OFU-Unknown (Algorithms 1, 2 and 5) is bounded as

R(T ) = O

(
1

κ
n

3
2L(1)

max

√
T log T

)
, (5)

where L
(1)
max = maxX∈X∪{Y } L

(1)
fX

and the terms of o(
√
T lnT ) are omitted, and the big O

notation holds for T ≥ 32
(

c1
κθ∗min

)5
.

Proof We only consider the case of T ≥ 32
(

c1
κθ∗min

)5
in this proof because the big O notation

is asymptotic.
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Let Ht be the history of the first t rounds and Rt be the regret in the tth round.
Because the reward node Y is in interval [0, 1], we can deduce that for any t ≤ T1, Rt ≤ 1.
Now we consider the case of t > T1. According to Lemma 3, with probability at least

1−2
(
n−1
2

)
exp

(
− c0c21T

1/10

2

)
, Algorithm 2 returns a correct ancestor-descendant relationship,

i.e., Ânc(X) = Anc(X) for X ∈ X ∪ {Y }. Next we bound the regret conditioned on the
correct ancestor-descendant relationship. When t > T1, we have

E[Rt|Ht−1] = E[σ(Sopt,θ∗)− σ(St,θ
∗)|Ht−1], (15)

where the expectation is taken over the randomness of St. Then for T1 < t ≤ T , we define

ξt−1,X for X ∈ X ∪ {Y } as ξt−1,X =
{∣∣∣vT (θ̂t−1,X − θ∗

X)
∣∣∣ ≤ ρ · ∥v∥M−1

t−1,X
, ∀v ∈ R|Pa(X)|

}
.

According to the definition of Algorithm 1, we can deduce that λmin(Mt−1,X) ≥ λmin(MT1,X).
By Lecué and Mendelson’s inequality (Nie, 2022; Feng and Chen, 2022) (conditions of this
inequality satisfied according to Lemma 17), we have

Pr {λmin(MT1,X) < R} ≤ Pr {λmin(MT1,X −MT0,X) < R} ≤ exp

(
−(T1 − T0)ζ

2

c

)
where c, ζ are constants. Then we can define ξt−1 = ∧X∈X∪{Y }ξt−1,X and let ξt−1 be its
complement. By Lemma 14, we have

Pr
{
ξt−1

}
≤
(
3δ + exp

(
−(T1 − T0)ζ

2

c

)
+ 3δ exp

(
−(T1 − T0)ζ

2

c

))
n ≜ perror.

Because under ξt−1, for anyX ∈ X∪{Y } and v ∈ R|Pa(X)|, we have
∣∣∣vT (θ̂t−1,X − θ∗

X)
∣∣∣ ≤

ρ · ∥v∥M−1
t−1,X

. Therefore, by the definition of θ̃t, we have σ(St, θ̃t) ≥ σ(Sopt,θ∗) because θ∗

is in our confidence ellipsoid. Hence,

E[Rt] ≤ Pr {ξt−1} · E[σ(Sopt,θ∗)− σ(St,θ
∗)] + Pr(ξt−1)

≤ E[σ(Sopt,θ∗)− σ(St,θ
∗)] + perror

≤ E[σ(St, θ̃t)− σ(St,θ
∗)] + perror.

Then we need to bound σ(St, θ̃t)− σ(St,θ
∗) carefully.

Therefore, according to Lemma 14 and Lemma 15, we can deduce that

E[Rt] ≤ E

 ∑
X∈XSt,Y

∣∣∣Vt,X(θ̃t,X − θ∗
X)
∣∣∣L(1)

fX

+ perror

≤ E

 ∑
X∈XSt,Y

∥Vt,X∥M−1
t−1,X

∥∥∥θ̃t,X − θ∗
X

∥∥∥
Mt−1,X

L
(1)
fX

+ perror

≤ 2ρ · E

 ∑
X∈XSt,Y

∥Vt,X∥M−1
t−1,X

L
(1)
fX

+ perror.



CCB without Graph Skeleton

The last inequality holds because∥∥∥θ̃t,X − θ∗
X

∥∥∥
Mt−1,X

≤
∥∥∥θ̃t,X − θ̂t−1,X

∥∥∥
Mt−1,X

+
∥∥∥θ̂t−1,X − θ∗

X

∥∥∥
Mt−1,X

≤ 2ρ.

Therefore, conditioned on the correct ancestor-descendant relationship, the total regret
can be bounded as

R(T ) ≤ 2ρ · E

 T∑
t=T0+1

∑
X∈XSt,Y

∥Vt,X∥M−1
t−1,X

L
(1)
fX

+ perror(T − T1) + T1.

For convenience, we define Wt,X as a vector such that if X ∈ St, Wt,X = 0|Pa(X)|; if
X ̸∈ St, Wt,X = Vt,X . Using Lemma 16, we can get the result:

R(T ) ≤

2ρE

 T∑
t=T0+1

∑
X∈XSt,Y

∥Vt,X∥M−1
t−1,X

L
(1)
fX

+ perror(T − T1) + T1


·

(
1− 2

(
n− 1

2

)
exp

(
−c0c

2
1T

1/10

2

))
+ 2

(
n− 1

2

)
exp

(
−c0c

2
1T

1/10

2

)
T

≤ 2ρE

 T∑
t=T0+1

∑
X∈X∪{Y }

∥Wt,X∥M−1
t−1,X

L
(1)
fX

+ perror(T − T1) + T1

+ 2

(
n− 1

2

)
exp

(
−c0c

2
1T

1/10

2

)
T

≤ 2ρ · max
X∈X∪{Y }

(
L
(1)
fX

)
E

 ∑
X∈X∪{Y }

√
2(T − T0)|Pa(X)| log ((T − T0)|Pa(X)|+ T0)


+ perror(T − T1) + T1 + 2

(
n− 1

2

)
exp

(
−c0c

2
1T

1/10

2

)
T

= O

(
1

κ
n

3
2

√
TL(1)

max lnT

)
= Õ

(
1

κ
n

3
2

√
TL(1)

max

)

because ρ = 3
κ

√
log(1/δ), exp

(
− c0c21T

1/10

2

)
T = o(

√
T ) and perrorT = o(

√
T ).

Appendix D. A BLM CCB Algorithm with Minimum Weight Gap Based
on Linear Regression

As BLM is a special case of BGLM, the initialization phase in BGLM-OFU-Unknown to
determine the ancestor-descendant relationship can also be used on BLMs. Feng and Chen
(2023) propose a CCB algorithm for BLMs using linear regression instead of MLE to remove
the requirement of Assumption 3. Furthermore, BLM takes the identity function as fX ’s,
so Assumptions 1 and 2 is neither required. The specific algorithm BLM-LR-Unknown-SG
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Algorithm 6: BLM-LR-Unknown-SG for BLM and Linear Model CCB Problem

1: Input: Graph G = (X ∪ {Y }, E), action set A, positive constants c0 and c1 for initial-
ization phase such that c0

√
T ∈ N+.

2: /* Initialization Phase: */
3: Initialize T0 ← 2(n− 1)c0T

1/2.
4: Do each intervention among do(X2 = 1), do(X2 = 0), . . . , do(Xn = 1), do(Xn = 0) for

c0T
1/2 times in order and observe the feedback (Xt, Yt) for 1 ≤ t ≤ T0.

5: Determine a feasible ancestor-descendant relationship Ânc(X)’s for X ∈ X ∪ {Y } by
BGLM-Ancestors((X1, Y1), . . . , (XT0 , YT0), c1) (see Algorithm 2).

6: /* Parameters Initialization: */

7: Initialize MT0,X ← I ∈ R|Ânc(X)|×|Ânc(X)|, bT0,X ← 0|Ânc(X)| for all X ∈ X ∪
{Y }, θ̂T0,X ← 0 ∈ R|Ânc(X)| for all X ∈ X ∪ {Y }, δ ← 1

n
√
T

and ρt ←√
n log(1 + tn) + 2 log 1

δ +
√
n for t = 0, 1, 2, . . . , T .

8: /* Iterative Phase: */
9: for t = T0 + 1, T0 + 2, . . . , T do

10: Compute the confidence ellipsoid Ct,X = {θ′
X ∈ [0, 1]|Ânc(X)| :

∥∥∥θ′
X − θ̂t−1,X

∥∥∥
Mt−1,X

≤

ρt−1} for any node X ∈X ∪ {Y }.
11: (St, st, θ̃t) = argmaxdo(S=s)∈A,θ′

t,X∈Ct,X E[Y |do(S = s)].

12: Intervene all the nodes in St to st and observe the feedback (Xt, Yt).
13: for X ∈X ∪ {Y } do
14: Construct data pair (Vt,X , X(t)) with Vt,X the vector of ancestors of X in round t,

and X(t) the value of X in round t if X ̸∈ St.
15: Mt,X = Mt−1,X + Vt,XV ⊺

t,X , bt,X = bt−1,X +X(t)Vt,X , θ̂t,X = M−1
t,Xbt,X .

16: end for
17: end for

(BLM-LR-Unknown Algorithm with Safety Gap (Minimum Weight Gap)) is demonstrated
in Algorithm 6.

The following theorem shows the regret bound of BLM-LR-Unknown-SG. It is not sur-
prising that this algorithm could also work on linear models with continuous variables as
Appendix F in Feng and Chen (2022). The dominant term in the expected regret does not
increase compared to BLM-LR in Feng and Chen (2023).

Theorem 18 (Regret Bound of BLM-LR-Unknown-SG) The regret of BLM-LR-
Unknown-SG running on BLM or linear model is bounded as

R(T ) = O
(
n

5
2

√
T log T

)
,

where the terms of o(
√
T lnT ) are omitted, and the big O notation holds for T ≥ 32

(
c1

κθ∗min

)5
.

Proof In the following proof on G, when X ′ ∈ Anc(X) but X ′ /∈ Pa(X), we add an edge
X ′ → X with weight θX′,X = 0 into G and this does not impact the propagation results of
G. After doing this transformation, D = n and Anc(X) = Pa(X) for all X ∈X ∪ {Y }.
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According to Lemma 3, with probability at least 1 − 2
(
n−1
2

)
exp

(
− c0c21T

1/10

2

)
, Algo-

rithm 2 returns a correct ancestor-descendant relationship, i.e., Anc(X) = Ânc(X) for
X ∈ X ∪ {Y }. Moreover, by Lemma 11 in Feng and Chen (2022), with probability at

most nδ, event
{
∃T0 < t ≤ T, x ∈X ∪ {Y } :

∥∥∥θ∗′
X − θ̂t,X

∥∥∥ > ρt

}
occurs. Now we bound

the expected regret conditioned on the absence of this event and finding a correct ancestor-
descendant relationship. For T0 < t ≤ T , according to Theorem 1 in Li et al. (2020) and
Theorem 15, we can deduce that

E [Rt] = E
[
σ′(Sopt,θ∗′)− σ′(St,θ

∗′)
]

≤ E
[
σ′(St, θ̃t)− σ′(St,θ

∗′)
]

≤ E

 ∑
X∈XSt,Y

∣∣∣V ⊺
t,X(θ̃t,X − θ∗′

X)
∣∣∣


≤ E

 ∑
X∈XSt,Y

∥Vt,X∥M−1
t−1,X

∥∥∥θ̃t,X − θ∗′
X

∥∥∥
Mt−1,X


≤ E

 ∑
X∈XSt,Y

2ρt−1 ∥Vt,X∥M−1
t−1,X

 ,

since θ̃t,X ,θ∗
X are both in the confidence set. Thus, we have

R(T ) = E

[
T∑
t=1

Rt

]
≤ E

 T∑
t=T0+1

Rt

+ T0

≤ 2ρT · E

 T∑
t=T0+1

∑
X∈XSt,Y

∥Vt,X∥M−1
t−1,X

+ T0.

For convenience, we define Wt,X as a vector such that if X ∈ St, Wt,X = 0|Pa(X)|; if
X ̸∈ St, Wt,X = Vt,X . According to Cauchy-Schwarz inequality, we have

R(T ) ≤ 2ρT · E

 T∑
t=T0+1

∑
X∈X∪{Y }

∥Wt,X∥M−1
t−1,X

+ T0

≤ 2ρT · E

√T · ∑
X∈X∪{Y }

√√√√ T∑
t=T0+1

∥Wt,X∥2M−1
t−1,X

+ T0

≤ 2ρT · E

√T · ∑
X∈X∪{Y }

√√√√ T∑
t=1

∥Wt,X∥2M−1
t−1,X

+ 2(n− 1)c0T
1/2.

Note that Mt,X = Mt−1,X +Wt,XW ⊺
t,X and therefore,

det (Mt,X) = det(Mt−1,X)
(
1 + ∥Wt,X∥2M−1

t−1,X

)
,
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we have

T∑
t=1

∥Wt,X∥2M−1
t−1,X

≤
T∑
t=1

n

log(n+ 1)
· log

(
1 + ∥Wt,X∥2M−1

t−1,X

)
≤ n

log(n+ 1)
· log

det(MT,X)

det(I)

≤ n|Pa(X)|
log(n+ 1)

· log
tr(MT,X)

|Pa(X)|

≤ n|Pa(X)|
log(n+ 1)

· log

(
1 +

T∑
t=1

∥Wt,X∥22
|Pa(X)|

)

≤ nD

log(n+ 1)
log(1 + T ).

Therefore, the final conditional regret R(T ) is bounded by

R(T ) ≤ 2ρTn

√
T

nD

log(n+ 1)
log(1 + T ) + 2(n− 1)c0T

1/2,

because ρT =
√
D log(1 + TD) + 2 log 1

δ +
√
D. When{

∃t ∈ (T0, T ], x ∈X ∪ {Y } :
∥∥∥θ∗′

X − θ̂t,X

∥∥∥ > ρt

}
does occur or Algorithm 2 finds an incorrect order, the regret is no more than T . Therefore,
the total regret is no more than(

2ρTn

√
T

nD

log(n+ 1)
log(1 + T ) + 2(n− 1)c0T

1/2

)(
1− nδ − 2

(
n− 1

2

)
exp

(
−c0c

2
1T

1/10

2

))
+ T

(
nδ + 2

(
n− 1

2

)
exp

(
−c0c

2
1T

1/10

2

))
≤ 2ρTn

√
T

nD

log(n+ 1)
log(1 + T ) + o(

√
T lnT )

= O
(
n

5
2

√
T log T

)
,

which is exactly what we want.
Replacing Lemma 11 in Feng and Chen (2022) by Lemma 12 in Feng and Chen (2022),

the above proof for BLMs is still feasible for the regret on linear models without any other
modification.

Remark 19 According to the transformation in Section 5.1 of Feng and Chen (2023),
this algorithm also works for some BLMs with hidden variables. Using that transformation,
running BLM-LR-Unknown-SG on G is equivalent to running on a Markovian BLM or
linear model G′, where parameter θ∗ is also transformed to a new set of parameters θ∗′.
Here, we disallow the graph structure where a hidden node has two paths to Xi and Xi’s
descendant Xj and the paths contain only hidden nodes except the end points Xi and Xj.
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Appendix E. Proofs for Propositions in Section 6

E.1. Proof of Lemma 6

Lemma 20 In Algorithm 3, if the constants c0 and c1 satisfy that c0 ≥ max{ 1
c21
, 1
(1−c1)2

},
with probability at least 1− (n− 1)(n− 2) 1

T 1/3 , after the initialization phase we have

1). If X ′ is a true parent of X in G with weight θ∗X′,X ≥ T−1/3, the edge X ′ → X will
be identified and added to the estimated graph G′.

2). If X ′ is not an ancestor of X in G, X ′ → X will not be added into G′.

Proof First, for each node Xj and its parent Xi with weight θ∗Xi,Xj
≥ T−1/3, by Lemma 2,

we can have

E[Xj | do(Xi = 1)]− E[Xj | do(Xi = 0)] ≥ θ∗Xi,Xj

Then each elementX
(c0(2i)T 2/3+k)
j −X(c0(2i+1)T 2/3+k)

j is an i.i.d sample of Z = Xj |do(Xi=1)

−Xj |do(Xi=0) with E[Z] ≥ θ∗Xi,Xj
≥ T−1/3. By the Hoeffding’s inequality, if we choose

c1 < 1 and c0(1− c1)
2 > 1

3 , we have

Pr


c0T 2/3∑
k=1

(
X
(c0(2i)T 2/3+k)
j −X

(c0(2i+1)T 2/3+k)
j

)
> c0c1T

1/3 log(T 2)


≥ 1− exp

(
−
2 log(T 2)

(
c0T

2/3E[Z]− c0c1T
1/3
)2

4c0T 2/3

)

≥ 1− exp

(
−
2 log(T 2)

(
c0T

1/3 − c0c1T
1/3
)2

4c0T 2/3

)

≥ 1− exp

(
−c0(1− c1)

2 log(T 2)

2

)
≥ 1− T−c0(1−c1)2

≥ 1− 1

T
.

Taking the union bound for all X and X ′, with probability at least 1 −
(
n−1
2

)
1
T 2 , the edge

X ′ → X with θ∗X′,X will be identified and added to the estimated graph G′. Also, assume
Xi is not an ancestor of Xj , then

E[Xj | do(Xi = 1)]− E[Xi | do(Xi = 0)] = 0.
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Thus the element X
(c0(2i)T 2/3+k)
j −X

(c0(2i+1)T 2/3+k)
j is an i.i.d sample of Z ′ = Xj |do(Xi=1)

−Xj |do(Xi=0) with E[Z ′] = 0. Thus by Hoeffding’s inequality,

Pr


c0T 2/3∑
k=1

(
X
(c0(2i)T 2/3+k)
j −X

(c0(2i+1)T 2/3+k)
j

)
> c0c1T

1/3 log(T 2)


≤ exp

(
−
2 log(T 2)

(
c0T

2/3E[Z]− c0c1T
1/3
)2

4c0T 2/3

)
≤ exp

(
−c0c21 log T

)
≤ T−c0c21

≤ 1

T
.

and then with probability at least 1 −
(
n−1
2

)
1
T , we will not add the edge X ′ → X in the

graph G. Combining these two facts, we complete the proof.

E.2. Proof of Lemma 7

For each node X, consider the estimated possible parent Pa ′(X), then our observation
Vt,X ∈ {0, 1}Pa ′(X) are the values of Pa ′(X). Since we have θ′ that

E[Xt | Vt,X ] = θT
t,XVt,X . (16)

Thus applying Lemma 1 in Li et al. (2020), we can have

|θ′
X − θ′

t,X |Mt,X
≤
√

n log(1 + tn) + 2 log(1/δ) +
√
n. (17)

E.3. Proof of Lemma 8

Note that M represents the model with true graph G and true weights θ, and M ′ represents
the model with estimated graph G′ and estimated weights M ′, then difference

|θ′Xi,X − θXi,X | ≤ nr (18)

Now we construct a auxillary model M ′′, which has graph G′ and weights θ on it. The
parent of X in model M Pa ′′(X) is equivalent to Pa ′(X). Then we prove the following two
claims:

Claim 1 |EM [Y | do(S = 1)]− EM ′′ [Y | do(S = 1)]| ≤ n2r.

Proof Let the topological order be X1, X2, . . . , Xn. First, EM [X1 | do(S)] − EM ′′ [X1 |
do(S)] = 0 ≤ nr because X1 is always 1. Assume Xq+1 /∈ S EM [Xi | do(S)] − EM ′′ [Xi |
do(S)] ≤ qnr for all i ≤ q, then if Xq+1 ∈ S, EM [Xq+1 | do(S)]− EM ′′ [Xq+1 | do(S)] = 0 ≤
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(q + 1)nr holds trivially. Thus now we assume Xq+1 /∈ S.

EM [Xq+1 | do(S)]− EM ′′ [Xq+1 | do(S)]

= EM

 ∑
Xi∈Pa(Xq+1)

θXi,Xq+1Xi

∣∣∣∣∣do(S)
− EM ′′

 ∑
Xi∈Pa ′′(Xq+1)

θXi,Xq+1Xi

∣∣∣∣∣do(S)


=
∑

Xi∈Pa ′′(Xq+1)

θXi,Xq+1(EM [Xi | do(S)]− EM ′′ [Xi | do(S)])+

∑
Xi∈Pa(Xq+1)\Pa ′′(Xq+1)

θXi,Xq+1EM [Xi | do(S)]

≤
∑

Xi∈Pa(Xq+1)

θXi,Xq+1qnr + rn

≤ (q + 1)nr

where the first equality follows the definition of linear model, the second equality is because
θ′X′,X = 0 if X ′ is not a true parent of X in G. The third inequality is derived by induction,
and the last inequality is because ∥θX′,Xq+1∥1 ≤ 1.

Claim 2 |EM ′ [Y | do(S = 1)]− EM ′′ [Y | do(S = 1)]| ≤ n3r.

Proof First, EM [X1 | do(S)]−EM ′′ [X1 | do(S)] = 0 ≤ n2r Then similarly, assume EM [Xi |
do(S)]− EM ′′ [Xi | do(S)] ≤ qn2r for all i ≤ q and Xq+1 /∈ S. Then

EM ′ [Xq+1 | do(S)]− EM ′′ [Xq+1 | do(S)]

= EM ′

 ∑
Xi∈Pa ′(Xq+1)

θ′Xi,Xq+1
Xi

∣∣∣∣∣do(S)
− EM ′′

 ∑
Xi∈Pa ′′(Xq+1)

θXi,Xq+1Xi

∣∣∣∣∣do(S)


=
∑

Xi∈Pa ′′(Xq+1)

θ′Xi,Xq+1
EM ′ [Xi | do(S)]− θXi,Xq+1EM ′′ [Xi | do(S)]

=
∑

Xi∈Pa ′′(Xq+1)

(θ′Xi,Xq+1
− θXi,Xq+1)EM ′ [Xi | do(S)]+

∑
Xi∈Pa ′′(Xq+1)

θXi,Xq+1(EM ′ [Xi | do(S)]− EM ′′ [Xi | do(S)])

= n2r + n2qr

≤ (q + 1)n2r.

where the first equality follows the definition, the second equality is because Pa ′(X) =
Pa ′′(X) for any node X. The fourth inequality derived from induction , inequality (18)
and Xi ∈ [0, 1]. By induction, we complete the proof.

Now we prove the Lemma 8:
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Proof Combining Claim 1 and Claim 2, we have

EM [Y | do(S)]− EM ′ [Y | do(S)] ≤ n2(n+ 1)r. (19)

E.4. Proof of Theorem 9

Proof Denote the original model and estimated model as M and M ′ The initialization
phase will lead to regret at most T0 = 16(n−1)T 2/3. At Iterative phase, denote the optimal
action to be do(S∗ = 1), by Lemma 6 and the guarantee of BLM-LR, with probability at
least 1− (n− 1)(n− 2) 1

T

T∑
t=1

EM [Y | do(S∗ = 1)]− EM [Y | do(St = 1)]

=
T∑
t=1

((EM [Y | do(S∗ = 1)]− EM ′ [Y | do(S∗ = 1)])

+ (EM ′ [Y | do(S∗ = 1)]− EM ′ [Y | do(St = 1)]))

≤ T0 +

T∑
t=T0+1

n2(n+ 1)T−1/3 +

T∑
t=T0+1

(EM ′ [Y | do(S∗ = 1)]− EM ′ [Y | do(St = 1)])

≤ T0 + n2(n+ 1)T 2/3 + cn2
√
nT log T

= O((n3T 2/3 + n3
√
T ) log T )

= O(n3T 2/3 log T ),

where the first inequality is derived from Lemma 8, and the second inequality is the guar-
antee of BLM-LR in Theorem 3 of Feng and Chen (2023).

Thus the total regret will be bounded by

R(T ) ≤ (n− 1)(n− 2)

T
· T +O((n3T 2/3) log T )

= O((n3T 2/3) log T ).

The first inequality is because our regret have an upper bound T .

E.5. Proof of Theorem 1

Proof Consider the causal bandit instances Ti with parallel graph (E = {Xi → Y, 1 ≤ i ≤
n}.) and A = {do(), do(X = x), do(X = x)} for all node X, x ∈ {0, 1}, x ∈ {0, 1}n be all
observation, atomic intervention and actions that intervene all nodes.

For T1, we assume Xi are independent with each other and P (Xi = 1) = P (Xi = 0) =
0.5. Define

P (Y = 1) =

{
0.5 + ∆ if X1 = X2 = · · · = Xn = 0

0.5 otherwise
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Then for Ti, 2 ≤ i ≤ 2n, consider the binary representation of i− 1 as b1b2 . . . bn. Then
assume Xi are independent with each other and P (Xi = 1) = 0.5, and define

P (Y = 1) =


0.5 + ∆ if X1 = X2 = · · · = Xn = 0

0.5 + 2∆ if Xj = bj for all 1 ≤ j ≤ n

0.5 otherwise

Now in Ti, do
(
X = b1b2 . . . bn

)
is the best action, and other actions will lead to at least

∆ regret.
Denote Ta(t) for action a ∈ A as the number of times taking a until time t. To simplify

the notation, we denote ai as do(X = x), where x is the binary representation of i − 1,
{b1, b2, . . . , bn}. Then for instances T1 and Ti, we have

ET1 [R(t)] ≥ PT1(Ta1(t) ≤ t/2)
t∆

2
, ETi [R(t)] ≥ PTi(Ta1(t) > t/2)

t∆

2
.

Thus

ET1 [R(t)] + ETi [R(t)] >
t∆

2
(PT1(Ta1(t) ≤ t/2) + PTi(Ta1(t) > t/2))

≥ t∆

4
exp (−KL(PT1 ,PTi)) .

Now we need to bound KL(PTi ,PT1).

KL(PT1 ,PTi) ≤
∑
a∈A

ET1 [Ta(t)]KL(PT1(X, Y | a)∥PTi(X, Y | a)) (20)

=
∑
a∈A

ET1
[Ta(t)]KL(PT1

(Y | a)∥PTi
(Y | a)) (21)

≤ ET1
[Tai

(t)] ·KL(0.5∥0.5 + 2∆) +
∑

a=do(Xi=x),do()

ET1
[Ta(t)] ·KL(0.5∥0.5 + ∆

2n−2
)

(22)

≤ ET1
[Tai

(n)] · 2∆2 + t · ∆2

22n−3
, (23)

where (22) is because for a = do(Xi = x) or a = do(), P (Y | do(a)) ≥ 0.5 in T1, and
P (Y | do(a)) ≤ 0.5 + 2∆

2n−1 = 0.5 + ∆
2n−2 in Ti. Now we choose

i = argmin
j>1

ET1 [Taj (t)], (24)

then we have

ET1 [Tai(t)] ≤
T

2n − 1
. (25)

Then by (23), choosing ∆ =
√

2n−1
3t , we have

KL(PT1 ,PTi) ≤
2t∆2

2n − 1
+

t∆2

22n−3
≤ t∆2 · 3

2n − 1
= 1 (26)
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Thus

ET1 [R(t)] + ETi [R(t)] ≥ t∆

4
exp (−KL(PT1 ,PTi))

≥ t∆

4e

≥
√

(2n − 1)t

4
√
3e

≥
√
2nt

8e
.

Then max{ET1 [R(t)],ETi [R(t)]} ≥
√
2nt
16e . We complete the proof when t ≥ 16(2n−1)

3 .

Now suppose t ≤ 16(2n−1)
3 , choose ∆ = 1

4 , then based on (23) and (25), we have

KL(PT1 ,PTi) ≤
t

8(2n − 1)
+

t

22n+1

≤ 2

3
+

16

3
· 2

n − 1

22n+1

≤ 1.

Then we have

ET1 [R(t)] + ETi [R(t)] ≥ t∆

4
exp (−KL(PT1 ,PTi))

≥ t∆

4e

≥ t

16e
,

and max{ET1 [R(t)],ETi [R(t)]} ≥ t
32e .

Appendix F. An Explanation of Weight Gap Assumption

The weight gap assumption states that the parameter θmin is larger than a term relative
to T . In Lemma 2, the parameter θmin represents the minimum difference between E[Xj |
do(Xi = 1)] and E[Xj | do(Xi = 0)], where Xi and Xj form a causal edge. Intuitively, this
assumption suggests that the causal relationship represented by each edge is sufficiently
significant, making it a stronger version of the causal faithfulness assumption. If the causal
relationship is too weak to be observed, it may indicate the presence of intermediate factors
not accounted for in practice. In such cases, one could address the issue by collecting and
observing additional intermediate factors.

Furthermore, it is important to note that the weight gap assumption on θ∗min depends
on T . Therefore, if the weight gap assumption is not satisfied and the intermediate factors
are unobservable, the user has two options. The first is to increase the number of rounds
until θ∗min ≥ 2c1κ

−1T−1/5. Alternatively, BGLM-OFU-Unknown can guarantee an O(
√
T )
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regret bound for T ≥ 32
(

c1
κθ∗min

)5
. The second option is to use BLM-LR-Unknown if T

cannot be increased. In this case, a theoretical regret bound of O(T
2
3 ) can be achieved.

Therefore, our results account for both scenarios, whether the weight gap assumption is
satisfied or not.

Appendix G. Experiments

G.1. Experiment Results

We conduct our experiments on a parallel BLM consisting of 7 nodes, X1, . . . , X6, and Y ,
with X1 being the unique always-1 node. To simplify the analysis, we apply Algorithms 1
and 3 solely to identify the edges between X2, . . . , X6 and Y . As per the definition of
our algorithms, if a node Xi, 2 ≤ i ≤ 6 is not a parent of Y , it will never be selected for
interventions. We set A to be all interventions budgeted by 2 nodes. The parameters are
set as follows:

θ∗X1,X2
= θ∗X1,X3

= 0.3, θ∗X1,X4
= θ∗X1,X5

= θ∗X1,X6
= 0.2,

θ∗X2,Y = θ∗X3,Y = 0.3, θ∗X4,Y = θ∗X5,Y = θ∗X6,Y = 0.13.

We run BGLM-OFU-Unknown and BLM-LR-Unknown on this BLM and compare them
to the standard Upper Confidence Bound (UCB) algorithm and the ϵ-greedy algorithm
(ϵ = 0.02) as baseline methods. Additional implementation details can be found in the
Appendix G.2. Due to computational resource constraints, we run these 4 algorithms on
this BLM for T = 10000, 20000, 40000, 80000, each executed 50 times, and compute the
average regrets as follows.

(a) T = 10000 (b) T = 20000

(c) T = 40000 (d) T = 80000
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We can observe from the results that when T is small, BGLM-OFU-Unknown struggles
to accurately learn the graph structure, leading to a significant regret. In contrast, BLM-
LR-Unknown performs well under these conditions. However, when T is sufficiently large,
BGLM-OFU-Unknown is able to consistently identify the correct graph structure, resulting
in superior performance compared to all other algorithms.

G.2. Experiment Settings

Due to the limited number of rounds, we adjust ρt and ρ to be 1
10 of our original pa-

rameter settings for BGLM-OFU-Unknown and BLM-LR-Unknown. Both algorithms have
constants c0 and c1 set to 0.1. We employ the pair-oracle implementation as described in
Appendix H.1 of Feng and Chen (2022). When BGLM degenerates to BLM, we remove
the second initialization phase (line 8 of Algorithm 1) of BGLM-OFU-Unknown by setting

T1 = T0. This is because the second-order derivative of a linear function is 0, making L
(2)
fX

and R in BGLM-OFU-Unknown arbitrarily small; thus, the minimum eigenvalues of Mt,X ’s
should satisfy Lemma 14’s condition after T0 rounds. Additionally, for completeness, we
provide the specific BLM used to test our algorithms in Fig. 1.

Figure 1: The BLM Employed for Evaluating Algorithms 1 and 3

For the standard UCB algorithm, we use the commonly adopted upper confidence bound√
ln t
ni,t

, where t is the current round number and ni,t is the number of times arm i has been

played up to the tth round (Slivkins et al., 2019). For the ϵ-greedy algorithm, we set ϵ = 0.02,
a typical implementation. We tested various settings for these two baselines, and our choices
are near-optimal for BLMs. For both baselines, we treat each possible 2-node intervention
set as an arm, resulting in a total of

(
7−2
2

)
= 10 arms. All experiments were executed

using Python in a multithreaded environment on Arch Linux, utilizing 4 performance cores
of an Intel Core™ i7-12700H Processor at 4.30GHz with 32GB DDR5 SDRAM. The total
execution time amounts to 1687 seconds. Our Python implementation can be found in the
supplementary material.

Appendix H. Pure Exploration of Causal Bandits without Graph
Structure

Another performance measure for bandit algorithms is called sample complexity. In this
setting, the agent aims to find an action with the maximum expected reward using as
small number of rounds as possible. This setting is also called pure exploration. To be
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more specific, the agent is willing to find ε-optimal arm with probability at least 1 − δ by
sampling as few rounds as possible for fixed parameter ε and δ. For pure exploration, we
consider the general binary causal model with only null and atomic interventions, and study
the gap-dependent bounds, meaning that the sample complexity depends on the reward gap
between the optimal and suboptimal actions. Moreover, let a∗ be one of the optimal actions.
For each action a = do(Xi = x), define µa = E[Y | a] and the gap for action a to be

∆a =

{
µa∗ −maxa∈A\{a∗}{µa}, a = a∗;

µa∗ − µa, a ̸= a∗.
(27)

Here, ∆a can be 0.

According to the causal discovery literature (Pearl, 2009b), by passive observations
alone one can obtain an essential graph of the causal graph, with some edge directions
unidentified. We assume that the essential graph is known but the exact graph structure is
unknown, which is also considered by Lu et al. (2021), with additional assumptions on the
graph.

One naive solution for this problem is to first identify the graph structure and then
to performed the pure exploration algorithm of causal bandits with known graph (Xiong
and Chen, 2023). Define ce = |P (X | do(X ′ = 1)) − P (X ′ | do(X = 0))| for each edge
e = (X,X ′) and cX = mine:X→X′ 1

c2e
. Then this naive solution admits a sample complexity

about

Õ

(∑
a∈S

1

max{∆a, ε/2}2
+
∑
x∈X

1

c2X

)
, (28)

where S is a particular set defined following the previous work (Xiong and Chen, 2023)
and the definition is provided in Appendix I. The first term is the sample complexity in
Xiong and Chen (2023), while the second term is the cost for identifying the directions of
all edges in the essential graph.

This naive solution separates the causal discovery phase and learning phase, so it cannot
discover the directions adaptively. In Appendix I, we propose an adaptive algorithm to
discover the edges’ directions and learn the reward distribution in parallel, which can provide
a lower sample complexity for some cases.

However, when the ∆a and cX is small, both the naive algorithm and our algorithms
provided in Appendix I suffers Ω( n

ε2
log(1/δ)) sample complexity. We claim that pure ex-

ploration for the general binary causal model is intrinsically hard due to unknown graph
structure. To show this, we state a negative result for pure exploration of causal bandits
on unknown graph structure with atomic intervention. It states that even if we have all
observation distribution P (X, Y ) as prior knowledge, we still cannot achieve better sample
complexity result than the result in the classical pure exploration problem for the multi-
armed bandit O( n

ε2
log(1/δ)).

Theorem 21 (Lower bound) Consider causal bandits with only essential graph and
atomic intervention, for any algorithm which can output ε-optimal action with probabil-
ity at least 1− δ, there is a bandit instance with expected sample complexity Ω( n

ε2
log(1/δ))

even if we have all observational distribution P (X, Y ).
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Algorithm 7: Causal-PE-unknown(G,A, ε, δ)

1: Initialize t = 1, Ta(0) = 0, µ̂a = 0 for all arms a ∈ A, Aknown = ∅
2: for t = 1, 2, . . . , do
3: at−1

h = argmaxa∈A µ̂t−1
a

4: at−1
l = argmaxa∈A\at−1

h
(U t−1

a )

5: if Uat−1
l
≤ Lat−1

h
+ ε then

6: Return at−1
h

7: end if
8: Perform do() operation and observe Xt and Yt. For a = do(), Ta(t) = Ta(t− 1) + 1,

Da(t) = Da(t− 1), ra,∅(t) =
1

Ta(t)

∑t
j=1 Yj , pa,∅(t) = 1.

9: for a = do(X = x) ∈ Aknown do
10: Ta,z(t) = Ta,z(t−1)+I{Xt = x,P = z}, Ta(t) = minz{Ta,z(t)}, where P = Pa(X).

Da(t) = Da(t− 1).
11: Update ra,z(t) =

1
Ta,z(t)

∑t
j=1 I{Xj = x,Pj = z}Yj .

12: Update pa,z(t) =
1
t

∑t
j=1 I{Pj = z}.

13: Estimate µ̂O,a(t) =
∑

z ra,z(t)pa,z(t) and calculate [Lt
O,a, U

t
O,a]by (34) and (35).

14: end for
15: RECOVER-EDGE(at−1

h ).
16: RECOVER-EDGE(at−1

l ).
17: Update empirical mean µ̂I,a(t) using interventional dataand interventional confidence

bound [Lt
I,a, U

t
I,a]

18: Update confidence bound [Lt
a, U

t
a] by (33), µ̂a = (Lt

a + U t
a)/2, for each arm a.

19: end for

Note that if we know distribution P (X, Y ) and the exact graph structure, we can com-
pute each intervention P (Y | do(X = x)) by do-calculus because the absence of hidden
variables. So Theorem 21 shows the intrinsic hardness provided by unknown graph struc-
ture. The detailed proof can be found in Appendix I.

Appendix I. General Causal Bandits without Graph Structure

In this section, we only consider the atomic intervention, and provide an algorithm to solve
causal bandits with the graph skeleton on binary model. We only consider the atomic
intervention setting. An atomic intervention is do(X = x), where X is a node of graph G
and x ∈ {0, 1}.

I.1. General Causal Bandit Algorithms

We first provide the positive results, which provides an algorithm to improve the sample
complexity comparing to applying the multi-armed bandit approach directly.

At each iteration we try to recover the edges’ direction in parallel using sub-procedure
”RECOVER-EDGE(a)” for a ∈ A. For action a = do(X = x), this sub-procedure first
performs two interventions do(X = 1) and do(X = 0), then chooses an undirected edge
(X,X ′) corresponding to X (if exists), and then perform do(X ′ = 1), do(X ′ = 0). The
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Algorithm 8: RECOVER-EDGE(a)

1: if a = do() then
2: Return.
3: else
4: Assume a = do(X = x). Sample action do(X = 1), do(X = 0).
5: Da′(t) = Da′(t) + 1 for a′ = do(X = 1) and a′ = do(X = 0).
6: Estimate P (X ′ = 1 | do(X = 1)) and P (X ′ = 1 | do(X = 0)) using interventional

data for neighbor X ′, where the direction of (X ′, X) is unknown.
7: Update the confidence bound [LX′|do(X=1), UX′|do(X=1)] and [LX′|do(X=0), UX′|do(X=0)]

by (31).
8: if [LX′|do(X=1), UX′|do(X=1)] ∩ [LX′|do(X=0), UX′|do(X=0)] = ∅ then
9: recover X → Xi.

10: end if
11: if ∃X ′ such that (X ′, X) is unknown then
12: Choose one such X ′ and perform do(X ′ = 1) and do(X ′ = 0).
13: Estimate P (X = 1 | do(X ′ = 0)) and P (X = 1 | do(X ′ = 1)) using interventional

data.
14: Update the confidence bound [LX|do(X′=1), UX|do(X′=1)] and

[LX|do(X′=0), UX|do(X′=0)] by (31).
15: if [LX|do(X′=1), UX|do(X′=1)] ∩ [LX|do(X′=0), UX|do(X′=0)] = ∅ then
16: recover X → Xi.
17: end if
18: Da′(t) = Da′(t) + 1 for a′ = do(X ′ = 1) and a′ = do(X ′ = 0).
19: end if
20: end if

goal of these operations is to estimate the difference between P (X = 1 | do(X ′ = 0))
and P (X = 1 | do(X ′ = 1)), and also the difference between P (X ′ = 1 | do(X = 0)),
P (X ′ = 1 | do(X = 0)). which decides whether X ′ → X or X → X ′. By this sub-procedure
in parallel, the algorithm estimate the model and recover the edges’ direction simultaneously
and adaptively. To measure the difficulty for identified the direction of edges, for e : X → X ′

we define

ce = P (X ′ = 1 | do(X = 1))− P (X ′ = 1 | do(X = 0)) (29)

ca = cX = min
e:X→X′

ce. (30)

ce measure the difficulty for distinguishing the direction for an edge, and ca = cX represents
the hardness for discovering all directions corresponding to X and its childs.

The main Algorithm 7 is followed from Xiong and Chen (2023). During the algorithm,
we add ”RECOVER-EDGE” sub-procedure to identify the directions of the unknown edges.
This sub-procedure first perform intervention do(X = 0) and do(X = 1) on the node X.
Then if there is an edge (X ′, X) which direction has not been identified, it chooses one such
edge and perform do(X ′ = 1) and do(X ′ = 0). Then it constructs the confidence bound
for all P (X ′ = 1 | do(X = 1)), P (X ′ = 1 | do(X = 0)), P (X = 1 | do(X ′ = 1)) and
P (X = 1 | do(X ′ = 0)) based on Hoeffding’s concentration bound. In fact, assume there
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are Da(t) samples for a = do(X ′ = x), x ∈ {0, 1} until round t, then the confidence bound
for X conditioning on do(X ′ = x) is defined by

[LX|do(X′=x), UX|do(X′=x)] =

[
P̂ (X = 1 | do(X ′ = x))−

√
2

Da(t)
log

4n2t2

δ
,

P̂ (X = 1 | do(X ′ = x)) +

√
2

Da(t)
log

4n2t2

δ

]
,

(31)

where n is the number of nodes, and P̂ (X = 1 | do(X ′ = x)) are the empirical mean of
P (X = 1 | do(X ′ = x)) using all these Da(t) samples for do(X ′ = x). Other confidence
bounds define in this way similarly.

Moreover, at iteration t, Line 4-Line 6 first choose two actions at−1
h and at−1

l through
LUCB1 algorithm. Then, we use Aknown to represent all nodes actions do(X = x) where
all the edges corresponding to X are identified. In fact, if all the edges corresponding to
X are identified, we can find the true parent set Pa(X). Then we can use do-calculus to
estimate the causal effect:

E[Y | do(X = x)] =
∑
z

P (Y | X = x, Z = z)P (Z = z). (32)

Line 9-14 enmurates all these actions, and calculate corresponding confidence bound.
The confidence bound is calculated by

[Lt
a, U

t
a] = [Lt

O,a, U
t
O,a] ∩ [Lt

I,a, U
t
I,a], (33)

where the first term [Lt
O,a, U

t
O,a] = (−∞,∞) for a = do(X = x) if the parents of X are not

sure at time t. In fact, if we do not discover all the edges corresponding to X, we cannot
estimate the causal effect E[Y | do(X = x)] using do-calculus. For nodes which parent set
is identified, we calculate

[Lt
O,a, U

t
O,a] = [µ̂O,a(t)− βO,a(t), µ̂O,a(t) + βO,a(t)],

[Lt
I,a, U

t
I,a] = [µ̂I,a(t)− βI,a(t), µ̂I,a(t) + βI,a(t)]

(34)

The term µ̂O,a is calculated by estimating all terms at the right side of (32) empirically,
and confidence radius is given by

βO,a(t) =

√
12

Ta(t)
log

16n2Zat3

δ
, βI,a(t) = 2

√
1

Da(t)
log

2n log(2t)

δ
(35)

Similar to Xiong and Chen (2023), we can prove it is a valid confidence radius, which
means that the true effect µO,a will fall into the confidence bound [Lt

O,a, U
t
O,a] with a high

probability.
Line 15-16 try to recover the edge for action chosen by LUCB1 algorithm. At the end

of this iteration, the algorithm updates all parameters and confidence bounds.
To represent the complexity result, we first provide the definition of gap-dependent

threshold in Xiong and Chen (2023): For a = do(X = x) and one possible configuration
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of the parent z ∈ {0, 1}|Pa(X)|, define qa,z = P (X = x,Pa(X) = z) and qa = minz{qa,z}.
Then sort the arm set as qa1 · max{∆a1 , ε/2}2 ≤ qa2 · max{∆a2 , ε/2}2 ≤ . . . ≤ qa|A| ·
max{∆a|A| , ε/2}2. Recall that ∆a = µ∗− µa is the reward gap between the optimal reward
and the reward of action a. Then Hr is defined by

Hr =
r∑

i=1

1

max{∆ai , ε/2}2
. (36)

Definition 22 (Gap-dependent observation threshold (Xiong and Chen, 2023))
For a given causal graph G and its associated qa’s and ∆a’s, the gap-dependent observation
threshold mε,∆ is defined as:

mε,∆ = min

{
τ :

∣∣∣∣∣
{
a ∈ A

∣∣∣∣∣qamax {∆a, ε/2}2 <
1

Hτ

}∣∣∣∣∣ ≤ τ

}
.

Denote action set S = {a ∈ A : qamax{∆a, ε/2}2 < 1
Hmε,∆

} are all actions which qa

is relatively small, then |S| ≤ mε,∆. Intuitively, action a with smaller qa are harder to
be estimated by observation: If we assume qa = qa,z for a fixed vector z, then P (X =
x,Pa(X) = z) is hard to observe and estimate by empirical estimation. Thus S contains
all actions that are relatively hard to observe, so it is more efficient to estimate µa by
intervention for a ∈ S. Based on this definition, we can provide the final sample complexity
result:

Theorem 23 Denote H =
∑

a∈S
1

max{∆a,ε/2}2 +
∑

a/∈S min{ 1
max{∆a,ε/2}2 ,

1
c2a
+
∑

e:X′→X
1
c2e
}.

With probability 1 − 4δ, Algorithm 7 will return a ε-optimal arm with sample complexity
bound at most

T = O

(
H log

(
nZH

δ

))
,

where ce, ca is defined in (29) and (30).

The result can be explained in an intuitive way. The first term of H is the summation
of all actions in S. As we discussed above, it is more efficient to estimate the µa with
intervention for a ∈ S. Thus, this summation can be regarded as the sample complexity
applying multi-armed bandit algorithm (e.g. LUCB1) directly. The second term is to
estimate the actions by observation. For each action a = do(X = x) with larger qa, we
can first identify the edge’s direction corresponding to the node X, and then using do-
calculus to estimate the reward. The term 1

c2a
+
∑

e:X′→X
1
c2e

represents the complextity to

identify the directions, and the complexity for using do-calculus can be contained in the first
term

∑
a∈S

1
max{∆a,ε/2}2 because of the definition of gap-dependent observation threshold.

Also, the term min{ 1
max{∆a,ε/2}2 ,

1
c2a

+
∑

e:X′→X
1
c2e
} is because when we are discovering the

edges’ direction, if the reward can be estimated by intervention accurately, we turn to use
interventional estimation and give up the causal discovery for this node. The detailed proof
can be found in the Section I.2.

Even if these two mechanisms can reduce the sample complexity, at the worst case the
complexity also degenerates to O(n/ε2), which is equal to the complexity for multi-armed
bandit. We provide a lower bound to show that this problem cannot be avoided.
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Theorem 24 (Lower bound) Consider causal bandits with only essential graph and
atomic intervention, for any (ε, δ)−PAC algorithm, there is a bandit instance with expected
sample complexity Ω( n

ε2
log(1/δ)) even if we have all observational distribution P (X, Y ).

Theorem 24 states that even if we receive all observational distribution, which shows
the intrinsic hardness for unknown graph. Indeed, the proof of lower bound shows that the
unknown direction will lead to different interventional effects even when the observational
distribution are the same, leading to a unavoidable hardness.

I.2. Proof of Theorem 23

First, fixed an action a = do(Xi = x), z ∈ {0, 1}|Pa(X)| , then Ta,z(t) =
∑t

j=1 I{Xj,i =

x,Pa(Xi)j = z} and the empirical mean q̂a,z(t) = Ta,z(t)/t. Then denote 2|Pa(X)| = Za, if
qa,z(t) ≥ 6

t log(2nZa/δ), with probability at least 1− δ
2nZa

, we can have

|q̂a,z(t)− qa,z(t)| <

√
6qa,z(t)

t
log

(
2nZa

δ

)
Hence

q̂a(t) = min
z
{q̂a,z(t)} ≤ min

z
{qa,z +

√
6qa,z
t

log
2nZa

δ
} = qa +

√
6qa
t

log
2nZa

δ
. (37)

When qa ≥ 3
t log

2nZa
δ , f(x) = x−

√
6x
t log 2nZa

δ is a increasing function.

q̂a(t) ≥ min
z
{qa,z −

√
6qa,z
t

log
2nZa

δ
} = qa −

√
6qa
t

log
2nZa

δ
. (38)

So define the event as

E1(t) =

{
∀a ∈ A with t ≥ 6

qa
log

(
2nZa

δ

)
, |q̂a(t)− qa| ≤

√
6qa
t

log

(
2nZa

δ

)}

then Pr{Ec1(t)} ≤ δ, where Ec means the complement of the event E .
Now we consider the concentration bound. First, by classical anytime confidence bound,

with probability at least 1− δ
2n , for any time Da(t) ≥ 1

|µ̂I,a(t)− µI,a| < 2

√
1

Da(t)
log

(
2n log(2Da(t))

δ

)
≤ 2

√
1

Da(t)
log

(
2n log(2t)

δ

)
Thus define the event as

E2 =

{
∀t, a, |µ̂I,a(t)− µI,a| < 2

√
1

Da(t)
log

(
2n log(2t)

δ

)}
,

then Pr{Ec2} ≤ δ.
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Consider the observational confidence bound. First, if a /∈ Aknown, [Lt
O,a, U

t
O,a] =

(−∞,∞) and then the µ̂O,a(t) ∈ [Lt
O,a, U

t
O,a]. Now we consider that if a = do(X = x) ∈

Aknown and the parent of X is P . By Hoeffding’s inequality, with probability at least
1− δ/16n2Zat

3, for a = do(X = x),

|ra,z(t)− P (Y = 1 | X = x,P = z)| >

√
1

2Ta,z(t)
log

16n2Zat3

δ
(39)

Also, by Chernoff’s inequality, since qa ≤ P (P = z) for all z ∈ {0, 1}|P |, when t ≥
6
qa

log
(
16n2Zat3

δ

)
with probability at least 1− δ/16n2Zat

3 we will have

|pa,z(t)− P (P = z)| >
√

6P (P = z)

t
log

16n2Zat3

δ
, (40)

then

µ̂O,a =
∑
z

ra,z(t) · pa,z(t)

≤
∑
z

P (Y = 1 | X = x,P = z)pa,z(t) +
∑
z

pa,z(t)

√
1

2Ta,z(t)
log

16n2Zat3

δ

≤
∑
z

P (Y = 1 | X = x,P = z)pa,z(t) +

√
1

2Ta(t)
log

16n2Zat3

δ

≤
∑
z

P (Y = 1 | X = x,P = z)P (P = z) +
∑
z

√
6P (P = z)

t
log

16n2Zat3

δ
+√

1

2Ta(t)
log

16n2Zat3

δ

≤ µa +

√
6Z

t
log

16n2Zat3

δ
+

√
1

2Ta(t)
log

16n2Zat3

δ

≤ µa +

√
6

Ta(t)
log

16n2Zat3

δ
+

√
1

2Ta(t)
log

16n2Zat3

δ
,

= µa +

√
8

Ta(t)
log

16n2Zat3

δ
.

Also, if t ≤ 6
qa

log 16n2Zat3

δ , first by Chernoff inequality, set Q = 6
qa

log 16n2Zat3

δ , then with

probability at least 1− δ/16n2Zat
3, we have

q̂a(Q) ≤ 2qa. (41)

by E1(Q).

Ta(t) ≤ Ta(Q) ≤ q̂a(Q) ·Q ≤ 2qa ·Q =
12

qa
log

16n2Zat
3

δ
.
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Then
√

12
Ta(t)

log 16n2Zat3

δ ≥ 1 and the inequality

|µ̂O,a(t)− µO,a| ≤

√
12

Ta(t)
log

16n2Zat3

δ

also holds. Thus we define the event

E3 =

{
∀a, t, |µ̂O,a(t)− µO,a| ≤

√
12

Ta(t)
log

16n2Zat3

δ

}

then by taking the union bound of (39), (40) and (41),

Pr{Ec3} ≤
∞∑
t=1

∑
a∈A

∑
z

3 · δ

16n2Zat3

≤
∞∑
t=1

δ

4t3

≤ δ.

Now we consider how to bound our sample complexity based on events E1, E2 and E3.
First, we provide the following lemma in Xiong and Chen (2023):

Lemma 25 (Lemma 6 in Xiong and Chen (2023)) Under the event E1, E2 and E3, at
round t, if we have

βath
(t) ≤

max{∆ath
, ε/2}

4
, βatl

(t) ≤
max{∆atl

, ε/2}
4

,

where ath, a
t
l are the actions performed by algorithm at round t. then the algorithm will stop

at round t+ 1.

Now assume the algorithm does not terminate at T1 = 192H log(nZT 3
1 /δ), where Z =

maxa Za. For a ∈ S, Da(t). Note that H ≥ Hmε,∆ . Thus at round T1, for action a with

qa ≥ 1
Hmε,∆

·max{∆a,ε/2}2 ≥
192
T1

log
16nZaT 3

1
δ , if a ∈ Aknown, then under event E1(T1), we have

q̂a(T1) ≥ qa −

√
6qa
T1

log
16nZaT 3

1

δ
≥ qa

2
.

Then

βa(T1) ≤ βO,a(T1) =

√
12

Ta(T1)
log

16n2Zat3

δ
≤
√

12qa
2T1

≤ max{∆a, ε/2}2

4
.

Now we prove that if Da(t) is large for some a, then a ∈ Aknown.

Lemma 26 With probability at least 1 − δ, denote Ca = 1
c2a

+
∑

e:X′→X
1
c2e
. If Da(t) ≥

32Ca log(4n
2t2/δ), a ∈ Aknown.
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Proof If Da(t) ≥ 8Ca log t, we have called sub-procedure RECOVER-EDGE(a) for Da(t)
times. Then, for each edge e : X → X ′, we will perform intervention do(X = 1), do(X = 0)
for at least Da(t) times and observe the empirical difference |P̂ (X ′ | do(X = 1)) − P̂ (X ′ |
do(X = 0))|. By Hoeffding’s inequality and union bound on all time t and the

(
n−1
2

)
ordered-pair (X ′, X), with probability at least 1− δ, for all t ∈ [T ] and all X ′, X we have

|P̂ (X ′ | do(X = 1))− P (X ′ | do(X = 1))| ≤

√
2

Da(t)
log

4n2t2

δ

|P̂ (X ′ | do(X = 0)− P (X ′ | do(X = 0))| ≤

√
2

Da(t)
log

4n2t2

δ

Then for the confidence bounds

[LX′|do(X=1), UX′|do(X=1)]

=

[
P̂ (X ′ | do(X = 1))−

√
2

Da(t)
log

4n2t2

δ
, P̂ (X ′ | do(X = 1)) +

√
2

Da(t)
log

4n2t2

δ

]
,

[LX′|do(X=0), UX′|do(X=0)]

=

[
P̂ (X ′ | do(X = 0))−

√
2

Da(t)
log

4n2t2

δ
, P̂ (X ′ | do(X = 0)) +

√
2

Da(t)
log

4n2t2

δ

]
,

the intersection

[LX′|do(X=1), UX′|do(X=1)] ∩ [LX′|do(X=0), UX′|do(X=0)] = ∅,

since

|P̂ (X ′ | do(X = 1)− P̂ (X ′ | do(X = 0))|
≥|P (X ′ | do(X = 1)− P (X ′ | do(X = 0))| − |P (X ′ | do(X = 1)− P̂ (X ′ | do(X = 1))|

− |P (X ′ | do(X = 0)− P̂ (X ′ | do(X = 0))|

≥ca − 2

√
2

Da(t)
log

4n2t2

δ

≥2

√
2

Da(t)
log

4n2t2

δ
.

where we use Da(t) ≥ 1
c2a

log 4n2t2

δ . Then the edge’s direction will be identified correctly.

Consider the edge e : X ′ → X, then if we sample do(X ′ = 1) and do(X ′ = 0) for
1
c2e
log 4n2t2

δ times within sub-procedures RECOVER-EDGE(a), similarly we will identify

the edge X ′ → X. Then because the RECOVER-EDGE(a) will perform intervention
do(X ′ = 0) and do(X ′ = 1) for the X ′ that the direction of (X ′, X) has not been discovered

each time, after
∑

e:X′→X
1
c2e
log 4n2t2

δ .
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Then we define

E4 = {Lemma 26 holds}

Then Pr{Ec4} ≤ δ. Also, under the event E2, the following lemma shows that if Da(t) is
really large, we can estimate the µa accurately.

Lemma 27 Under event E2, if Da(t) ≥ 64
max{∆a,ε/2}2 log

16n2Zat3

δ , then

βa(T1) ≤
max{∆a, ε/2}2

4
.

Proof In fact,

βa(t) ≤ βI,a(t) = 2

√
1

Da(t)
log

(
2n log(2t)

δ

)
≤ 2

√
1

Da(t)
log

16n2Zat3

δ
≤ max{∆a, ε/2}2

4
.

Now we turn to our main result. From the Lemma 25, at least one arm a with βa(t) ≥
max{∆a,ε/2}

4 will be performed an intervention at each round t ≥ T1. Under the event
E1, E2, E3 and E4, these interventions will only performed in two types of action a:

• qa ≤ 1
Hmε,∆

·max{∆a,ε/2}2 and Da(t) ≤ 64
max{∆a,ε/2}2 log

16n2Zat3

δ .

• Da(t) ≤ min{MCa log(t),
64

max{∆a,ε/2}2 log
16n2Zat3

δ }.

Note that qa ≤ 1
Hmε,∆

·max{∆a,ε/2}2 implies that a ∈ S, then after at most T2 rounds, where

T2 = 64

(∑
a∈S

1

max{∆a, ε/2}2
+
∑
a/∈S

min

{
1

max{∆a, ε/2}2
,
1

c2a
+

∑
e:X′→X

1

c2e

})
log

16n2ZT 3
2

δ

= 64H log
16n2ZT 3

2

δ

the algorithm should terminates. The fist term is the summation of all actions in S, and
the second term is for the second type of actions, where

Da(t) ≤ min{MCa log(t),
64

max{∆a, ε/2}2
log

16n2Zat
3

δ
}.

Denote T = T1 + T2, then

T = T1 + T2 ≤ 256H log
16n2ZT 3

δ
≤ 768H log

16nZT

δ

Then by the Lemma 28, with probability at least 1− 4δ, the sample complexity has the
upper bound

T = O

(
H log

(
nZH

δ

))
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Replace δ to δ/4, we derive the sample complexity in the Theorem 23. The correctness of
algorithm can be derived by LUCB1 algorithm. We provide a short argument here. Because
the stopping rule is µ̂t

atl
+ βatl

(t) ≤ µ̂t
ath
− βath

(t) + ε, if a∗ ̸= ath, we have

µath
+ ε ≥ µ̂ath

− βath
(t) + ε ≥ µ̂atl

+ βatl
(t) ≥ µ̂a∗ + βa∗(t) ≥ µa∗ .

Hence either a∗ = ath or ath is ε-optimal arm.

I.3. Proof of Lemma 25

For completeness, we provide the proof in Xiong and Chen (2023).
Proof If the optimal arm a∗ = ath,

µ̂atl
+ βatl

(t) ≤ µatl
+ 2βatl

(t)

≤ µatl
+

max{∆atl
, ε/2}

2

≤ µath
−∆atl

+
max{∆atl

, ε/2}
2

≤ µ̂ath
+ βa∗(Ta∗(t))−∆atl

+
max{∆atl

, ε/2}
2

≤ µ̂ath
− βa∗(Ta∗(t)) +

max{∆a∗ , ε/2}+max{∆atl
, ε/2}

2
−∆atl

≤ µ̂ath
− βa∗(Ta∗(t)) +

∆a∗ + ε/2 + ∆atl
+ ε/2

2
−∆atl

≤ µ̂ath
− βa∗(Ta∗(t)) + ε.

If optimal arm a∗ ̸= ath, and the algorithm doesn’t stop at round t + 1, then we prove
a∗ ̸= atl . Otherwise, assume a∗ = atl

µ̂t
ath
≤ µt

ath
+

max{∆ath
, ε/2}

4
(42)

= µt
atl
−∆ath

+
max{∆ath

, ε/2}
4

(43)

≤ µt
atl
−

3∆ath

4
+ ε/4 (44)

≤ µ̂t
atl
+

max{∆a∗ , ε/2}
4

−
3∆ath

4
+ ε/4 (45)

≤ µ̂t
atl
+ ε/2−

∆ath

2
. (46)

From the definition of ath, we know ε > ∆ath
≥ ∆a∗ , βath

(t) ≤ ε/4, βatl
(t) ≤ ε/4. Then

µ̂t
atl
+βatl

(t)+βath
(t) ≤ µ̂atl

+ ε/2 ≤ µ̂t
ath

+ ε, which means the algorithm stops at round t+1.

Now we can assume a∗ ̸= atl , a
∗ ̸= ath. Then

µatl
+ 2βatl

(t) ≥ µ̂atl
+ βatl

(t) ≥ µ̂a∗ + βa∗(Ta∗(t)) ≥ µa∗ = µatl
+∆atl

. (47)
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Thus

∆atl
≤ 2βatl

(t) ≤
max{∆atl

, ε/2}
2

, (48)

which leads to ∆atl
≤ ε/2, βatl

(t) ≤ ε/8. Since
Also,

µath
+ βath

(t) ≥ µ̂ath
≥ µ̂atl

≥ µa∗ − βatl
(t) = µath

+∆ath
− βatl

(t), (49)

which leads to

max{∆ath
, ε/2}

4
≥ ∆ath

− ε/8, (50)

and ∆ath
≤ ε/2, βath

(t) ≤ ε/8. Hence µ̂t
atl

+ βatl
(t) + βath

(t) ≤ µ̂atl
+ ε/2 ≤ µ̂t

ath
+ ε, which

means the algorithm stops at round t+ 1.

I.4. Proof of Theorem 24

Proof We construct n− 1 graphs with the same distribution P (X, Y ) but different causal
graph. Indeed, We construct the bandit instances {ξi}2≤i≤n as follows. For instance ξ2, the
graph structure contains edge X1 → Y,X2 → X1, X1 → Xi(3 ≤ i ≤ n) and X2 → Xi(3 ≤
i ≤ n). For instances ξi(3 ≤ i ≤ n), we change X1 → Xi to Xi → X1. The graph structure
are shown in the Figure 2 and Figure 3.

The observational distribution for all instance is:

P (X, Y ) = p1p2 . . . pn, (51)

where

p1 = 0.5, (52)

p2 =

{
0.5 + ε x2 = x1
0.5− ε x2 ̸= x1

(53)

pi =

{
0.5 + 4ε xi = x1
0.5− 4ε xi ̸= x1

. (54)

Figure 2: Causal Bandits Instance τ2
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Figure 3: Causal Bandits Instance τi(i = 3)

It is easy to check that
∑

x,y P (X = x, Y = y) = 1 and P (Xi = 1) = 0.5. The action
set is do(), do(Xi = 1), do(Xi = 0) where 2 ≤ i ≤ n, which means the action set does not
contain do(X1 = x) for x = 0, 1.

Now in ξ2, we consider P (Y = 1 | do(X2 = 1)). Actually, it is easy to show that
P (Y = 1 | do(X2 = 1)) = P (X1 = 1 | do(X2 = 1)) = 0.5 + ε. Similarly, P (Y = 1 | do(X2 =
0)) = 0.5− ε. For other actions, P (Y = 1 | a) = P (X1 = 1 | a) = 0.5 since other actions a
will not influence the value of X1.

Now consider instance ξi for 3 ≤ i ≤ n. For action do() and do(Xj = x) with j ̸= 2, i,
it will not influence the value of X1 and then P (Y = 1 | a) = 0.5. Now consider action
a = do(X2 = 1), we have

P (Y = 1 | do(X2 = 1)) = P (X1 = 1 | do(X2 = 1))

= P (X1 = 1 | X2 = 1) = 0.5 + ε.

Similarly, P (Y = 1 | do(X2 = 0)) = 0.5− ε.
Now we calculate P (Y = 1 | do(Xi = 1)) in instance ξi. In fact, denote q = 0.5+4ε and

by do-calculus,

P (X1 = 1 | do(Xi = 1))

=
∑
x=0,1

P (X1 = 1 | Xi = 1, X2 = x)P (X2 = x)

= 0.5(P (X1 = 1 | Xi = 1, X2 = 0) + P (X1 = 1 | Xi = 1, X2 = 1)

= 0.5

(
P (X1 = 1, Xi = 1, X2 = 0)

P (Xi = 1, X2 = 0)
+

P (X1 = 1, Xi = 1, X2 = 1)

P (Xi = 1, X2 = 1)

)
= 0.5

(
(0.5 + 4ε)(0.5− ε)

(0.5 + 4ε)(0.5− ε) + (0.5− 4ε)(0.5 + ε)
+

(0.5 + 4ε)(0.5 + ε)

(0.5 + 4ε)(0.5 + ε) + (0.5− 4ε)(0.5− ε)

)
= 0.5

(
q(0.5− ε)

q(0.5− ε) + (1− q)(0.5 + ε)
+

q(0.5 + ε)

q(0.5 + ε) + (1− q)(0.5− ε)

)
= 0.5

(
q(0.5− ε)

0.5− (2q − 1)ε
+

q(0.5 + ε)

0.5 + (2q − 1)ε

)
= q

(
0.52 − (2q − 1)ε2

0.52 − (2q − 1)2ε2

)
≤ q = 0.5 + 4ε.
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Also, we prove that

q

(
0.52 − (2q − 1)ε2

0.52 − (2q − 1)2ε2

)
≥ 0.5 + 2ε.

Actually, this inequality is equal to

(0.5 + 4ε)(0.52 − 8ε3) ≥ (0.5 + 2ε)(0.52 − 8ε4)

⇐⇒ 1 ≥ 56ε3 + 8ε2 − 32ε4.

When ε is small enough, this inequality holds. In summary, we have

P (X1 = 1 | do(Xi = 1)) ∈ [0.5 + 2ε, 0.5 + 4ε].

Similarly, we can get

P (X1 = 1 | do(Xi = 0)) = 0.5(P (X1 = 1 | Xi = 0, X2 = 1) + P (X1 = 1 | Xi = 0, X2 = 0))

= (1− q)

(
0.52 − (1− 2q)ε2

0.52 − (1− 2q)2ε2

)
∈ [0.5− 4ε, 0.5].

Now in instance ξ2, the output action should be do(X2 = 1), while in instance ξi, the output
action should be do(Xi = 1).

Now by Pinkser’s inequality, for an policy π, we have

2δ ≥ Pξ2(a
o = do(Xi = 1)) + Pξi(a

o ̸= do(Xi = 1)) ≥ exp(−KL(ξπ2 , ξ
π
i )).

Also, assume the stopping time as τ for the environment E , the KL divergence can be
rewritten as

KL(ξπ2 , ξ
π
i ) = EAt∼ξπ2

[
τ∑

t=1

KL(Pξ2(Xt, Yt | At), Pξi(Xt, Yt | At))

]
(55)

= Eξπ2

[
τ∑

t=1

Pξ2(Xt, Yt | At)

(
log

Pξ2(Xt, Yt | At)

Pξi(Xt, Yt | At)

)]
(56)

= Eξπ2

[
τ∑

t=1

Pξ2(Xt,i, Xt,1 | At)

(
log

Pξ2(Xt,i, Xt,1 | At)

Pξi(Xt,i, Xt,1 | At)

)]
(57)

where the last equation is derived as follows:

Pξ2(Xt, Yt | At)

Pξi(Xt, Yt | At)
=

Pξ2(Xt,i, Xt,1 | At) · Pξ2(X̄t,i, Yt | Xt,i, Xt,1, At)

Pξi(Xt,i, Xt,1 | At) · Pξi(X̄t,i, Yt | Xt,i, Xt,1, At)

where X̄t,i = Xt \ {Xt,i, Xt,1}. Now since X̄t,i is only decided by X1, X2 and X2 is only
decided by At, then

Pξ2(X̄t,i, Yt | Xt,i, Xt,1, At) = Pξi(X̄t,i, Yt | Xt,i, Xt,1, At)
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and then

Pξ2(Xt, Yt | At)

Pξi(Xt, Yt | At)
=

Pξ2(Xt,i, Xt,1 | At)

Pξi(Xt,i, Xt,1 | At)
.

Note that only when At = do(Xi = 1), do(Xi = 0), Pξ2(Xt,i, Xt,1 | At) ̸= Pξi(Xt,i, Xt,1 |
At). Then the equation (57) can be further calculated as

(57) =
∑
x=0,1

Eξπ2

[
τ∑

t=1

I{At = do(Xi = x)}

]
· Pξ2(Xt,i, Xt,1 | do(Xi = x))

·
(
log

Pξ2(Xt,i, Xt,1 | do(Xi = x))

Pξi(Xt,i, Xt,1 | do(Xi = x))

)
=
∑
x=0,1

Eξπ2

[
τ∑

t=1

I{At = do(Xi = x)}

]
· Pξ2(Xt,1 | do(Xi = x))

·
(
log

Pξ2(Xt,1 | do(Xi = x))

Pξi(Xt,1 | do(Xi = x))

)
≤
∑
x=0,1

Eξπ2

[
τ∑

t=1

I{At = do(Xi = x)}

](
0.5 ·

(
log

0.5

0.5 + 4ε
+ log

0.5

0.5− 4ε

))

≤
∑
x=0,1

Eξπ2

[
τ∑

t=1

I{At = do(Xi = x)}

]
96ε2

= 96ε2 · Eξπ2
[N(do(Xi = 1)) +N(do(Xi = 0))].

where the Eξπ2
N(a) represents that the number of times taking action a for policy π under

the instance ξ2. Now we have

Eξπ2
[N(do(Xi = 1)) +N(do(Xi = 0))] ≥ KL(ξπ2 , ξ

π
i )

96ε2
≥ 1

96ε2
log

1

2δ
.

Hence the stopping time τ under policy π can be lower bounded by

Eξπ2
[τ ] ≥

n∑
i=3

Eξπ2
[N(do(Xi = 1)) +N(do(Xi = 0))] ≥ n− 2

96ε2
log

1

2δ
= O

(
n

ε2
log

1

δ

)
.

I.5. Technical Lemma

Lemma 28 If T = CH log dT
δ for some constant C and parameter d such that d ≥ eδ,

then T = O(H log Hd
δ ).

Proof Let f(x) = x
log(dx/δ) , then for x ≥ 1

f ′(x) =
log(dx/δ)− 1

log2 dx/δ
≥ 0
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because dx/δ > e. Then f(x) is non-decreasing for x ≥ 1.
To prove T = O(H log Hd

δ ), we only need to show that f(T ) ≤ f(C ′H log Hd
δ ) for some

constant C ′. Since

log
C ′Hd log Hd

δ

δ
= log

C ′Hd

δ
+ log log

Hd

δ

we only need to prove

f(C ′H log
Hd

δ
) =

C ′H log Hd
δ

log C′Hd
δ + log log Hd

δ

≥ CH = f(T ).

If we choose C ′ ≥ 2C + C logC ′, then

CH

(
log

C ′Hd

δ
+ log log

Hd

δ

)
≤ CH(log

C ′Hd

δ
+ log

Hd

δ
)

≤ 2CH log
Hd

δ
+ CH logC ′

≤ (2C + C logC ′)H log
Hd

δ

≤ C ′H log
Hd

δ
.
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