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ABSTRACT

Bayesian optimization (BO) is a powerful approach for optimizing complex and
expensive-to-evaluate black-box functions. Its importance is underscored in many
applications, notably including hyperparameter tuning, but its efficacy depends on
efficiently balancing exploration and exploitation. While there has been substan-
tial progress in BO methods, striking this balance remains a delicate process. In
this light, we present LLAMBO, a novel approach that integrates the capabilities
of Large Language Models (LLM) within BO. At a high level, we frame the BO
problem in natural language, enabling LLMs to iteratively propose and evaluate
promising solutions conditioned on historical evaluations. More specifically, we
explore how combining contextual understanding, few-shot learning proficiency,
and domain knowledge of LLMs can improve model-based BO. Our findings illus-
trate that LLAMBO is effective at zero-shot warmstarting, and enhances surrogate
modeling and candidate sampling, especially in the early stages of search when
observations are sparse. Our approach is performed in context and does not re-
quire LLM finetuning. Additionally, it is modular by design, allowing individual
components to be integrated into existing BO frameworks, or function cohesively
as an end-to-end method. We empirically validate LLAMBO’s efficacy on the prob-
lem of hyperparameter tuning, highlighting strong empirical performance across
a range of diverse benchmarks, proprietary, and synthetic tasks.

1 INTRODUCTION

Black-box optimization. Expensive black-box functions are common in many disciplines and ap-
plications including robotics [1, 2], experimental design [3], drug discovery [4], interface design [5]
and, in machine learning, hyperparameter tuning [6, 7, 8]. Bayesian optimization (BO) is an efficient
model-based approach for globally optimizing these functions [9, 10]. BO’s effectiveness lies in its
ability to operate based on a limited set of observations without the need for direct access to the
objective function or its gradients. It does so by using observed data to learn a surrogate model to
approximate the black-box function and a candidate point sampler to iteratively propose potentially
good points. In each trial, the acquisition function selects the proposed point with the highest utility,
based on surrogate evaluations. This chosen point undergoes evaluation, and the cycle continues.

Challenges of search efficiency. For BO, the name of the game is efficient search, but this efficiency
largely depends on the quality of the surrogate model and candidate point sampler to quickly identify
high-potential regions [11]. Given that BO is designated for scenarios with limited observations,
constructing an accurate ▶ surrogate model with sparse observations is inherently challenging.
Additionally, the model can be sensitive to misspecification, and even slight misrepresentations
of the model can introduce undesired bias, skewing the ▶ sampling of potential solutions [12].
A further challenge arises when considering the integration of ▶ prior knowledge, especially in
effectively transferring knowledge about correlations in the optimization space to new tasks.

At the core, these challenges pertain to accurately learning the objective function and effectively
generating candidate solutions with limited data. This scenario is typically framed as the few-shot
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Figure 1: Overview of LLAMBO. In order: LLAMBO can initialize BO through ▶ zero-shot warm-
starting, ▶ efficiently sample candidate points from high-potential regions given past observations
and problem description, and ▶ evaluate these candidate points via a surrogate model.

setting, a context that demands swift learning and generalization from very few examples [13]. In-
terestingly, such challenges of the few-shot paradigm align with the proficiencies of Large Language
Models (LLM). Contemporary LLMs, which have been pre-trained on Internet-scale data, showcase
an exceptional capacity to generalize from sparse data, enabling them to excel in few-shot prediction,
generation [14, 15, 16, 17, 18], and contextual understanding [19, 20]. They achieve this remarkable
sample-efficient performance, in part, by exploiting encoded priors [21, 22].

Key considerations. This study examines the potential of extending the capabilities of LLMs be-
yond standard natural language tasks to enhance model-based BO. Our approach is grounded in
representing BO components using natural language, introducing novel methods to effectively cap-
ture LLM’s distinct strengths. This exploration gives rise to two key questions: [Q1] Can LLMs,
with their encoded knowledge and few-shot learning abilities, enhance key elements of BO, including
the surrogate model and candidate point sampler? [Q2] How effectively can LLM-augmented BO
components operate as a cohesive, end-to-end pipeline? In answering these questions, we chose hy-
perparameter tuning (HPT) as our initial area of investigation. This is for two main reasons: firstly,
the extensive knowledge potentially acquired by LLMs about HPT during pretraining, coupled with
its relatively low-dimensional nature, makes it an ideal test bed to probe the applications of LLMs
within BO. Secondly, HPT is practically important and a core enabler in many applications.

Contributions. We present LLAMBO, a novel approach for integrating the capabilities of LLMs into
BO. To understand the performance gains from this integration, we execute a systematic investiga-
tion, exploring the aforementioned questions. Our primary contributions are:
• We propose LLAMBO, a novel approach to enhance components of model-based BO with LLMs,
• We systematically investigate the enhancements of LLAMBO throughout the BO pipeline, show-

casing significant improvements to ▶ zero-shot warmstarting, the ▶ efficacy of the surrogate
model, and the ▶ efficiency of candidate sampling,

• We empirically investigated the end-to-end performance of LLAMBO for hyperparameter tuning,
demonstrating strong performance on diverse benchmarks.

2 LLAMBO: LLMS TO ENHANCE BO

Figure 1 illustrates the LLAMBO framework. Fundamentally, our methodology translates different
components in the BO pipeline into natural language. This allows the LLM to iteratively suggest
and evaluate solutions, informed both by the BO problem description and search history.

2.1 THE INTEGRATION OF LLMS INTO BO

Preliminaries. To aid with exposition, we introduce the following notation. Let us consider an
objective function, f : H → S , where h ∈ H ⊆ Rd is the d-dimensional input, and S ∈ R is the
output space. We aim to find h∗ ∈ H that minimizes this objective function:

h∗ = argmin
h∈H

f(h)

where f is a costly black-box function without accessible gradient information. To overcome these
limitations, BO employs a surrogate model to approximate f and a candidate sampler to generate
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h ∈ H. In general terms, a surrogate model can be viewed as a machine learning (ML) method
producing the predictive distribution of s given h and some observed data Dn = {(hi, si)}ni=1:

p(s|h;Dn) =

∫
Θ

p(s|h, θ;Dn)p(θ|h;Dn) dθ

Here, the marginalization is over θ, a latent variable that captures the underlying structure between
s and h. Specifically, p(θ|Dn, h) ∝ p(Dn|θ, h)p(θ) describes the posterior distribution after ob-
serving some data, with p(θ) being the prior knowledge of this underlying structure. The candi-
date point sampler can be viewed similarly, as generating samples from a posterior distribution:
p(h|Dn) =

∫
Θ
p(h|θ,Dn)p(θ|Dn) dθ. These priors, p(θ), can play a significant role, especially

given the typically sparse observations in BO [23].1 However, in practice, many BO applications
adopt non-informative priors, potentially missing out on valuable domain-specific knowledge. The
challenge lies not just in the inclusion of prior knowledge, but also in accurately learning the asso-
ciated predictive distribution with ML methods, especially in settings with limited observations.

Synergy of LLMs and BO. In this light, LLMs can offer significant enhancements due to the fol-
lowing capabilities: (1) Prior knowledge: Recently, [25] explained LLM in-context learning (ICL)
as performing implicit Bayesian inference [14]. This raises the interesting prospect of using ICL
to tap into an LLM’s encoded knowledge for BO. In this framework, p(θ) represents the priors
related to the optimization problem and domain-specific correlations absorbed through pretraining
[15, 26]. (2) ICL: Learning generalizable models given only limited observations is highly challeng-
ing. LLMs have demonstrated the capacity to generalize from a few in-context examples, an ability
that can directly complement BO’s needs for sample-efficient exploration [14, 27, 28]. (3) Contex-
tual understanding: LLMs are adept at processing contextual information, especially via natural
language [29]. This offers a versatile interface to incorporate meta-features about optimization tasks,
search spaces, and auxiliary details that can improve search performance.

Operationalizing this synergy. Despite these hypothesized advantages of LLMs, effectively cap-
italizing on them in an iterative optimization framework like BO is challenging. Recently, [30]
explored the use of LLM-based BO for molecules. While this work primarily focused on the surro-
gate model, we introduce novel methods for LLM enhancement of multiple components of BO and
conduct a systematic investigation to understand the performance gains offered by this integration.
Specifically, we employ ICL to enhance three key components of BO (Figure 1):

• Warmstarting: Warmstarting initializes the optimization process with a pre-identified set of n
points, denoted as {hi}ni=1, which are evaluated first to build up a meaningful representation of f .
We propose a strategy to identify promising initializations through zero-shot prompting.

• Sampling candidates: The sampling process proposes points {h̃k}Kk=1 that are considered for
future evaluations. Drawing inspiration from TPE [6], we propose a mechanism to conditionally
sample candidates based on a target objective value s′: h̃k ∼ p(h|s′;Dn). Here, we employ ICL
by providing the optimization history as few-shot examples.

• Surrogate modeling: The surrogate model, denoted as p(s|h;Dn), is an approximation of f and
is trained using Dn. Specifically, we introduce two methods, leveraging ICL on the optimiza-
tion history: a discriminative approach that produces regression estimates with uncertainty, and a
generative approach that scores via binary classification.

Overview of investigation. Having outlined our approach for leveraging LLMs in BO, we now de-
scribe the structure of our investigative study. The framework is presented below, and centres around
the two aforementioned questions [Q1-2]. We begin by analyzing each component in isolation while
keeping other factors consistent whenever possible. We conclude our study with an assessment of
LLAMBO’s performance as an end-to-end BO method.

Section Method Goal and Method Q’s
Section 4 Warmstarting Enhancing optimization with warmstarting from LLM prior [Q1]
Section 5 Surrogate model Improving quality of surrogate model in few-shot settings through ICL [Q1]
Section 6 Candidate sampling Conditional sampling of high-potential points for desired s∗ via ICL [Q1]
Section 7 End-to-end BO Augmenting end-to-end BO performance [Q1][Q2]

1It is worth mentioning the different approaches to encode priors: Gaussian Processes [7] embed prior
distributions over functions p(f), while Bayesian NNs use prior distributions over weights p(w) [24].
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Experimental setup. We conduct our investigations using 74 tasks extracted from Bayesmark and
HPOBench [31, 32] and OpenAI’s GPT-3.5 Language Model (see Appendix D for detailed exper-
imental procedures). While it is important to recognize that the choice of LLM can substantially
influence the results of optimization, we note that the overarching methodology and fundamental
insights covered in this work are broadly applicable beyond the specifics of any single LLM.

2.2 BO PROMPT DESIGN

The proposed integrations are realized through structured natural language queries to the LLM.
While the specifics of each query differ (e.g. for surrogate modeling and sampling), they are con-
structed from three essential elements. For the complete prompts, please refer to Appendix C.1.

• Problem description. This includes information of the input space H, the output space S, and
the objective function f . Specifically for HPT, this entails a <MODEL CARD>, describing the ML
model being optimized (f ), the hyperparameters (H), and the scoring metric (S). We also include
a <DATA CARD> containing dataset attributes.

• Optimization history. The history contains the sequence of points and scores observed during the
optimization process, captured in Dn. The observed points are provided as few-shot examples for
ICL of the surrogate model and candidate point sampler.

• Task instructions. For each component under consideration (e.g. surrogate model), we include
task-specific instructions on desired inference and guidelines on the format of the response.

3 RELATED WORKS

Bayesian optimization. At its core, BO relies on probabilistic modeling. One widely adopted tech-
nique is the Gaussian Processes (GP) due to their flexibility and analytical tractability [7, 33]. Recent
works have sought to enhance their expressiveness through deep kernel GP [34, 35] and manifold
GPs [36]. On another front, NN-based and tree-based surrogates have been considered, particularly
due to their flexibility in high-dimensional or hierarchical optimization problems [24, 37, 38, 39].
Tree-structured Parzen Estimator (TPE) is an alternate approach based on the generative surrogate
model p(h|s) [6, 40, 41]. Recent trends have also leaned towards Transformers as surrogate models
[42, 43]. BO is commonly used to optimize expensive, black-box functions, including in robotics
and experimental design [1, 2, 3] and most prominently for autoML [40, 44, 45, 46].

Transfer learning for BO. Recent research in BO has explored transfer learning to improve op-
timization across similar domains. Prominent among these are multitask GPs, designed to opti-
mize several related black-box functions by leveraging common structures or patterns across tasks
[47, 48, 49]. Other approaches have sought to transfer learnings from previously optimized functions
to new functions [50, 51]. However, these approaches only consider inductive transfer over a fixed
search space, i.e. all tasks share the same search space. More recently, [42] introduced a pretrained
Transformer for meta-learning across tasks with different search spaces. In our work, we explore a
lightweight alternative by harnessing prior knowledge contained in generalist LLMs, which does not
require dedicated pretraining and structured results collected from related optimization problems.

LLMs and optimization. Recent works have explored the use of LLMs for optimization tasks, no-
tably for prompt optimization [52, 53, 54] and as genetic search operators in evolutionary algorithms
[55, 56, 57]. Of particular note is the research that delves into LLM for BO of molecules in [30],
which primarily focused on surrogate modeling. In contrast, we introduce novel methods for LLM
enhancement of multiple components of model-based BO and conduct a systematic investigation to
understand the performance gains offered by this integration.

4 WARMSTARTING THE BO PROCESS

Motivation. We start by analyzing whether LLMs can transfer prior knowledge about an optimiza-
tion problem through warmstarting. While warmstarting can accelerate convergence by supplying
more insightful initial points, conventional approaches require prior results collected from similar
optimization problems [58, 59]. This data collection can be resource-intensive and might not be
feasible for certain applications. In contrast, we explore the use of LLMs for warmstarting as a
more efficient and lightweight alternative, allowing the acquisition of warmstarting points without
explicitly requiring data collection from related problems.
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Figure 2: Warmstarting. (Top)
average regret, (Middle) correla-
tion of sampled points, (Bottom)
diversity of initial points sampled
with different methods.

Method. LLAMBO employs zero-shot prompting to sample
points for warmstarting. We explore three distinct settings,
each providing different levels of information about the op-
timization problem. ▶ No context: the LLM is prompted
to recommend good initial hyperparameters for a given ML
model, but no dataset details are provided; ▶ Partial con-
text: provides meta-features about the dataset through the
<DATA CARD>, including the number of samples, features,
the type of features (categorical vs continuous), and the learn-
ing task (e.g. classification); ▶ Full context: further augments
the <DATA CARD> with information on marginal distribu-
tions, inter-feature correlations, and feature-label correlations.

Experimental setup. To evaluate the impact of warmstarting,
we employ two widely adopted BO methods: Gaussian Pro-
cesses (GP) [7] and Tree Parzen Estimator (TPE) [6]. We com-
pare these against random initialization techniques, namely
Random, Sobol, and Latin Hypercube (HCube) sampling.
Each search begins with 5 initialization points and proceeds
for 25 trials, and we report average results over ten seeded
searches. Our evaluation metrics focus on two aspects: search
performance and the diversity of the initialization points. To
assess search performance, we adopt the normalized regret
metric, defined as minh∈Ht(f(h) − s∗min)/(s

∗
max − s∗min),

where Ht denotes the points chosen up to trial t, and s∗min and
s∗max represent the best and worse scores, respectively [60].
To assess diversity, we use the generalized variance: det(Σ),
with Σ being the covariance matrix of the hyperparameters.

Empirical insights. (1) Performance: Figure 2 (Top) visual-
izes the average regret across all tasks. We begin our analysis
with a sanity check—namely, warmstarting using no context
surpasses the performance of random initialization techniques.
This verifies that our LLM possesses a basic knowledge of
generalizable correlations (independent of specific problems)
between hyperparameters. Interestingly, we observe that pro-
viding additional information about the dataset improves the
search performance when warmstarting for both partial context and full context. This is partic-
ularly prominent in the early stages of the search (i.e. trials < 5). However, these initial gains
are maintained as the search progresses. (1a) Correlations: To explore deeper, we compute the
correlation matrix of sampled warmstarting points depicted in (Middle) (with further analysis in
Appendix E). Our findings reveal that the points recommended by the LLM exhibit considerably
greater correlations between hyperparameters compared to those from random initialization. More
strikingly, the correlation matrices computed for different tasks reveal different correlation struc-
tures, suggesting that the LLM is dynamically adjusting its suggestions to different optimization
problems. (2) Diversity: A closer look at the diversity of warmstarting points in (Bottom) reveals
that their generalized variance is typically lower than that of randomly initialized points. This trend
aligns with our expectations: higher correlations often lead to a decreased determinant of the co-
variance matrix due to ‘redundant’ information. Since random initialization methods sample each
hyperparameter independently, they exhibit lower correlation levels, resulting in higher diversity.

 Warmstart initialization via zero-shot prompting is an efficient strategy to transfer knowledge
about correlations in the optimization landscape, enhancing search performance.

5 SURROGATE MODELING

Motivation. Surrogate modeling, a core component of BO, aims to learn accurate representations
of complex functions using only a limited set of evaluations. The efficacy of these models depends
on their capacity to generalize and make accurate predictions from sparse observations. Recent
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Figure 3: Discriminative surrogate models. (Top) prediction performance measured in NRMSE
and R2, and regret; (Bottom) uncertainty calibration evaluated using LPD, coverage, and sharpness.

studies have underscored LLM’s remarkable ability to perform few-shot learning [25, 61]. Building
on this, we propose two tailored approaches to surrogate modeling via ICL: (1) a discriminative
approach to predict the mean and uncertainty of the objective value of a given candidate point,
i.e. p(s|h;Dn) in Section 5.1; and (2) a generative approach that scores each point based on the
probability that its objective value is better than some performance threshold τ , i.e. p(s ≤ τ |h;Dn)
in Appendix B. These represent two distinct approaches, with (1) framing surrogate modeling as a
regression problem, while (2) views surrogate modeling as probabilistic binary classification.

5.1 DISCRIMINATIVE SURROGATE MODEL

One of the main approaches to surrogate modeling involves learning the conditional probability of
the output s given the input h using data Dn, expressed as p(s|h;Dn)—a discriminative approach.
An effective surrogate model should produce an accurate mean prediction of the objective function’s
central tendencies, and well-calibrated uncertainty estimates to balance exploration and exploitation.

Method. We serialize the observed optimization trajectory into natural text. For example, with hi

as an RF’s hyperparameters and si the accuracy, the serialization would read: “max depth is 15,
min samples split is 0.5,. . ., accuracy is 0.9” [62, 63]. These text representations, for all n observed
samples, are concatenated into few-shot examples, symbolized as Dnl

n . Here, we use the superscript
nl to mean representations of observations in natural text. Together with the problem description and
query example hnlk , they form the input to the LLM. For each query, the LLM outputs a response:
(ŝk, p(ŝk)), denoting the predicted score and associated probability, respectively: (ŝk, p(ŝk)) =
LLAMBO(hnlk ,Dnl

n ). To obtain probabilistic estimates, this prediction step is repeated K times, from
which we compute the empirical mean and standard deviation. This Monte Carlo-based approach is
termed LLAMBO (MC), and mirrors the method proposed in [30].

Our empirical observations revealed that the MC implementation often achieved suboptimal calibra-
tion of uncertainty estimates. After further explorations, we found the sensitivity to the ordering of
in-context examples as a likely cause. As LLMs process inputs in a left-to-right manner, the predic-
tions are sensitive to permutations within the prompt [64, 65]. To enhance robustness, we introduce
a shuffling mechanism that randomly permutes the few-shot examples within Dnl

n , which is com-
bined with MC sampling. We acknowledge that while this approach is not grounded in principled
probabilistic reasoning—similar to the popular SMAC method [8]—it can be an effective technique
to obtain probabilistic estimates. This improved method is hereby referred to as LLAMBO.

Experimental setup. We compare LLAMBO against GP and SMAC, two established surrogate mod-
els. We evaluate these probabilistic discriminative models via prediction performance and uncer-
tainty calibration. For performance metrics, we use NRMSE (↓) and R2 (↑). Calibration is assessed
using the scoring rule, log predictive density (LPD) (↓), empirical coverage (where the desired cov-
erage for 1 standard deviation, assuming Gaussianity, is ≈ 0.68), and sharpness (↓) [66]. We also
include normalized regret of the point acquired using expected improvement (EI) [10]. Our goal is
to assess the surrogate model’s efficacy when a different number of evaluations are available (n).
We evaluate each task when n ∈ [5, 10, 20, 30], and we test predictions against 20 unseen points.

Empirical insights. (1) Prediction performance: Figure 3 (Top) plots the NRMSE and R2 against
the number of observed samples. LLAMBO consistently outperforms in prediction across all sam-
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ple counts, particularly with fewer observed samples. Moving on, we examine normalized regret:
notably, all methods show increased regret at n = 5, this reflects greater uncertainty across unex-
plored regions, leading to heightened levels of exploration (and higher regret). For n > 5, LLAMBO
attains lower regret, demonstrating better exploitation than other methods. (2) Uncertainty quan-
tification: (Bottom) assesses uncertainty quantification. We find that, in this aspect, GPs, with their
probabilistic grounding, produce the best uncertainty estimates, particularly in LPD and empirical
coverage. GPs maintain good coverage even with a low number of samples, while LLAMBO only
approaches similar performances as n increases. In this regard, our approach exhibits performance
more similar to SMAC, a frequentist method that also makes use of empirical variance. Interest-
ingly, we note that the sharpness of uncertainty intervals for GPs remains consistently higher, while
in LLAMBO, the sharpness decreases as the coverage improves. This is likely due to the better predic-
tion performance, enabling the predictions to be more confident (lower sharpness) while achieving
improved empirical coverage. (3) LLAMBO vs LLAMBO (MC) The purely MC-driven approach ex-
hibits subpar uncertainty calibration, evident through worse LPD and coverage metrics. Coupled
with low sharpness values, this suggests the predictions are overly confident, tending to underesti-
mate uncertainty. We also observe that LLAMBO consistently achieves better prediction performance.
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Figure 4: Ablation. LLAMBO
(UnInf) omits problem de-
scription and hyperparameter
names.

As such, empirical evidence supports that permuting few-shot ex-
amples, while straightforward in implementation, improves both
uncertainty quantification and prediction performance, both criti-
cal aspects of balancing exploration and exploitation. (4) Role of
prior knowledge Lastly, we investigate the importance of prior
knowledge to LLAMBO’s few-shot performances. To this end,
we introduce an ablation setting LLAMBO (UnInf) where the
problem description (containing the <DATA CARD> and <MODEL
CARD>) are omitted, and the hyperparameter names are substi-
tuted with “Xi”. Figure 4 reveals better prediction performance
and calibration when compared to the uninformative ablation. This
reveals the crucial role of prior knowledge in enhancing surrogate
modeling, especially in few-shot settings [25, 63].

 Discriminative surrogate models implemented through ICL can produce effective regression
estimates with uncertainty, although there is a tradeoff of stronger prediction performance with
worse calibration than probabilistic methods. The LLM’s encoded prior is crucial to improving
the efficacy of such surrogate models.

6 SAMPLING OF CANDIDATE POINTS

Motivation. The sampling of candidate points is another crucial component of BO, as high-potential
points can speed up convergence to the optimal solution. In this context, we present a novel mecha-
nism to conditionally generate candidate points based on desired objective values through ICL.

Method. Our proposed sampling mechanism draws inspiration from TPE. While TPE focuses on
sampling candidate points, denoted as h̃m, from ‘good’ regions in the search space (i.e. h̃m ∼
l(h) = p(h|s ≤ τ ;Dn)), we sample from regions of high potential by directly conditioning on
a desired objective value s′: h̃m ∼ p(h|s′;Dn). This distinction is fundamental as it allows us to
target specific objective values, something TPE’s binary categorization cannot achieve. The few-shot
generation capabilities of LLMs are crucial here, as learning such a conditional generator through
conventional means poses significant challenges due to the limited number of observations.

We define the desired objective value using the equation: s′ = smin−α×(smax−smin), where smax

and smin are the worst and best objective values observed up until that point. Intuitively, s′ is defined
relative to the best objective value, with the difference proportional to the observed variability in s.
The exact value is controlled by α, the exploration hyperparameter. A positive α sets s′ to improve
over smin. Here, we are essentially extrapolating, which cannot be achieved through conventional
TPE. Conversely, a negative α (i.e. −1 ≤ α < 0) results in a more conservative target value that is
within the observed objective value range. To operationalize this, we implement p(h|s′;Dn) through
ICL. We generate M candidate points independently, i.e. h̃k ∼ LLAMBO(s′,Dnl

n ), after which, we
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Figure 6: Candidate point sampling. Quality is evaluated using average regret and best regret.
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select the point that maximizes the acquisition function as the point to evaluate next. Thus, our
approach, like TPE, uses a sampling-based approximation to optimize the acquisition function.

Experimental setup. We compare our proposed sampler against TPE (Ind), TPE (Multi), and ran-
dom sampling (Random). As before, we also include ablation of our method LLAMBO (UnInf),
which omits problem description and hyperparameter names. Our analysis examines two aspects:
candidate point quality and diversity. To evaluate quality, we compute the average regret (↓) and
best regret (↓) among the M sampled points [60]. For assessing diversity, we use generalized vari-
ance (↑) to evaluate the spread of candidate points and log-likelihood (↑) to assess the probability
of candidate points being sampled from observed points. We start by investigating the effect of
α on sampling performance. Then, following the experimental procedure outlined previously, we
evaluate sampling performance when a different number of observations are available.
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Empirical insights. (1) Effect of α: In Figure 5, we
observe that as α increases from −0.5 to 0, both av-
erage regret and best regret improves. However, as α
increases beyond 0, the average regret increases as the
candidate points are increasingly sampled from beyond
the observed distribution, compromising the reliability
of these points. Interestingly, the optimal best regret
emerges at α=0.01, hinting at our mechanism’s ability
to extrapolate from observed distributions. The gen-
eralized variance decreases with increasing α, this is
reasonable as the candidate points are sampled from
smaller regions in the search space. Similarly, the log-
likelihood decreases as α increases, as the points are
increasingly sampled away from observed points. To
confirm that this is indeed the case, we visually examine
t-SNE projections of sampled points, localizing them
against good (top 20% of samples) and bad points [67].
We note that when α=−0.2, the candidate points cover
a similar region as good points, but when α=0.01, the
sampled points are observed outside the regions of good
points. (2) Quality: Figure 6 compares the quality of
our sampled points against baselines, with our method
set at α=−0.2. We observe that LLAMBO consistently
achieves the lowest average and best regret as n varies, but is especially notable at n = 5. This gain
is also present when compared against the ablation, suggesting the crucial role of prior knowledge in
proposing high-potential candidates. (3) Diversity: An examination of generalized variance reveals
that TPE (Ind) proposes more diverse points. In contrast, the spread of LLAMBO-sampled points
is similar to that achieved by TPE (Multi). This is reasonable, as both LLAMBO and TPE (Multi)
model correlations, while TPE (Ind) models each dimension independently (and higher correlation
decreases generalized variance). Furthermore, the log-likelihood of LLAMBO proposed points are
the highest, indicating that they are more plausible given the observed points.

 Sampling candidate points by direct conditioning on desired target value can generate high-
quality points, although this can sacrifice diversity among sampled points. The α exploration
hyperparameter allows balancing of this trade-off.
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7 END-TO-END DEMONSTRATION OF LLAMBO
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Figure 7: End-to-end performance of
LLAMBO. (Left) average regret on public
datasets and (Right) private and synthetic
datasets evaluated on Bayesmark.

Motivation. Having examined the integration of
LLMs into key components of BO, we now holis-
tically evaluate the performance of LLAMBO as an
end-to-end BO algorithm. Here, we instantiate
LLAMBOwith our discriminative surrogate model, as
this is the most classic form of surrogate modeling.

Experimental setup. We evaluate BO performance
on 25 tasks extracted from Bayesmark [31], a con-
tinuous HPT benchmark. Here, a task is a dataset-
ML model pair, and we consider all 5 included
datasets and 5 ML models. Additionally, we intro-
duce 3 proprietary and 2 synthetic datasets into the
benchmark—these are datasets for which the LLM
would not have seen during pretraining, and thus
serve to check for any memorization concerns. This results in a total of 50 HPT tasks, where for
each task, we executed 5 seeded searches, each with 25 trials. Baselines. We compare LLAMBO
against 4 established baselines commonly used in production: GP-DKL [34], SKOpt (GP) [68], Op-
tuna (TPE) [41], and SMAC3 (RF) [8]. To ensure a fair comparison, we do not use warmstarting
and initialize all methods with the same set of 5 randomly sampled points in each run. We describe
complete experimental details in Appendix D.

Empirical insights. (1) Performance: Figure 7 shows the average regrets across all HPT tasks on
both public Bayesmark datasets, and private and synthetic datasets. We note that in both settings,
LLAMBO achieves the best tuning performance. Additionally, we observe that, consistent with prior
findings, LLAMBO excels in earlier stages of the search, when fewer observations are available. (2)
Additional results: In the interest of space, we include additional results in Appendix E. Specifi-
cally, we ▶ evaluate LLAMBO with our generative surrogate model; ▶ compare against additional
baselines on Bayesmark; ▶ evaluate BO performance on 24 additional tasks from HPOBench [32];
▶ and report individual task search results (by task metric, average regret, and average rank).

 LLAMBO performs effectively as an end-to-end pipeline, exhibiting sample-efficient search.
Its modularity further enables individual components to be integrated into existing frameworks.

8 DISCUSSIONS

In summary, we introduced LLAMBO, a novel framework that integrated LLM capabilities to enhance
model-based BO. Our approach introduced three specific enhancements: ▶ zero-shot warmstart-
ing to initialize search, generative and discriminative ▶ surrogate models of the objective function
via ICL, and a ▶ candidate point sampler that can conditionally generate for specific target values.
Our investigative study on the problem of HPT uncovered performance improvements across all
three integrations, which was especially notable when fewer samples were available. Additionally,
we found that LLAMBO to be an effective stand-alone BO method, exemplified through superior
performance on diverse benchmarks.

Limitations & future works. While LLAMBO does not perform any finetuning, performing infer-
ence through LLMs incurs a much larger computational footprint than traditional BO algorithms.
Our findings indicated that LLAMBO trades off this computational complexity for improved sam-
ple efficiency, an especially desirable property in black-box optimization tasks. This suggests the
potential fusion of LLAMBO with more computationally efficient methods. For instance, deploying
LLAMBO in earlier stages of the search, or only leveraging an individual component to complement
existing BO frameworks. Additionally, while we have demonstrated the potential for integrating
LLM in BO with GPT-3.5, it is important to recognize the choice of LLMs can significantly influ-
ence optimization results. A promising future direction involves benchmarking various LLMs, to
understand their strengths and limitations in different BO problem settings. Our study has primarily
focused on HPT tasks, which are relatively low-dimensional. However, a notable area for future re-
search is the expansion LLAMBO’s application to higher-dimensional BO tasks with more complex
search spaces, such as neural architecture search and robotic control [39, 69].
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A BAYESIAN OPTIMIZATION BACKGROUND

A.1 PRELIMINARIES

Consider an objective function: f : H → S, where h ∈ H is the input (which could be Rd for
d-dimensional input) and S ∈ R is the output space. We aim to find h∗ ∈ H that minimizes the
objective function:

h∗ = argmin
h∈H

f(h)

However, f is assumed to be a black-box function and evaluations of f might be expensive. To ad-
dress these limitations, BO is a promising method that constructs a surrogate model to approximate
f and iteratively proposes potential points. In more detail, the core components are:

1. Surrogate model: BO methods typically construct a surrogate approximation of f using avail-
able samples. We denote the surrogate model p(s|h;Dn), where Dn := {(hi, si)}ni=1 are the n
observed input-output pairs. Some commonly used models include the Gaussian Process (GP)
[7], and random forests (SMAC) [8]. An alternative approach is the Tree Parzen Estimator (TPE)
[6] which uses two hierarchical processes l(x) and g(x) to model input distributions when the
objective function is above or below a specified quantile τ : p(h|s;Dn) = l(h) ifh < τ, elseg(h).

2. Candidate point sampler: The sampler proposes a set of candidate points H̃ := {h̃i}Ki=1 to
query next. We denote the sampler p(h|Dn), where each candidate point is sampled indepen-
dently h̃i ∼ p(h|Dn). For GPs, the candidate points are typically randomly sampled but then
further optimized directly using the acquisition function. In SMAC, candidate points are sampled
using a combination of random search and local search in the good regions found by the random
forest. For TPE, the candidate points are sampled directly from the density of “good” points,
g(h).

3. Acquisition function: The acquisition function a : H → R scores and selects the candidate
points using the surrogate model. One of the most popular acquisition functions is expected
improvement (EI): a(h) = E[max(p(s|h) − f(hbest), 0)], where f(hbest) is the value of the
best observation so far [10]. The point that maximizes the acquisition function is selected as the
next sample to evaluate h = argmaxh̃∈{H̃} a(h̃). Other popular acquisition functions include
the probability of improvement [9] and upper confidence bound [70].

The BO process thus operates by first updating the surrogate model with existing data, and then
sampling a set of promising candidate points. Using the surrogate model, the acquisition function
scores each candidate point and selects the best point for evaluation. The new point and observed
value are appended to available observations, and the cycle continues.

B GENERATIVE SURROGATE MODEL [† MOVED DOWN FROM MAIN PAPER]

Method. An alternative approach to surrogate modelling is to learn the generative process of inputs
given the output, represented as p(h|s;Dn). This approach is exemplified in TPE-based methods [6],
which constructs two hierarchical processes formulated as p(h|s;Dn) = l(h) if s ≤ τ else g(h).
Here l(h) is the generative model of good points, and g(h) is the model for bad points. In this
context, good points refer to those with score s ≤ τ , where τ defines the threshold of the top γ
quantile of observed s. Conversely, bad points correspond to scores s > τ , or the bottom 1 − γ
quantile of results. TPE evaluates each point using the acquisition function a(h) ∝ l(h)/g(h),
which intuitively scores each point based on their likelihood of being good over bad. At first glance,
it appears challenging to learn the two densities l(h) and g(h) directly with an LLM.

Density ratio estimation. To address this, we employ Bayes’ rule, transforming the density ratio
estimation into probabilistic binary classification [71]. In introducing TPE, [6] showed that the EI
of each point is defined as such:

EI(h) ∝
(
γ +

g(h)

l(h)
(1− γ)

)−1

16



Published as a conference paper at ICLR 2024

In other words, to maximize EI, we would like h that has a high probability under l(h) and a low
probability under g(h). By simple application of Bayes rule, we can rewrite this as:(

γ +
g(h)

l(h)
(1− γ)

)−1

=

(
γ +

p(h|s > τ)

p(h|s ≤ τ)
(1− γ)

)−1

=

(
γ +

p(s > τ |h)p(s ≤ τ)

p(s ≤ τ |h)p(s > τ)
(1− γ)

)−1

=

(
γ +

p(s > τ |h)p(s ≤ τ)

p(s ≤ τ |h)

)−1

=

(
γ

p(s ≤ τ |h)

)−1

= γ−1p(s ≤ τ |h)

Thus, the expression is equivalently rewritten as γ−1p(s ≤ τ |h), which is proportional to p(s ≤
τ |h), i.e. the probability of h belonging to the good points. Intuitively, this gives us a scoring func-
tion that scores each sample according to the probability of producing good objective values. Using
this reformulation, we can now estimate the score a(h) through ICL, by obtaining the probabilis-
tic classification p(s ≤ τ |h). We recategorize the observed samples, such that zi = 1(si ≤ τ),
meaning the label is 1 if the performance exceeds the desired threshold. As before, we trans-
form the observed samples to text Dnl

n := {(hnli , znli )}n, obtaining K predictions from the LLM,
(ẑk, p(ẑk)) = LLAMBO(hnlk ,Dnl

n ), and computing empirical average to estimate a(h).
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Figure 8: Generative surrogate
model. (Top) score correlation and
(Bottom) regret.

Experimental setup. We compare the performance of the
proposed generative surrogate model vs two variants of
TPE: TPE (Ind) which models each dimension indepen-
dently, and TPE (Multi) which models joint multivariate
densities [44]. We evaluate the scoring performance and
regret attained by these surrogate models. To assess scor-
ing performance, we report the correlation between esti-
mated scores a(h) with ground-truth scores. Additionally,
we calculate regret with respect to the point that was as-
signed the highest score. As before, we evaluate each task
when n ∈ [5, 10, 20, 30], and we test predictions against
20 unseen samples.

Empirical insights. (1) Scoring performance. Figure 8
(Top) visualizes the correlation between surrogate model
predicted scores and ground truth objective values. We
observe that LLAMBO achieves notably higher correla-
tions, especially at n=5, where the TPE variants generated
scores that are only weakly correlated with the ground
truth performance. We note that as n increases, the cor-
relation of baseline scores improves, but LLAMBO is still
superior. (2) Regret (Bottom) examines the regret of the
point picked from the 20 available points. We find that while all methods show higher regret at low
sample sizes when levels of exploration are higher, LLAMBO quickly identifies good regions in the
search space, leading to lower regret as n increases.

 Generative surrogate modeling via ICL predicts scores that are more highly correlated with
ground-truth scores, leading to better identification of high-potential points.

C PROMPT DESIGNS

In this section, we aim to shed light on the prompt design process. We start by supplying the
complete prompts used in LLAMBO in Appendix C.1, before performing an ablation study in Ap-
pendix C.2 to analyze the effects of different components of the prompt.
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C.1 COMPLETE PROMPTS

In this section, we include the complete prompts used for each component of BO, including:

1. Zero-shot prompts for warmstarting with ▶ No Context (Figure 9); ▶ Partial Context (Fig-
ure 10); and ▶ Full Context (Figure 11).

2. ICL prompts for ▶ discriminative surrogate model (Figure 13) and ▶ generative surrogate
model (Figure 14).

3. ICL prompts for target value conditioned candidate sampling in Figure 15.

Note that in all figures, {} is used to indicate placeholders. Each prompt is constructed with the four
key components highlighted in Figure 1 and Section 2.2:

• <Model Card> describing the ML model being optimized;
• <Data Card> providing information about the dataset;
• Instructions task-specific guidelines on the format and requirements of the response;
• Observations of current optimization trajectory.

You are assisting me with automated machine learning using {model}. I’m exploring a subset of
hyperparameters detailed as: {configurations, type, and ranges}. Please suggest {number of rec-
ommendations} diverse yet effective configurations to initiate a Bayesian Optimization process
for hyperparameter tuning. You mustn’t include “None” in the configurations. Your response
should include only a list of dictionaries, where each dictionary describes one recommended
configuration. Do not enumerate the dictionaries.

Figure 9: Prompt for warmstarting with No Context.
You are assisting me with automated machine learning using {model} for a {task} task. The
{task} performance is measured using {metric}. The dataset has {number of samples} sam-
ples with {number of features} total features, of which {number of continuous features} are
numerical and {number of categorical variables} are categorical. Class distribution is {class
distribution}. I’m exploring a subset of hyperparameters detailed as: {configuration and type}.
Please suggest {number of recommendations} diverse yet effective configurations to initiate a
Bayesian Optimization process for hyperparameter tuning. You mustn’t include ‘None’ in the
configurations. Your response should include only a list of dictionaries, where each dictionary
describes one recommended configuration. Do not enumerate the dictionaries.

Figure 10: Prompt for warmstarting with Partial Context.

You are assisting me with automated machine learning using {model} for a {task} task. The
{task} performance is measured using {metric}. The dataset has {number of samples} sam-
ples with {number of features} total features, of which {number of continuous features} are
numerical and {number of categorical features} are categorical. Class distribution is {class
distribution}. {statistical information} I’m exploring a subset of hyperparameters detailed as:
{configuration and type}. Please suggest {number of recommendation} diverse yet effective con-
figurations to initiate a Bayesian Optimization process for hyperparameter tuning. You mustn’t
include ‘None’ in the configurations. Your response should include only a list of dictionaries,
where each dictionary describes one recommended configuration. Do not enumerate the dictio-
naries.

Figure 11: Prompt for warmstarting with Full Context.

Considering one-hot encoding for categorical features the total amount input’s features of the
random forest is {total of features after one hot encoding}. We are standarizing numerical values
to have mean 0 and std 1. The Skewness of each feature is {skewness of each feature}. The
number of features that have strong correlation (defined as > 0.5 or <-0.5) with the target fea-
ture is {number of “strong correlations” with the target feature}. Of the {number of pairwise
feature relationships} pairwise feature relationships, {number of “strongly correlated” pairwise
features} pairs of features are strongly correlated (>0.5, <-0.5).

Figure 12: Prompt of {statistical information} used in Full Context.
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The following are examples of the performance of a {model} measured in {metric} and the cor-
responding model hyperparameter configurations. The model is evaluated on a tabular {task}
task containing {number of classes} classes. The tabular dataset contains {number of sam-
ples} samples and {number of features} features ({number of categorical features} categorical,
{number of continuous features} numerical). Your response should only contain the predicted
accuracy in the format ## performance ##.
Hyperparameter configuration: {configuration 1}
Performance: {performance 1}
...
Hyperparameter configuration: {configuration n}
Performance: {performance n}
Hyperparameter configuration: {configuration to predict performance}
Performance:

Figure 13: Prompt for discriminative surrogate model.

The following are examples of the performance of a {model} measured in {metric} and the cor-
responding model hyperparameter configurations. The model is evaluated on a tabular {task}
task containing {number of classes} classes. The tabular dataset contains {number of sam-
ples} samples and {number of features} features ({number of categorical features} categorical,
{number of continuous features} numerical). The performance classification is 1 if the config-
uration is in the best-performing 25.0% of all configurations, and 0 otherwise. Your response
should only contain the predicted performance classification in the format ## performance clas-
sification ##.
Hyperparameter configuration: {configuration 1}
Classification: {classification 1}
...
Hyperparameter configuration: {configuration n}
Classification: {classification n}
Hyperparameter configuration: {configuration to classify}
Classification:

Figure 14: Prompt for generative surrogate model.

The following are examples of the performance of a {model} measured in {metric} and the cor-
responding model hyperparameter configurations. The model is evaluated on a tabular {task}
task containing {number of classes} classes. The tabular dataset contains {number of sam-
ples} samples and {number of features} features ({number of categorical features} categorical,
{number of continuous features} numerical). The allowable ranges for the hyperparameters are:
{configuration and type}. Recommend a configuration that can achieve the target performance
of {target score}. Do not recommend values at the minimum or maximum of allowable range,
do not recommend rounded values. Recommend values with the highest possible precision, as
requested by the allowed ranges. Your response must only contain the predicted configuration,
in the format ## configuration ##.
Performance: {performance 1}
Hyperparameter configuration: configuration 1
...
Performance: {performance n}
Hyperparameter configuration: {configuration n}
Performance: {performance used to sample configuration}
Hyperparameter configuration:

Figure 15: Prompt for candidate sampling.
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C.2 ABLATION STUDY

Our prompt design aligns with the framework outlined in Section 2.2, encompassing three essential
components: (1) the description of the optimization problem, (2) the optimization history, and
(3) explicit task instructions. To evaluate the influence of each component on performance, we
conducted an ablation study with the following configurations:

• LLAMBO: Represents the standard LLAMBO configuration employed in our experiments.
• LLAMBO [No context]: This variant assesses the impact of the optimization problem description

(refer to component (1)) on performance. Specifically, it omits metadata about the underlying
dataset from the prompts (see Figures 16 and 17 for details).

• LLAMBO [No instructions]: In this setting, we exclude additional, non-formatting-related in-
structions from the prompts (refer to component (3)). This includes removing guidelines in the
candidate point samplers regarding the types of points to be sampled. As such, the instructions
that are maintained are purely to ensure adherence to the required format for regex processing (see
Figure 18).

The following are examples of the performance of a {model} measured in {metric} and the cor-
responding model hyperparameter configurations. The model is evaluated on a tabular {task}
task containing {number of classes} classes. The tabular dataset contains {number of samples}
samples and {number of features} features ({number of categorical features} categorical,
{number of continuous features} numerical). Your response should only contain the predicted
accuracy in the format ## performance ##.
Hyperparameter configuration: {configuration 1}
Performance: {performance 1}
...
Hyperparameter configuration: {configuration n}
Performance: {performance n}
Hyperparameter configuration: {configuration to predict performance}
Performance:

Figure 16: LLAMBO [No context]. Prompt for the discriminative surrogate model with parts of
the optimization problem description removed. Note that in this setting, no meta-data about the
underlying datasets are provided. Strikethrough indicates the component that is removed.

The following are examples of the performance of a {model} measured in {metric} and the cor-
responding model hyperparameter configurations. The model is evaluated on a tabular {task}
task containing {number of classes} classes. The tabular dataset contains {number of samples}
samples and {number of features} features ({number of categorical features} categorical,
{number of continuous features} numerical). The allowable ranges for the hyperparameters are:
{configuration and type}. Recommend a configuration that can achieve the target performance
of {target score}. Do not recommend values at the minimum or maximum of allowable range,
do not recommend rounded values. Recommend values with the highest possible precision, as
requested by the allowed ranges. Your response must only contain the predicted configuration,
in the format ## configuration ##.
Performance: {performance 1}
Hyperparameter configuration: {configuration 1}
...
Performance: {performance n}
Hyperparameter configuration: {configuration n}
Performance: {performance used to sample configuration}
Hyperparameter configuration:

Figure 17: LLAMBO [No context]. Prompt for the candidate point sampler with parts of the opti-
mization problem description removed. Note that in this setting, no meta-data about the underlying
datasets are provided. Strikethrough indicates the component that is removed.
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The following are examples of the performance of a {model} measured in {metric} and the cor-
responding model hyperparameter configurations. The model is evaluated on a tabular {task}
task containing {number of classes} classes. The tabular dataset contains {number of sam-
ples} samples and {number of features} features ({number of categorical features} categorical,
{number of continuous features} numerical). The allowable ranges for the hyperparameters are:
{configuration and type}. Recommend a configuration that can achieve the target performance
of {target score}. Do not recommend values at the minimum or maximum of allowable range,
do not recommend rounded values. Recommend values with the highest possible precision, as
requested by the allowed ranges. Your response must only contain the predicted configuration,
in the format ## configuration ##.
Performance: {performance 1}
Hyperparameter configuration: {configuration 1}
...
Performance: {performance n}
Hyperparameter configuration: {configuration n}
Performance: {target score}
Hyperparameter configuration:

Figure 18: LLAMBO [No instructions]. Prompt for the candidate point sampler with additional
instructions removed. Strikethrough indicates the component that is removed.
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Figure 19: Ablation of prompt designs, av-
eraged over 5 seeds.

Empirical analysis. We assessed the end-to-end per-
formance of our ablation configurations on Bayesmark
tasks containing RandomForest models. The out-
comes are illustrated in Figure 19. Our findings re-
veal that the standard LLAMBO configuration outper-
forms other variants, underscoring the significance of
each prompt component in enhancing overall perfor-
mance. Additionally, we note that our ablated settings
achieve competitive optimization performances when
compared against the baselines. This is more notable
on LLAMBO [No context], which demonstrated simi-
lar optimization behavior without any meta-data about
the underlying task. On one hand, this suggests the
important role of meta-data in guiding the optimiza-
tion process. For instance, specific hyperparameters
better suited for large-p-small-n datasets can mitigate
overfitting, and datasets with a higher proportion of
categorical features may benefit from deeper decision
trees. On the other hand, the robust performance of
LLAMBO [No context], despite the lack of metadata,
signifies the model’s effectiveness beyond mere reliance on data memorization or leakage, as it
operates without access to specific dataset information.

Furthermore, our investigations into the role of candidate generation instructions indicate worse per-
formance for LLAMBO [No instructions]. To understand this, we examined the acceptance rate of
proposed points, defined as the proportion of points that both meet search space constraints and are
unique (not duplicates of existing or other proposed points). LLAMBO [No instructions] recorded
an acceptance rate of 69.26% ± 0.79%, significantly lower than LLAMBO (91.60% ± 0.45%) and
LLAMBO [No context] (88.8% ± 0.39%). This reduced rate limits the effective pool of candidate
points for evaluation and selection by the surrogate model. These findings underscore the impor-
tance of detailed task instructions in enhancing the quality and efficiency of the candidate sampling
process, ultimately contributing to the overall optimization effectiveness.

D DETAIL OF EXPERIMENTAL PROCEDURES

In this section, we outline the benchmarks employed in our evaluations as well as the implementation
details of our method and considered baselines. To evaluate the performance of LLAMBO on HPT,
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we considered 25 built-in tasks from Bayesmark [31] (Appendix D.1, and 24 built-in tasks from
HPOBench [32] (Appendix D.2). Additionally, we included three synthetic and three private datasets
into Bayesmark, resulting in additional 30 tasks (Appendix D.3). We used 5 tasks extracted from
Bayesmark (all 5 datasets on RandomForest) to evaluate each component, and used all tasks for
end-to-end evaluations.

D.1 BAYESMARK

We utilize Bayesmark [31] as a continuous HPT benchmark.2 We included the 5 public datasets that
came with the benchmark and 5 ML models, including RandomForest, SVM, DecisionTree, MLP,
and AdaBoost. This makes a total of 25 tasks, with each task defined as the (dataset, model) pair.
We execute all tasks using five different seeds for 25 trials, ensuring that all models share the same
initialization for each seed. This approach guarantees consistency across results. For classification
and regression tasks, the scoring function is accuracy and MSE, respectively.

Hyperparameter space. We follow the search space designated in Bayesmark, including the hy-
perparameter type, space, and range (lower and upper bound). We use this specified search space in
all baselines, performing the transformations before the optimization process. The search space for
each ML model is summarized below, i.e. {hyperparam name: [{space}, {lower bound},
{upper bound}]}:

• SVM [3d]: {C: [log, 1, 1e3], γ: [log, 1e-4, 1e-3], tolerance: [log, 1e-5, 1e-1] }
• DecisionTree [6d]: {max depth: [linear, 1, 15], min samples split: [logit, 0.01, 0.99],

min samples leaf: [logit, 0.01, 0.49], min weight fraction leaf: [logit, 0.01, 0.49], max features:
[logit, 0.01, 0.99], min impurity decrease: [linear, 0.0, 0.5] }

• RandomForest [6d]: {max depth: [linear, 1, 15], min samples split: [logit, 0.01, 0.99],
min samples leaf: [logit, 0.01, 0.49], min weight fraction leaf: [logit, 0.01, 0.49], max features:
[logit, 0.01, 0.99], min impurity decrease: [linear, 0.0, 0.5] }

• MLP [8d]: {hidden layer sizes: [linear, 50, 200], alpha: [log, 1e-5, 1e1], batch size: [linear,
10, 250], learning rate init: [log, 1e-5, 1e-1], power t: [logit, 0.1, 0.9], tol: [log, 1e-5, 1e-1],
momentum: [logit, 0.001, 0.999], validation fraction: [logit, 0.1, 0.9]}

• AdaBoost [2d]: {n estimators: [linear, 10, 100], learning rate: [log, 1e-4, 1e1]}

D.2 HPOBENCH

We included HPOBench, specifically the tabular benchmarks for computationally efficient evalu-
ations [32]. We included all 8 OpenML datasets with pre-computed tabulated results, and 3 ML
models, including XGBoost, RandomForest, and MLP. In total, we included 24 tasks. We execute
all tasks using five different seeds for 25 trials, ensuring that all models share the same initialization
for each seed. For all tasks, the scoring function is validation loss.

Hyperparameter space. The search spaces for all ML models, including their dimensionalities and
search ranges, are provided below. The search spaces are discretized (see App D.3 in [32] for more
details), allowing efficient tabular look-up operations for different configurations. For all baselines,
the hyperparameters are treated as ordinal variables, following recommendations in the benchmark.

• XGBoost [4d]: {colsample bytree: [0.1, 1.0], eta: [2e-10, 1], max depth: [1, 50], reg lambda:
[2e-10, 2e10]}

• RandomForest [4d]: {max depth: [1, 50], max features: [0.0, 1.0], min samples leaf: [1, 2],
min samples split: [2, 128]}

• MLP [5d]: {alpha: [1e-8, 1], batch size: [4, 256], depth: [1, 3], learning rate init: [1e-5, 1],
width: [16, 1024]}

D.3 PRIVATE AND SYNTHETIC DATASET

Additionally, we introduce 3 proprietary (SEER [72], MAGGIC [73], and CUTRACT [74]) and 3
synthetic datasets. These are datasets for which the LLM would not have seen during pretraining,

2https://github.com/uber/bayesmark/tree/8c420e935718f0d6867153b781e58943ecaf2338
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and thus used to address any memorization concerns. The synthetic datasets were generated from the
complex multimodal functions, specifically: Rosenbrock, Griewank, and KTablet (see [75] for full
simulation parameters). We selected the input dimension as 15, where each dimension is uniformly
sampled in the range of [0, 1]. Subsequently, we used the designated functions in [75] to generate
the corresponding output. All 6 datasets were introduced into Bayesmark, where the same set of
ML models was evaluated (see Appendix D.1), leading to a total of 30 tasks. The other aspects of
the evaluation were identical, with the same seeding, trials, scoring functions, and search spaces.

D.4 IMPLEMENTATIONS

End-to-end LLAMBO. The end-to-end procedure iteratively performs three steps: (1) sample M
candidate points {h̃m}Mm=1. (2) evaluate M points using the surrogate model, i.e. p(s|h̃m) to ob-
tain scores {a(h̃m)}Mm=1 according to an acquisition function. We use expected improvement (EI),
a(h̃m) = E[max(p(s|h̃m) − f(hbest), 0)]. (3) select point with the highest score to evaluate next,
h = argmaxh̃∈{h̃m}M

m=1
a(h̃).

Setting of LLAMBO. For our instantiation of LLAMBO, we sample M = 20 candidate points, and
set the exploration hyperparameter to α = −0.1. M = 20 is similar to the default number of
candidates sampled by popular TPE implementations, including HyperOpt, and Optuna.34 We set
the exploration hyperparameter to α = −0.1 based on observations in Figure 5 as a value that
balanced exploration (diversity) and exploitation. For the surrogate model, we sample K = 10 MC
predictions to compute the empirical estimates. For our experiments, we used gpt-3.5-turbo,
version 0301 with default hyperparameters temperature = 0.7 and top p = 0.95.

Baselines. We select the following baselines:

• SKOpt (GP-based) [68]: We used the library implementation https://scikit-optimize.
github.io/stable/modules/generated/skopt.gp_minimize.html. Addition-
ally, we optimize the acquisition of candidates for better results, acq optimizer = lbfgs. Version
0.9.0.

• GP (Deep Kernel Learning) [48]: We use the implementation of GPytorch https://docs.
gpytorch.ai/en/stable/examples/06_PyTorch_NN_Integration_DKL/
KISSGP_Deep_Kernel_Regression_CUDA.html in combination with the optimization
of acquisition function used in BoTorch https://botorch.org/docs/acquisition
for a better performance. (BoTorch version 0.8.5).

• DNGO: We used a public implementation https://github.com/automl/pybnn.
• SMAC3 [8]: We used version 1.4.0. from https://github.com/automl/SMAC3.
• Turbo [76]: We used the implementation found in https://github.com/
uber-research/TuRBO.

• HEBO [77]: We used the available pip version of HEBO https://pypi.org/project/
HEBO/.Version 0.3.5.

• Optuna [41]. We consider the implementation of https://optuna.org/. We used the mul-
tivariate version, which was found to have better performance in [44]. Version 3.3.0.

• TPE [75]. We incorporated an additional implementation of TPE, essentially a heavily op-
timized variant of TPE designed to achieve competitive results https://github.com/
nabenabe0928/tpe.

• STO [39]. We used the official implementation provided by the authors https://github.
com/daizhongxiang/sto-bnts.

E ADDITIONAL RESULTS

E.1 ADDITIONAL WARMSTARTING RESULTS

As part of our investigation into warmstarting, we investigated the effect of varying the amount of
information provided in the zero-shot prompts on the quality of warmstart initialization. Specifi-

3https://optuna.readthedocs.io/en/stable/reference/samplers/generated/
optuna.samplers.TPESampler.html

4https://github.com/hyperopt/hyperopt/blob/master/hyperopt/tpe.py
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Figure 20: Fine-grained warmstarting results.
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Figure 21: End-to-end performance of LLAMBO (generative surrogate model) on Bayesmark.
Average regret on public, private, and synthetic datasets.

cally, ▶ No Context, ▶ Partial Context and ▶ Full Context. We evaluate the effectiveness of
warmstarting by evaluating the search performance of GP and TPE under different initialization. In
Figure 20, we plot average regret across tasks for both BO models. We observe similar trends, that
increasing the informativeness of the prompts led to improved search performance. In Figure 25, we
visualize the correlation matrices between sampled warmstarting points, observing higher correla-
tions between points recommended by an LLM.

E.2 LLAMBO WITH GENERATIVE SURROGATE MODEL

Due to budgetary constraints, we did not evaluate LLAMBO with both proposed surrogate models
in Section 7. To determine the stronger surrogate model for our end-to-end evaluations, we tested
both methods in a constrained setting. This meant assessing both models on a single run across all
25 tasks within the public Bayesmark benchmark. The outcomes of this preliminary evaluation are
depicted in Figure 21. Our findings indicated that the LLAMBOwith a discriminative surrogate model
outperformed its counterpart. Consequently, we opted for the discriminative surrogate model for a
comprehensive evaluation. However, it’s worth noting that the LLAMBO using a generative surrogate
model showcased competitive results when compared with baseline measures. Both approaches
exhibited swift search and convergence in the initial trials, especially when n < 10. The generative
instantiation was a close second until the last few trials.

Drawing definitive conclusions from a single seed can be challenging. However, we postulate that
our model’s generative version might exhibit sensitivity to the τ hyperparameter, which dictates the
boundary between good and bad points. A recent study on inherent LLM biases in ICL by [64]
underscored the majority label bias—a tendency of the model to favor the majority label in the given
few-shot examples. This bias is intrinsically tied to our generative surrogate model’s design, where
τ determines the proportion of points labeled as good versus bad. We see a thorough examination of
this potential bias, an in-depth analysis of the τ hyperparameter’s sensitivity, and the exploration of
bias-correction techniques as key future research avenues to fully explore the generative surrogate
model’s capabilities.
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Figure 22: End-to-end performance of LLAMBO on Bayesmark. (Left) Average regret on public
datasets and (Right) private and synthetic datasets aggregated on all tasks.

Table 1: Average rank (↓) achieved for different
ML methods on public datasets.

DT MLP RF SVM ADA

TPE 6.16 5.12 5.34 4.64 5.52
GP (BoTorch) 6.72 5.62 5.94 6.06 4.74
GP DKL (BoTorch) 4.30 4.63 5.52 5.60 6.26
SMAC3 5.82 6.42 5.40 5.66 6.02
SKOpt (GP) 3.66 4.40 4.90 4.84 5.12
Turbo 5.86 4.40 5.60 5.38 5.78
Optuna (TPE) 6.58 5.34 5.48 5.08 5.08
HEBO 6.14 4.88 5.10 6.30 5.72
DNGO 7.74 8.62 8.08 6.62 7.14

LLAMBO 2.02 5.06 3.64 4.82 3.62

Table 2: Average rank (↓) achieved for different
ML methods on private and synthetic datasets.

DT MLP RF SVM ADA

TPE 4.85 4.83 4.95 4.83 3.98
GP (BoTorch) 6.70 6.18 7.08 7.10 5.45
GP DKL (BoTorch) 4.78 4.25 4.60 5.05 5.60
SMAC3 5.12 5.33 5.13 6.15 5.40
SKOpt (GP) 4.83 4.98 4.52 2.32 4.95
Turbo 5.80 5.07 5.77 6.10 4.88
Optuna (TPE) 4.98 5.75 5.37 5.12 5.52
HEBO 6.50 6.33 6.25 6.13 5.15
DNGO 7.83 8.17 9.12 7.32 7.62

LLAMBO 3.35 4.10 2.08 4.88 6.45

E.3 ADDITIONAL RESULTS ON BAYESMARK

In this section, we include additional results to supplement our end-to-end evaluation of Bayesmark.

Additional baselines. We include additional baselines in Figure 22, including an optimized version
of TPE from [75], DNGO (a Bayesian neural network approach [24]), STO (a neural network ap-
proach [39]), Turbo [76] (a GP approach that identifies ‘trusted regions’ of the input space to search
for improvements), and HEBO [77]. This presents a more comprehensive evaluation against a wide
array of BO approaches.

Search performance across ML models. In Tables 1 and 2 we compare the tuning performance of
BO methods for different types of ML models. We show the average rank achieved by methods at
the end of each search. Although LLAMBO consistently demonstrates the best overall performance,
it exhibits model-dependent variability. Notably, LLAMBO excels in tuning DecisionTree and Ran-
domForest across both public and private benchmarks. However, it does less well on SVMs. The
underlying cause of this remains speculative, but one plausible explanation is the inherent character-
istics of the black-box function being optimized. This sensitivity and such nuances are common to
all BO techniques, given their sensitivities to black-box functions with different attributes (e.g. the
choice of kernel directly affects the effectiveness of GP for specific functions) [78]. Exploring the
characteristics of black-box functions where our method shines is a crucial avenue for future re-
search and remains beyond the scope of our current study.

Individual task results. We plot individual task results by optimization metric (Figure 26), regret
(Figure 27), and average rank of BO methods (Figure 28) (all results are averaged over 5 runs).
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Figure 23: End-to-end performance of LLAMBO (discriminative surrogate model) on
HPOBench. Average regret on all tasks across five seeds.

E.4 ADDITIONAL RESULTS ON HPOBENCH

In this section, we include additional results on HPOBench to supplement our end-to-end evaluation.
This included a total of 24 tasks (where each task is a dataset-model pair, see Appendix D.2 for
details). For each task, we executed 5 seeded search. Figure 23 shows the average regret across
all tasks, we note that LLAMBO achieves the best tuning performance. Additionally, we observe
that, consistent with prior findings, LLAMBO excels in earlier stages of the search, when fewer
observations are available.

Individual task results. We plot individual task results by optimization metric (Figure 29), regret
(Figure 30), and rank of LLAMBO and other BO methods (Figure 31).

E.5 CLOCK TIME
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Figure 24: Average clock time (s) of BO al-
gorithms.

We analyze the runtimes of various algorithms. Fig-
ure 24 illustrates the average clock time per iteration
as a function of the number of observed points. It
is important to note that the times recorded repre-
sent solely the surrogate model’s computation dura-
tion, excluding any black-box query time. For con-
text, all runtime measurements were conducted on
an Intel i7-1260P (a consumer-grade laptop). Our
observations reveal that LLAMBO incurs a higher av-
erage clock time per iteration. However, it’s essen-
tial to highlight that this increased time is predom-
inantly influenced by external factors such as in-
ternet connectivity and API latency. Additionally,
in black-box optimization scenarios, querying the
black-box function is typically the primary compu-
tational expense, overshadowing the time required
for Bayesian Optimization (BO). Therefore, opti-
mizing the search process to minimize the number
of iterations performed, and consequently, the num-
ber of black-box queries (i.e. sample efficiency), is
arguably more significant than the time taken in each
iteration of a BO algorithm.
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(a) Task: DT on Digits.
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(b) Task: RF on Digits.
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(c) Task: DT on Wine.
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(d) Task: RF on Wine.
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Figure 25: Comparison of correlations between sampled initializations. Correlation matrix cal-
culated on 50 initialization sampled for each task.
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Figure 26: Bayesmark: individual HPT task results (task metric). Evaluations according to task
metrics, i.e. accuracy (↑) for classification tasks, and negative MSE (↑) for regression tasks, averaged
over 5 runs.
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Figure 27: Bayesmark: individual HPT task results (regret). Evaluations according to normal-
ized regret (↓), averaged over 5 runs.
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Figure 28: Bayesmark: individual HPT task results (rank). Evaluations according to average
rank (↓) during each search, averaged over 5 runs.
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Figure 29: HPOBench: individual HPT task results (task metric). Evaluations according to task
metrics, i.e. accuracy (↑), averaged over 5 runs.
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Figure 30: HPOBench: individual HPT task results (regret). Evaluations according to normal-
ized regret (↓), averaged over 5 runs.
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Figure 31: HPOBench: individual HPT task results (rank). Evaluations according to average
rank (↓), averaged over 5 runs.
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