
Published as a conference paper at ICLR 2025

KASA: KNOWLEDGE-AWARE SINGULAR-VALUE
ADAPTATION OF LARGE LANGUAGE MODELS

Fan Wang∗♡, Juyong Jiang∗♡, Chansung Park∗♠, Sunghun Kim†♡♣, Jing Tang†♡♣
♡The Hong Kong University of Science and Technology (Guangzhou)
♠Electronics and Telecommunications Research Institute
♣The Hong Kong University of Science and Technology
{csfanwang,csjuyongjiang,deep.diver.csp}@gmail.com
{hunkim,jingtang}@ust.hk

ABSTRACT

The increasing sizes of large language models (LLMs) result in significant com-
putational overhead and memory usage when adapting these models to specific
tasks or domains. Various parameter-efficient fine-tuning (PEFT) methods have
been devised to mitigate these challenges by training a small set of parameters
for the task-specific updates of the model weights. Among PEFT methods, LoRA
stands out for its simplicity and efficiency, inspiring the development of a series of
variants. However, LoRA and its successors disregard the knowledge that is noisy
or irrelevant to the targeted task, detrimentally impacting model performance and
leading to suboptimality. To address this limitation, we introduce Knowledge-
aware Singular-value Adaptation (KaSA), a PEFT method that leverages singular
value decomposition (SVD) with knowledge-aware singular values to dynamically
activate knowledge based on its relevance to the task at hand. We conduct exten-
sive experiments across a range of LLMs on tasks spanning natural language un-
derstanding (NLU), generation (NLG), instruction following, and commonsense
reasoning. The experimental results demonstrate that KaSA consistently outper-
forms FFT and 14 popular PEFT baselines across 16 benchmarks and 4 synthetic
datasets, underscoring our method’s efficacy and adaptability. The source code of
our method is available at https://github.com/juyongjiang/KaSA.

1 INTRODUCTION

Large language models (LLMs) pretrained on massive general domain data have shown remarkable
generalization ability, facilitating their application across diverse tasks (Zhao et al., 2023; Touvron
et al., 2023b; OpenAI, 2023; Yoo et al., 2024; Jiang et al., 2024). The adaptation of these pretrained
language models (PLMs) to specific downstream tasks generally involves full fine-tuning (FFT),
where all model parameters are updated and distinct replicas of the parameters are saved for each
task (Guo et al., 2021; Mao et al., 2022; Gao et al., 2024). However, the increasing size of LLMs
significantly raises the computational and memory costs associated with FFT, making FFT imprac-
tical in resource-constrained environments (Lester et al., 2021; Cai et al., 2024; Meng et al., 2024).
Consequently, a surge of parameter-efficient fine-tuning (PEFT) methods (Zaken et al., 2021; Li &
Liang, 2021; Hu et al., 2021; Liu et al., 2023; Pfeiffer et al., 2021; Houlsby et al., 2019; Liu et al.,
2024) have emerged, aiming to reduce the computational and memory costs by only updating a small
set of parameters while fixing the base model (Mao et al., 2022; Lialin et al., 2023).

Notably, LoRA (Hu et al., 2021) is popular for its simplicity and effectiveness (Wang et al., 2024a;
Liu et al., 2024; Gao et al., 2024). It reparameterizes the task-specific update ∆W ∈ Rn×m with
a couple of low-rank matrices, A and B, while keeping the base model W(0) ∈ Rn×m unchanged
during fine-tuning. Without loss of generality, we suppose n ≥ m to simplify the notation. The
fine-tuning process of LoRA can be formally expressed as W(0) + ∆W = W(0) + α

rBA, where

∗Equal contributors: Fan Wang, Juyong Jiang, and Chansung Park.
†Corresponding authors: Sunghun Kim and Jing Tang.

1

https://github.com/juyongjiang/KaSA

Published as a conference paper at ICLR 2025

B ∈ Rn×r, A ∈ Rr×m, α is a scaling constant, and the rank r ≪ m. A significant advantage
of LoRA is its practicality in integrating the low-rank matrices back into the base model, thereby
preserving the model architecture and avoiding additional inference latency (Hu et al., 2021; Han
et al., 2024; Meng et al., 2024).

Despite LoRA’s success, its initialization strategy, which employs random Gaussian noise for A and
zeros for B, creates an unguided subspace for the trainable parameters, causing slow convergence
and suboptimal performance (Meng et al., 2024; Wang et al., 2024a). To address this problem,
PiSSA (Meng et al., 2024) and MiLoRA (Wang et al., 2024a) use singular value decomposition
(SVD) for optimizing initialization. SVD can factorize a matrix into three distinct matrices (U,
Σ, V), where U and V are semi-orthogonal matrices, and Σ is a diagonal matrix containing sin-
gular values sorted in descending order. In particular, the magnitude of singular values represents
the importance of parametric knowledge encapsulated in their corresponding singular vectors, with
large values indicating important world knowledge and small values indicating noisy or long-tail
knowledge (Yan et al., 2021; Wang et al., 2024a; Yang et al., 2023; Sharma et al., 2023). PiSSA and
MiLoRA apply SVD to decompose the base model into two components: the principal components
correlated with major singular values, and the residual components associated with minor singular
values. Specifically, PiSSA fine-tunes the low-rank matrices, B and A, initialized with principal
components, while preserving the residual components frozen, resulting in faster convergence and
improved model performance (Meng et al., 2024). In contrast, MiLoRA focuses on fine-tuning B
and A initialized with the minor singular value components, while fixing the principal components,
aiming to boost performance and alleviate world knowledge forgetting (Wang et al., 2024a).

However, PiSSA and MiLoRA disregard two issues that can detrimentally affect model performance.
Firstly, a portion of the task-specific updates targets the weight changes of the noisy knowledge en-
coded in the base model, potentially leading to suboptimal performance. Secondly, the low-rank
matrices, whether initialized with the principal or residual components, inherit knowledge from the
base model. These components may include information that is irrelevant to the specific downstream
task, leading to conflicts within the parametric knowledge and degrading the model’s representa-
tional capability.

To address these problems, we propose a PEFT method, named KaSA (Knowledge-aware Singular-
value Adaptation), which leverages SVD with knowledge-aware singular values to dynamically ac-
tivate parametric knowledge according to its relevance to downstream tasks. Specifically, KaSA
begins by performing knowledge-based SVD truncation to the base model W(0) for removing the
minor singular components Wnoise ∈ Rn×m that contain noisy and long-tail knowledge (Gu et al.,
2024; Wang et al., 2024b; Meng et al., 2024). This process results in an SVD-truncated model
Wworld ∈ Rn×m that retains essential world knowledge. To maintain a consistent representa-
tional space between Wworld and its task-specific updates ∆W, KaSA reparameterizes ∆W in
the SVD form, ∆W = ∆U∆Σ∆V⊤, where ∆Σ comprises knowledge-aware singular values
(∆σ1, ...,∆σr). The singular-value adaptation presents dual benefits: 1) reparameterizing the task-
specific updates in SVD form ensures that these updates and Wworld share the same representational
space, thereby preserving knowledge consistency; 2) the knowledge-aware singular values learn to
activate the parametric knowledge according to its pertinence to particular downstream tasks, reduc-
ing the intervention of irrelevant knowledge, consequently enhancing model performance.

We conduct extensive experiments to fine-tune LLMs of varying sizes and architectures across var-
ious tasks, including natural language understanding (NLU), natural language generation (NLG),
instruction following, and commonsense reasoning. Substantial experimental results demonstrate
that KaSA consistently outperforms FFT and 14 existing popular PEFT baselines across different
LLMs on 16 benchmarks and 4 synthetic datasets, highlighting its efficacy and adaptability. In
summary, the key contributions in our work are as follows:

• We propose a novel PEFT method, KaSA, which leverages SVD with knowledge-aware
singular values to activate parametric knowledge based on its relevance to downstream
tasks, achieving superior performance over FFT and existing prevailing PEFT techniques
across various tasks.

• KaSA features a linear framework allowing seamless integration of the singular value adap-
tation module with the SVD truncated model, inducing no inference latency. Furthermore,

2

Published as a conference paper at ICLR 2025

our method supports training distinct adaptation modules for different tasks, all sharing a
single base model, thereby reducing the storage needs for task-switching.

• We conduct extensive experiments on NLU, NLG, instruction following, and common-
sense reasoning tasks using various LLMs on well-known benchmarks. Our KaSA consis-
tently outperforms FFT and 14 PEFT baselines across different benchmarks and synthetic
datasets, demonstrating its efficacy and adaptability.

• We make all high-quality synthetic instruction-following datasets generated by GPT4o pub-
licly available 1, enabling the community to enhance the functionality of PEFT and support
future research endeavors.

2 RELATED WORK

2.1 PARAMETER-EFFICIENT FINE-TUNING

The increasing LLM scale presents significant challenges to efficiently adapting these models to spe-
cific tasks (Lialin et al., 2023; Zhao et al., 2023). In response, a surge of PEFT methods has emerged,
reducing the computation burden by updating a minimal set of parameters during fine-tuning (Mao
et al., 2022; Karimi Mahabadi et al., 2021; Han et al., 2024). PEFT methods can be generally
categorized into selective, additive, and re-parameterized methods (Ding et al., 2022; Lialin et al.,
2023; Xu et al., 2023). Selective methods (Zaken et al., 2021; Sung et al., 2021; Guo et al., 2021;
He et al., 2023) train a predetermined set of the model’s existing parameters while keeping the rest
of the model intact. Additive methods (Houlsby et al., 2019; He et al., 2022a; Li & Liang, 2021; Liu
et al., 2023; Lester et al., 2021) introduce extra modules or parameters to fine-tune and maintain the
original base model frozen. Reparametrized methods (Hu et al., 2021; Dettmers et al., 2023; Zhang
et al., 2022; Valipour et al., 2023; Liu et al., 2024) reparameterize the model’s weight updates into an
equivalent low-rank form for fine-tuning. Among reparameterized approaches, LoRA stands out for
its simple yet efficient mechanism of employing two low-rank matrices to approximate task-specific
updates. The fine-tuned LoRA matrices can be integrated with the base model, ensuring no inference
latency. LoRA has inspired a series of variants, each targeting specific improvements. For instance,
DyLoRA (Valipour et al., 2023) trains the low-rank matrices across a spectrum of ranks by sorting
the representation learned at different ranks during training, shortening the training time. QLoRA
(Dettmers et al., 2023) combines 4-bit quantization with LoRA for enhanced resource efficiency.
DoRA (Liu et al., 2024) decomposes the base model into magnitude and direction components for
fine-tuning, reducing the number of trainable parameters and improving performance over LoRA.
Our method, KaSA, diverges from these reparametrized methods by employing a knowledge-aware
SVD structure, enhancing the fine-tuning efficacy further.

2.2 SINGULAR VALUE DECOMPOSITION IN NATURAL LANGUAGE PROCESSING

SVD plays a crucial role in various domains, such as model compression (Yuan et al., 2023; Wang
et al., 2024b; Hsu et al., 2021; Chen et al., 2021), dimensionality reduction of word embeddings
(Tanwar et al., 2018; Shyamasundar & Rani, 2016), and latent semantic structure analysis (Deer-
wester et al., 1990; Kou & Peng, 2015; Horasan et al., 2019). In the rapidly growing realm of
LLMs, SVD emerges as a promising, yet relatively underexplored, technique for PEFT. A series
of SVD-based PEFT methods exploit the relationship between SVD and matrix rank to ascertain
optimal ranks for specific downstream tasks. For example, AdaLoRA (Zhang et al., 2022) employs
SVD to reparameterize task-specific updates and adaptively determines the suitable rank through
importance scoring, thus improving the model performance and parameter efficiency. SARA (Gu
et al., 2024) conducts SVD at the initialization phase to identify the appropriate rank for each layer,
thereby maintaining the benefits of LoRA and boosting performance. PiSSA (Meng et al., 2024)
and MiLoRA (Wang et al., 2024a), as mentioned in Section 1, utilize SVD to optimize LoRA’s ini-
tialization. Specifically, PiSSA (Meng et al., 2024) only fine-tunes the low-rank matrices initialized
with the principal components associated with a few largest singular values, while preserving the
residual frozen. This initialization strategy facilitates faster convergence and enhanced performance.
Conversely, MiLoRA (Wang et al., 2024a) fine-tunes the minor components associated with mini-
mal singular values, enhancing model performance while preserving the model’s world knowledge.

1https://huggingface.co/llama-duo

3

https://huggingface.co/llama-duo

Published as a conference paper at ICLR 2025

≈ …

𝑼 ∈ ℝ!×#❄

… … … …

…
…
…

…
…

𝜮 ∈ ℝ#×#❄

…

𝑽$ ∈ ℝ#×%❄

Pre-trained
Weights

𝑾 ∈ ℝ!×%
❄

❄ Frozen 🔥 Learnable
Masked

∆𝑼$∆𝑼 = 𝑰

∆𝑼 ∈ ℝ!×&
🔥

∆𝑽$∆𝑽 = 𝑰

∆𝑽$ ∈ ℝ&×%
🔥

🔥…∆𝚺

…𝑥' 𝑥(𝑥)…

…𝑦' 𝑦(𝑦)…
Truncation

𝑘 = 𝑚 − 𝑟

Figure 1: The architecture of our proposed KaSA encompasses two stages: (Left) knowledge-based
SVD truncation to remove the noisy knowledge from the base model; (Right) knowledge-aware
singular-value adaptation to adjust singular values that dynamically activate knowledge across ∆W
model parameters based on its relevance to downstream tasks.

Unlike these methods, our method emphasizes the adaptive adjustment of singular values, allowing
nuanced and dynamic activation of parametric knowledge based on its importance to downstream
tasks.

3 METHODOLOGY

In this section, we commence with modeling the general PEFT process and training objective in
Section 3.1. We subsequently provide a detailed introduction of KaSA in Section 3.2, followed by
the description of its training objective in Section 3.3.

3.1 PROBLEM STATEMENT

Before introducing KaSA, it is essential to delineate and model the process and objective of PEFT
for LLMs based on the Transformer architecture (Vaswani, 2017). Fundamentally, PEFT is the
process of training a pretrained model to a targeted task using a task-specific dataset. It aims to
minimize the divergence between the predicted probability distribution of the fine-tuned model and
the actual distribution of the training data, while only modifying a small set of parameters.

Consider a pretrained model W(0), initially parameterized by Θ0. To adapt this model to a particu-
lar task, we employ PEFT using a dataset D = {(xl, yl)}Ql=1 comprising Q input-output instances.
The PEFT process utilizes a limited set of parameters, denoted as Ψ, to learn the task-specific up-
date △Θ, ensuring that |Ψ| ≪ |Θ0|. This results in a fine-tuned model W, parameterized by
Θ0 + △Θ(Ψ). The objective is to align the predicted probability distribution of W with the ac-
tual distribution of training data, thereby enhancing the fine-tuned model’s task performance. The
primary objective of PEFT is thus centered on the optimization of Ψ:

L1(Ψ) =
∑

(x,y)∈D

|y|∑
t=1

− log(PΘ0+△Θ(Ψ)(yt|x, y<t)) (1)

3.2 KNOWLEDGE-AWARE SINGULAR-VALUE ADAPTATION

As depicted in Fig.1, KaSA encompasses two primary stages: 1) the knowledge-based SVD trunca-
tion, which removes the noisy knowledge from the base model; and 2) knowledge-aware singular-
value adaptation, which involves adjustment of singular values that dynamically activate parametric
knowledge based on its relevance to the targeted task.

KaSA begins with a knowledge-based SVD truncation to the base model W(0) ∈ Rn×m. For sim-
plicity of denotation, we suppose n ≥ m. This process factories W(0) using SVD and subsequently

4

Published as a conference paper at ICLR 2025

truncates the minor singular components Wnoise ∈ Rn×m, removing noisy and long-tail knowl-
edge and resulting in a lower-rank model Wworld ∈ Rn×m. We use this refined model Wworld to
approximate the base model, making the adaptation of W(0) to be resembled by that of Wworld:

W = W(0) +∆W = UΣV⊤ +∆(UΣV⊤) =

m∑
i=1

uiσivi
⊤ +

m∑
i=1

∆(uiσiv
⊤
i) (2)

= (Wworld +Wnoise) + (∆Wworld +∆Wnoise) (3)

= (

m−r∑
i=1

uiσivi
⊤ +

r∑
i=1

uiσivi
⊤) + (

m−r∑
i=1

∆(uiσiv
⊤
i) +

r∑
i=1

∆(uiσiv
⊤
i)) (4)

≈Wworld +∆Wworld =

m−r∑
i=1

uiσivi
⊤ +

m−r∑
i=1

∆(uiσiv
⊤
i) (5)

where U ∈ Rn×m, V ∈ Rm×m, and V⊤ is the transpose of V. U = [u1, ..., um] and V =
[v1, ..., vm] are the corresponding matrices containing left and right singular vectors, respectively.
The diagonal matrix Σ ∈ Rm×m contains positive singular values (σ1, ..., σm) sorted from high to
low (σ1 ≥ σ2 ≥ · · · ≥ σm ≥ 0). The hyperparameter r represents the number of truncated minor
singular values, with r ≪ m. U and V are semi-orthogonal, satisfying that:

U⊤U = V⊤V = Im (6)

where the identity matrix Im ∈ Rm×m. Following the knowledge-based SVD truncation, we employ
the knowledge-aware singular-value adaptation, which reparameterizes the task-specific updates of
Wworld in the SVD form with knowledge-aware singular values. Therefore, the weight of a model
fine-tuned with KaSA can be formally expressed as:

W = W(0) +∆W ≈Wworld + η∆U∆Σ∆V⊤ =

m−r∑
i=1

ui(σi)vi
⊤ + η

r∑
j=1

∆uj(∆σj)∆vj
⊤

s.t. ∆U⊤∆U = ∆V⊤∆V = Ir (7)

where Ir ∈ Rr×r, η > 0 is a constant scaler, the diagonal matrix ∆Σ ∈ Rr×r comprising learnable
knowledge-aware singular values (∆σ1, ...,∆σr). The matrices ∆U and ∆V are semi-orthogonal,
ensuring that the updates retain necessary structural properties.

3.3 TRAINING OBJECTIVE

FFT typically serves as a comparative performance upper bound for PEFT methods (Valipour et al.,
2023). Consequently, we expect that the performance of the model fine-tuned with KaSA will
closely approximate that of FFT. We denote the FFT model as Wfft = W(0) +∆W. We impose
a regularization ∥Wfft −Wworld∥F , represented by the Frobenius norm, to constrain the task-
specific updates. Based on the properties of Frobenius norms, we can further explore the boundary
of the task-specific updates:

∥Wfft∥F+∥Wworld∥F ≥ ∥Wfft−Wworld∥F ≥ ∥∆U∆Σ∆V⊤∥F = ∥
r∑

j=1

∆uj(∆σj)∆vj
⊤∥F

(8)
To stabilize the model training and extend the searching space, we introduce L2 to minimize the
lower boundary of ∥Wfft −Wworld∥F :

L2(∆Σ) = ∥∆U∆Σ∆V⊤∥2F (9)

According to the Eckart–Young–Mirsky theorem (Eckart & Young, 1936), L2 is reformulated as:

L2(∆Σ) = ∥∆U∆Σ∆V⊤∥2F = ∥
r∑

j=1

∆uj(∆σj)∆vj
⊤∥2F =

r∑
j=1

(∆σj)
2 (10)

5

Published as a conference paper at ICLR 2025

Our method proposes knowledge-aware singular-value adaptation, which reparameterizes the task-
specific update in the SVD form and guides ∆U and ∆V to conform to orthogonality. Given this,
we introduce L3 to constrain ∆U and ∆V adhere to orthogonality, such that:

L3(Ψ) =
∥∥∆U⊤∆U− Ir

∥∥
F
+
∥∥∆V⊤∆V − Ir

∥∥
F

(11)
Overall, our methods leverage L1, L2, and L3 to serve jointly for optimizing the model’s task
performance while adhering to SVD structure. For adjusting L2 and L3, we introduce β > 0 and
γ > 0 as their corresponding scalers. The overall training objective of KaSA can be expressed as:

L(Ψ,∆Σ) = min
Ψ,∆Σ

(L1(Ψ,∆Σ) + βL2(∆Σ) + γL3(Ψ)) (12)

We present the PyTorch-style pseudocode for KaSA and its training objective in Appendix A.

4 EXPERIMENTS

In this section, we evaluate KaSA’s effectiveness across different downstream tasks, including natu-
ral language understanding (NLU), natural language generation (NLG) (see Appendix F.2), instruc-
tion following, and commonsense reasoning. For NLU tasks, we evaluate KaSA with RoBERTa
(Liu et al., 2021) and DeBERTaV3 (He et al., 2022b) on the GLUE (Wang et al., 2018) benchmark.
For NLG tasks, we assess our method with GPT-2 (Radford et al., 2019) on the E2E NLG Challenge
(Novikova et al., 2017) benchmark. We further assess the instruction following performance using
well-known LLMs, including LLaMA3 8B (Meta, 2024), Mistal 7B (Jiang et al., 2023), Gemma 7B
(Gemma Team, 2024), and LLaMA2 13B (Touvron et al., 2023b). These models are fine-tuned with
different PEFT methods using four synthetic datasets generated by GPT4o, each tailored to summa-
rization, classification, coding, and closed QA. GPT4o is then employed as a judge to evaluate the
fine-tuned models’ performance, assigning scores on a scale of 10. We also follow (Kopiczko et al.,
2023) and (Gao et al., 2024) to fine-tune the four models on the Alpaca dataset (Taori et al., 2023b)
and report evaluation results on MT-Bench, with GPT4 serving as the judge, yielding scores within
10. Additionally, we substantiate KaSA’s generality by fine-tuning LLaMA2 7B and LLaMA3 8B
models on the Commonsense170K dataset (Hu et al., 2023), which includes training sets from eight
commonsense reasoning datasets, and evaluating them on individual test sets of these constituent
datasets. Finally, we conduct ablation studies to investigate the impacts of different components,
budget parameter scalability, and the distribution of knowledge-aware singular values across various
layers. All experiments are conducted on NVIDIA A100-SXM4 (80GB) GPUs, except for the NLU
experiments, which are conducted on NVIDIA GeForce RTX 3090 (24GB) GPUs.

4.1 BASELINES

We compare KaSA with FFT and 14 PEFT baselines to substantiate its efficiency and robustness:
• Adapter-based methods We consider four representative Adapter tuning methods as baselines:
1) AdapterH (Houlsby et al., 2019); 2) AdapterD (Rücklé et al., 2021); 3) AdapterL (Lin et al., 2020);
and 4) AdapterP (Pfeiffer et al., 2021).
• LoRA-based methods We select LoRA and its variants: 1) LoRA (Hu et al., 2021); 2) DyLoRA
(Valipour et al., 2023); 3) VeRA (Kopiczko et al., 2023); and 4) DoRA (Liu et al., 2024).
• SVD-based methods Considering that our method is associated with SVD, we chose SVD-based
PEFT baselines: 1) AdaLoRA (Zhang et al., 2022); 2) PiSSA (Meng et al., 2024); 3) MiLoRA
(Wang et al., 2024a); 4) SARA (Gu et al., 2024); and 5) CorDA (Yang et al., 2024).
• Other methods Apart from the aforementioned baselines, we also consider other important fine-
tuning methods: 1) FFT; and 2) BitFit (Zaken et al., 2021).
To ensure a fair comparison with these baselines, we meticulously replicate the experimental con-
figurations as described in previous studies (Hu et al., 2021; Zhang et al., 2022; Gu et al., 2024).
Introductions of the baselines and comprehensive details of the experimental setup are provided in
Appendix B and Appendix E, respectively.

4.2 NATURAL LANGUAGE UNDERSTANDING

Models and Datasets. For NLU tasks, our method involves fine-tuning foundation models such
as RoBERTa-base (125M), RoBERTa-large (355M) (Liu et al., 2021), and DeBERTaV3-base (He

6

Published as a conference paper at ICLR 2025

Table 1: Performance of RoBERTa-base (RoBbase) and RoBERTa-large (RoBlarge) with different
adaptation methods on 6 datasets of the GLUE benchmark. We report the overall (matched and
mismatched) accuracy for MNLI, Matthew’s correlation coefficient (Mcc.) for CoLA, Pearson cor-
relation coefficient (Pcc.) for STS-B, and accuracy (Acc.) for all the remaining tasks. We report the
average result of five runs with different random seeds. The best results for each dataset are shown
in bold. Higher is better for all metrics.

Model(Method) # Trainable
Parameters

SST-2 MRPC CoLA QNLI RTE STS-B All
(Acc.) (Acc.) (Mcc.) (Acc.) (Acc.) (Pcc.) Avg.

RoBbase(FFT) 125.0M 94.8 90.2 63.6 92.8 78.7 91.2 85.2
RoBbase(BitFit) 0.1M 93.7 92.7 62.0 91.8 81.5 90.8 85.4
RoBbase(AdptD) 0.3M 94.2 88.5 60.8 93.1 71.5 89.7 83.0
RoBbase(AdptD) 0.9M 94.7 88.4 62.6 93.0 75.9 90.3 84.2
RoBbase(LoRA) 0.3M 95.1 89.7 63.4 93.3 78.4 91.5 85.2
RoBbase(AdaLoRA) 0.3M 94.5 88.7 62.0 93.1 81.0 90.5 85.0
RoBbase(DyLoRA) 0.3M 94.3 89.5 61.1 92.2 78.7 91.1 84.5
RoBbase(PiSSA) 0.3M 95.0 88.2 65.5 92.0 75.1 90.4 84.4
RoBbase(MiLoRA) 0.3M 94.6 88.7 63.1 92.8 80.5 91.3 85.2
RoBbase(KaSA) 0.3M 95.2 90.7 65.8 93.3 81.6 91.1 86.3
RoBlarge(FFT) 355.0M 96.4 90.9 68.0 94.7 86.6 92.4 88.2
RoBlarge(AdptP) 3.0M 96.1 90.2 68.3 94.8 83.8 92.1 87.6
RoBlarge(AdptP) 0.8M 96.6 89.7 67.8 94.8 80.1 91.9 86.8
RoBlarge(AdptH) 6.0M 96.2 88.7 66.5 94.7 83.4 91.0 86.8
RoBlarge(AdptH) 0.8M 96.3 87.7 66.3 94.7 72.9 91.5 84.9
RoBlarge(LoRA) 0.8M 96.2 90.2 68.2 94.8 85.2 92.3 87.8
RoBlarge(KaSA) 0.8M 96.9 91.2 69.4 94.9 88.8 92.5 89.0

et al., 2022b) using the GLUE (General Language Understanding Evaluation) benchmark (Wang
et al., 2018). The GLUE benchmark encompasses a wide array of datasets designed to test various
aspects of NLU, including question answering, natural language inference, sentiment analysis, and
textual entailment. In this context, our evaluation is conducted across 6 datasets from the GLUE:
SST-2, MRPC, CoLA, QNLI, RTE, and STS-B. Detailed statistical information about the GLUE
benchmark can be found in Appendix C.1.

Implementation Details. Basically, we follow the experimental setup applied in (Hu et al., 2021;
Zhang et al., 2022) to ensure a fair comparison. We randomly initialize the knowledge-aware sin-
gular values without bias, which only introduces negligible r coefficients in each layer. For all
evaluated datasets in GLUE, we meticulously tune the hyperparameters, including the learning rates
lr ∈ [1E-5, 1E-3], the rank of SVD truncation k ∈ {1, 2, 4, 8, 16, 32, 64, 128}, and two trade-off
loss coefficients β ∈ [1E-5, 1] and γ ∈ [1E-5, 1]. The results we present are the median outcomes
from 5 runs, each conducted with a distinct random seed. To maintain fair trainable parameters, we
fine-tune the query and value weights in each Transformer block and set a rank r = 8 across all
datasets. More detailed hyperparameters are presented in Appendix E.1.

Main Results. Table 1 presents the performance of RoBERTa-base and RoBERTa-large models
fine-tuned using our KaSA in contrast to PEFT baselines. KaSA achieves the best performance
across all datasets except MRPC and STS-B for the RoBERTa-base model. Notably, KaSA registers
the highest average performances for both RoBERTa models: 86.3% for RoBERTa-base and 89.0%
for RoBERTa-large. This underscores the effectiveness, adaptability, and scalability of our proposed
approach. In a significant comparison with FFT, our KaSA, which utilizes merely up to 0.24%
(approximately 0.3M/125.0M) of trainable parameters, outperforms FFT in 13 out of 14 scenarios
and matches its performance on the STS-B dataset for the RoBERTa-base model. The results from
DeBERTaV3-base are presented in Appendix F.1.

4.3 INSTRUCTION FOLLOWING

Models and Datasets. To validate KaSA’s adaptability and versatility, we extend our experiments
to include instruction tuning of LLaMA3 8B (Meta, 2024), Mistral 7B (Jiang et al., 2023), Gemma
7B (Gemma Team, 2024), and LLaMA2 13B (Touvron et al., 2023b). We fine-tune the models using
four synthetic instruction-following datasets produced by GPT4o, each containing 128K samples,
covering tasks such as summarization, classification, coding, and closed QA. Additionally, we fine-

7

Published as a conference paper at ICLR 2025

Table 2: Instruction following evaluation results with average scores for the most popular LLMs
fine-tuned on the 128k synthetic datasets and the Alpaca dataset, and evaluated by GPT4o and GPT4
with the scores within 10 on test subsets and MT-Bench, respectively.

Model Method # Trainable
Parameters Classification Summarization Coding Closed QA MT-Bench

Gemma 7B

w/o FT - 2.41 2.28 3.07 2.95 2.56
FFT 8.54B 5.58 7.78 7.61 8.88 4.69
LoRA 3.21M 5.98 7.29 7.75 8.18 4.32
PiSSA 3.21M 6.23 7.88 7.80 8.22 4.66
MiLoRA 3.21M 6.30 7.62 7.71 8.27 4.53
KaSA 3.22M 6.88 7.92 8.01 8.69 4.97

Mistral 7B

w/o FT - 2.31 2.81 2.32 3.02 1.16
FFT 7.25B 6.73 7.18 7.53 8.75 4.22
LoRA 3.40M 5.07 5.72 6.17 7.39 4.18
PiSSA 3.40M 5.46 5.86 6.41 7.24 4.24
MiLoRA 3.40M 5.33 5.89 6.52 7.28 4.29
KaSA 3.41M 5.72 6.82 6.74 7.75 4.58

LLaMA3 8B

w/o FT - 2.04 2.03 2.86 3.33 3.11
FFT 8.03B 5.44 7.80 7.59 8.90 4.11
LoRA 3.40M 6.12 7.20 7.37 6.02 4.19
PiSSA 3.40M 6.35 7.31 7.59 6.18 4.26
MiLoRA 3.40M 6.37 7.61 7.65 6.39 4.32
KaSA 3.41M 6.55 7.83 7.89 6.81 4.71

LLaMA2 13B

w/o FT - 1.00 1.08 1.01 1.27 1.01
FFT 13.02B 5.86 7.93 7.88 8.97 4.37
LoRA 6.55M 6.23 7.38 7.54 6.25 4.43
PiSSA 6.55M 6.47 7.45 7.83 6.54 4.39
MiLoRA 6.55M 6.45 7.63 7.85 6.82 4.51
KaSA 6.56M 6.86 7.92 8.09 7.12 4.95

tune using the Alpaca dataset (Taori et al., 2023b) and report the evaluation results on MT-Bench
(Zheng et al., 2023), with GPT4 serving as the judge, yielding scores within 10. The detailed
processing and statistical information of the synthetic datasets, Alpaca, and MT-Bench are presented
in Appendix C.3 and C.4, respectively.

Implementation Details. Following the experimental setup in (Park et al., 2024), we use the sum-
marization, classification, coding, and closed QA subsets from the “No Robots” (Rajani et al., 2023)
dataset as seeds to create distinct synthetic datasets via GPT4o. We fine-tune the mentioned LLMs
using these datasets and then prompt each fine-tuned model to generate four responses based on
prompts sampled from the test subsets of the seed dataset. To ensure fair comparisons, we maintain
a consistent fine-tuning and inference configuration across all fine-tuned models. We subsequently
use GPT4o as a judge to apply single-answer grading strategies to evaluate the response quality of
the fine-tuned LLMs on a scale from 1 to 10. For the Alpaca dataset, we fine-tune the specified mod-
els and prompt them to generate responses to questions from MT-Bench, with GPT4 serving as a
judge, assigning scores within 10. Detailed prompts for data synthesis and performance evaluation,
along with hyperparameter settings, are presented in Appendix C.3, D, and E.3, respectively.

Main Results. In Table 2, the results show that KaSA consistently surpasses LoRA, PiSSA, and
MiLoRA across four 128k synthetic datasets, regardless of the model used. Notably, Gemma 7B
and LLaMA3 8B, fine-tuned with KaSA, even surpass FFT in the classification, summarization, and
coding datasets. In the evaluation using MT-Bench, KaSA consistently outperforms FFT and PEFT
baselines on all models, showing remarkable efficacy. With significance tests showing (p < 0.05)
in 9 out of 12 experimental settings on MT-Bench, KaSA demonstrates significant performance
improvements over LoRA, PiSSA, and MiLoRA. These results further highlight the effectiveness,
robustness, and adaptability of our method.

4.4 COMMONSENSE REASONING

Models and Datasets. Following (Wang et al., 2024a), we fine-tune the LLaMA2 7B (Touvron
et al., 2023a) and the LLaMA3 8B (Meta, 2024) models using the Commonsense170K dataset,
aiming to conduct a comprehensive evaluation across eight well-known commonsense reasoning
tasks: BoolQ (Clark et al., 2019), PIQA (Bisk et al., 2020), SIQA (Sap et al., 2019), HellaSwag
(Zellers et al., 2019), WinoGrande (Sakaguchi et al., 2021), ARC-e, ARC-c (Clark et al., 2018), and
OBQA (Mihaylov et al., 2018).

8

Published as a conference paper at ICLR 2025

Table 3: Performance comparison of LLaMA2 7B and LLaMA3 8B with different adaptation meth-
ods on eight commonsense reasoning datasets. The symbol † indicates that the results are taken from
(Wang et al., 2024a). The best results are shown in bold. Higher is better for all tasks. ∗ denotes
that the best results do not surpass ChatGPT.

Model Method BoolQ PIQA SIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Avg.
ChatGPT† - 73.1 85.4 68.5 78.5 66.1 89.8 79.9 74.8 77.0

LLaMA2 7B

LoRA† 69.8 79.9 79.5 83.6 82.6 79.8 64.7 81.0 77.6
PiSSA† 67.6 78.1 78.4 76.6 78.0 75.8 60.2 75.6 73.8
MiLoRA† 67.6 83.8 80.1 88.2 82.0 82.8 68.8 80.6 79.2
KaSA 73.6 84.4∗ 80.2 91.5 84.5 84.7∗ 72.1∗ 81.2 81.5

LLaMA3 8B

LoRA† 70.8 85.2 79.9 91.7 84.3 84.2 71.2 79.0 80.8
PiSSA† 67.1 81.1 77.2 83.6 78.9 77.7 63.2 74.6 75.4
MiLoRA† 68.8 86.7 77.2 92.9 85.6 86.8 75.5 81.8 81.9
KaSA 73.6 88.1 80.4 94.7 85.5 89.7∗ 79.4∗ 85.6 84.6

88.5

89.0

89.5

90.0

90.5

%
 A

cc
ur

ac
y

MRPC

64.0

64.5

65.0

65.5

66.0

%
 M

at
th

ew
s C

or
r.

Co
ef

f.

CoLA

78

79

80

81

%
 A

cc
ur

ac
y

RTE
Base + SVD + Adaptive Singular-Value + Singular-Value Regularization + Orthogonal Regularization

Figure 2: Components ablation study about knowledge-based SVD truncation, knowledge-aware
singular value adaptation, singular value regularization L2, and orthogonal regularization L3 on
MRPC, CoLA, and RTE datasets.

Implementation Details. To ensure a fair comparison, we implement our KaSA within the LLM-
Adapters framework 2 (Hu et al., 2023), following MiLoRA (Wang et al., 2024a). We adhere strictly
to the hyperparameter configurations for training and evaluation as specified by (Wang et al., 2024a)
and (Hu et al., 2023), without any tuning, such as tuning the training epochs and learning rate. For
detailed hyperparameters utilized, refer to Appendix E.4.

Main Results. As illustrated in Table 3, KaSA consistently surpasses all established baselines for
both LLaMA2 7B and LLaMA3 8B across all eight benchmarks when using identical hyperparam-
eter settings. Notably, KaSA achieves the highest average score, reflecting significant performance
improvements across a diverse range of reasoning tasks. These results, obtained from rigorously
controlled comparisons, align with our observations in NLU, NLG, and instruction following tasks.
This consistency further corroborates the robustness and superiority of our method.

4.5 IN-DEPTH ANALYSIS

Components Ablation Study. Our method encompasses four principle components: knowledge-
based SVD truncation, knowledge-aware singular value adaptation, singular value regularization
L2, and orthogonal regularization L3. To examine the collective contributions of these compo-
nents, we conduct ablation experiments on MRPC, CoLA, and RTE datasets from GLUE using the
RoBERTa-base. Specifically, we compare KaSA with the following variants: (1) standard LoRA
(as the base); (2) SVD truncation + LoRA; (3) SVD truncation + knowledge-aware singular-value
adaptation; (4) SVD truncation + knowledge-aware singular-value adaptation + L2; (5) SVD trun-
cation + knowledge-aware singular-value adaptation + L2 + L3. From the results in Figure 2,
we observe that the model performances continually increase as more components are involved in
the fine-tuning. The fifth bar in Figure 2 shows that variant (5), the full implementation of KaSA,
achieves significant performance improvements across all three datasets. Conversely, excluding any
of these components results in performance declines ranging from 2.05% to 3.25%, underscoring
their collective importance in enhancing KaSA’s effectiveness. Additional results of the components
ablation study on SST-2, QNLI, and STS-B datasets are detailed in Appendix F.3.

2https://github.com/AGI-Edgerunners/LLM-Adapters

9

https://github.com/AGI-Edgerunners/LLM-Adapters

Published as a conference paper at ICLR 2025

0 1 2 3
Trainable Parameters (%)

87.5

88.0

88.5

89.0

89.5

90.0
%

 A
cc

ur
ac

y

MRPC

0 1 2 3
Trainable Parameters (%)

60

61

62

63

64

65

%
 M

at
th

ew
s C

or
r.

Co
ef

f.

CoLA

0 1 2 3
Trainable Parameters (%)

70

72

74

76

78

80

82

%
 A

cc
ur

ac
y

RTE
FFT LoRA PiSSA MiLoRA KaSA (Ours)

Figure 3: Budget parameter scalability of fine-tuning RoBERTa-base with LoRA, PiSSA, MiLoRA,
and KaSA on MRPC, CoLA, and RTE datasets.

1 2 3 4 5 6 7 8 9 10 11 12
Layer

1
2

3
4

5
6

7
8

Po
sit

io
n

MNLI Wq

1 2 3 4 5 6 7 8 9 10 11 12
Layer

MNLI Wv

1 2 3 4 5 6 7 8 9 10 11 12
Layer

QQP Wq

1 2 3 4 5 6 7 8 9 10 11 12
Layer

QQP Wv

1

0

1

Figure 4: The final distribution of knowledge-aware singular values for Wq and Wv upon fine-
tuning the RoBERTa-base model on the MNLI and QQP benchmarks. In this context, the x-axis
corresponds to the layer index, and the y-axis denotes the position index. Each value signifies the
relevance of the associated knowledge.

Budget Parameter Scalability. We compare the performance of fine-tuning RoBERTa-base with
LoRA, PiSSA, MiLoRA, and KaSA across various scales of trainable parameters. Specifically, we
employ these methods to the query and value weights of the transformer block and use a range
of ranks r = {1, 2, 4, 8, 16, 32, 64, 128} to control the parameter scales. Figure 3 shows that KaSA
consistently outperforms LoRA, as well as the SVD-based baselines, at equivalent parameter scales
across various datasets, indicating our method’s efficacy and robustness. Moreover, we observe
that enlarging trainable parameter scales does not invariably result in performance improvement.
Notably, both methods peak in performance at r = 8, with KaSA enhancing LoRA by 1.96% on
MRPC, 2.05% Mcc. on CoLA, and 2.53% Acc. on RTE.

Knowledge-Aware Singular-Value. The conventional FFT, which updates all parameters indis-
criminately, often incorporates irrelevant or minimally contributory knowledge to the task at hand,
leading to overfitting and a decline in model generalization capability (Valipour et al., 2023). To this
end, we propose a novel knowledge-aware singular value module to adaptively activate the relevant
task-specific knowledge. To validate our motivation, we visualize the knowledge-aware singular
values of Wq and Wv when fine-tuning RoBERTa-base on the MNLI and QQP benchmarks, as
depicted in Figure 4. We can clearly observe that different scales of singular values are allocated
across different layers, indicating that it dynamically prioritizes knowledge across parameters.

5 CONCLUSION

In this paper, we introduce a PEFT method, KaSA, which incorporates SVD with knowledge-aware
singular values for dynamic activation of parametric knowledge according to its relevance to the
given tasks. KaSA commences with knowledge-based SVD truncation of minor singular value
components to remove noisy knowledge within the base model. Subsequently, it reparameterizes
task-specific updates in the SVD form, leveraging knowledge-aware singular values for dynamic
knowledge activation according to relevance. Our extensive experiments on various LLMs across
tasks in NLU, NLG, instruction following, and commonsense reasoning reveal that KaSA consis-
tently surpasses FFT and a variety of prevailing PEFT baselines across well-known benchmarks and
our synthetic datasets, highlighting the superiority of our method.

10

Published as a conference paper at ICLR 2025

ACKNOWLEDGMENTS

Jing Tang’s work was partially supported by National Key R&D Program of China under Grant
No. 2023YFF0725100 and No. 2024YFA1012701, by the National Natural Science Foundation
of China (NSFC) under Grant No. 62402410 and No. U22B2060, by Guangdong Provincial
Project (No. 2023QN10X025), by Guangdong Basic and Applied Basic Research Foundation un-
der Grant No. 2023A1515110131, by Guangzhou Municipal Science and Technology Bureau un-
der Grant No. 2023A03J0667 and No. 2024A04J4454, by Guangzhou Municipal Education Bu-
reau (No. 2024312263), and by Guangzhou Municipality Big Data Intelligence Key Lab (No.
2023A03J0012), Guangzhou Industrial Information and Intelligent Key Laboratory Project (No.
2024A03J0628) and Guangzhou Municipal Key Laboratory of Financial Technology Cutting-Edge
Research (No. 2024A03J0630). This work was also supported by IITP grant funded by the Ko-
rea government(MSIT)[RS-2023-00215959, Development of Access Agnostic wired and wireless
integrated optical access technology].

REFERENCES

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical com-
monsense in natural language. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 7432–7439, 2020.

Weilin Cai, Juyong Jiang, Fan Wang, Jing Tang, Sunghun Kim, and Jiayi Huang. A survey on
mixture of experts. arXiv preprint arXiv:2407.06204, 2024.

Patrick Chen, Hsiang-Fu Yu, Inderjit Dhillon, and Cho-Jui Hsieh. Drone: Data-aware low-rank
compression for large nlp models. Advances in neural information processing systems, 34:29321–
29334, 2021.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. arXiv preprint
arXiv:1905.10044, 2019.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Scott Deerwester, Susan T Dumais, George W Furnas, Thomas K Landauer, and Richard Harshman.
Indexing by latent semantic analysis. Journal of the American society for information science, 41
(6):391–407, 1990.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
of quantized llms. arXiv preprint arXiv:2305.14314, 2023.

Ning Ding, Yujia Qin, Guang Yang, Fuchao Wei, Zonghan Yang, Yusheng Su, Shengding Hu, Yulin
Chen, Chi-Min Chan, Weize Chen, et al. Delta tuning: A comprehensive study of parameter
efficient methods for pre-trained language models. arXiv preprint arXiv:2203.06904, 2022.

Carl Eckart and Gale Young. The approximation of one matrix by another of lower rank. Psychome-
trika, 1(3):211–218, 1936.

Ziqi Gao, Qichao Wang, Aochuan Chen, Zijing Liu, Bingzhe Wu, Liang Chen, and Jia Li.
Parameter-efficient fine-tuning with discrete fourier transform. arXiv preprint arXiv:2405.03003,
2024.

Gemma Team. Gemma: Open models based on gemini research and technology. arXiv preprint
arXiv:2403.08295, 2024.

Jihao Gu, Shuai Chen, Zelin Wang, Yibo Zhang, and Ping Gong. Sara: Singular-value based adap-
tive low-rank adaption. arXiv preprint arXiv:2408.03290, 2024.

11

Published as a conference paper at ICLR 2025

Demi Guo, Alexander M Rush, and Yoon Kim. Parameter-efficient transfer learning with diff prun-
ing. In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long
Papers), pp. 4884–4896, 2021.

Zeyu Han, Chao Gao, Jinyang Liu, Sai Qian Zhang, et al. Parameter-efficient fine-tuning for large
models: A comprehensive survey. arXiv preprint arXiv:2403.14608, 2024.

Haoyu He, Jianfei Cai, Jing Zhang, Dacheng Tao, and Bohan Zhuang. Sensitivity-aware visual
parameter-efficient fine-tuning. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 11825–11835, 2023.

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-Kirkpatrick, and Graham Neubig. Towards
a unified view of parameter-efficient transfer learning. In International Conference on Learning
Representations, 2022a. URL https://openreview.net/forum?id=0RDcd5Axok.

Pengcheng He, Jianfeng Gao, and Weizhu Chen. Debertav3: Improving deberta using electra-
style pre-training with gradient-disentangled embedding sharing. In The Eleventh International
Conference on Learning Representations, 2022b.

Fahrettin Horasan, Hasan Erbay, Fatih Varçın, and Emre Deniz. Alternate low-rank matrix approxi-
mation in latent semantic analysis. Scientific Programming, 2019(1):1095643, 2019.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, An-
drea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for nlp.
In International Conference on Machine Learning, pp. 2790–2799. PMLR, 2019.

Yen-Chang Hsu, Ting Hua, Sungen Chang, Qian Lou, Yilin Shen, and Hongxia Jin. Language model
compression with weighted low-rank factorization. In International Conference on Learning
Representations, 2021.

Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen,
et al. Lora: Low-rank adaptation of large language models. In International Conference on
Learning Representations, 2021.

Zhiqiang Hu, Lei Wang, Yihuai Lan, Wanyu Xu, Ee-Peng Lim, Lidong Bing, Xing Xu, Soujanya
Poria, and Roy Ka-Wei Lee. Llm-adapters: An adapter family for parameter-efficient fine-tuning
of large language models. arXiv preprint arXiv:2304.01933, 2023.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

Juyong Jiang, Fan Wang, Jiasi Shen, Sungju Kim, and Sunghun Kim. A survey on large language
models for code generation. arXiv preprint arXiv:2406.00515, 2024.

Rabeeh Karimi Mahabadi, James Henderson, and Sebastian Ruder. Compacter: Efficient low-rank
hypercomplex adapter layers. Advances in Neural Information Processing Systems, 34:1022–
1035, 2021.

Dawid Jan Kopiczko, Tijmen Blankevoort, and Yuki Markus Asano. Vera: Vector-based random
matrix adaptation. arXiv preprint arXiv:2310.11454, 2023.

Gang Kou and Yi Peng. An application of latent semantic analysis for text categorization. Interna-
tional Journal of Computers Communications & Control, 10(3):357–369, 2015.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
tuning. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Pro-
cessing, pp. 3045–3059, 2021.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. In
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the
11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers),
pp. 4582–4597, 2021.

12

https://openreview.net/forum?id=0RDcd5Axok

Published as a conference paper at ICLR 2025

Vladislav Lialin, Vijeta Deshpande, and Anna Rumshisky. Scaling down to scale up: A guide to
parameter-efficient fine-tuning. arXiv preprint arXiv:2303.15647, 2023.

Zhaojiang Lin, Andrea Madotto, and Pascale Fung. Exploring versatile generative language model
via parameter-efficient transfer learning. In Findings of the Association for Computational Lin-
guistics: EMNLP 2020, pp. 441–459, 2020.

Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang, Kwang-
Ting Cheng, and Min-Hung Chen. Dora: Weight-decomposed low-rank adaptation. arXiv
preprint arXiv:2402.09353, 2024.

Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding, Yujie Qian, Zhilin Yang, and Jie Tang. Gpt
understands, too. AI Open, 2023.

Zhuang Liu, Wayne Lin, Ya Shi, and Jun Zhao. A robustly optimized bert pre-training approach with
post-training. In China National Conference on Chinese Computational Linguistics, pp. 471–484.
Springer, 2021.

Yuning Mao, Lambert Mathias, Rui Hou, Amjad Almahairi, Hao Ma, Jiawei Han, Wen Tau Yih, and
Madian Khabsa. Unipelt: A unified framework for parameter-efficient language model tuning.
In 60th Annual Meeting of the Association for Computational Linguistics, ACL 2022, pp. 6253–
6264. Association for Computational Linguistics (ACL), 2022.

Fanxu Meng, Zhaohui Wang, and Muhan Zhang. Pissa: Principal singular values and singular
vectors adaptation of large language models. arXiv preprint arXiv:2404.02948, 2024.

Meta. Introducing Meta Llama 3: The most capable openly available LLM to date. https:
//ai.meta.com/blog/meta-llama-3/, 2024.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. arXiv preprint arXiv:1809.02789,
2018.

Jekaterina Novikova, Ondřej Dušek, and Verena Rieser. The e2e dataset: New challenges for end-to-
end generation. In Proceedings of the 18th Annual SIGdial Meeting on Discourse and Dialogue,
pp. 201–206, 2017.

OpenAI. Gpt-4 technical report. ArXiv, abs/2303.08774, 2023. URL https://arxiv.org/
abs/2303.08774.

Chansung Park, Juyong Jiang, Fan Wang, Sayak Paul, Jing Tang, and Sunghun Kim. Llamaduo:
Llmops pipeline for seamless migration from service llms to small-scale local llms. arXiv preprint
arXiv:2408.13467, 2024.

Jonas Pfeiffer, Aishwarya Kamath, Andreas Rücklé, Kyunghyun Cho, and Iryna Gurevych. Adapter-
fusion: Non-destructive task composition for transfer learning. In Proceedings of the 16th Con-
ference of the European Chapter of the Association for Computational Linguistics: Main Volume,
pp. 487–503, 2021.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Nazneen Rajani, Lewis Tunstall, Edward Beeching, Nathan Lambert, Alexander M. Rush, and
Thomas Wolf. No robots. https://huggingface.co/datasets/HuggingFaceH4/
no_robots, 2023.

Andreas Rücklé, Gregor Geigle, Max Glockner, Tilman Beck, Jonas Pfeiffer, Nils Reimers, and
Iryna Gurevych. Adapterdrop: On the efficiency of adapters in transformers. In Proceedings
of the 2021 Conference on Empirical Methods in Natural Language Processing, pp. 7930–7946,
2021.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
sarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106, 2021.

13

https://ai.meta.com/blog/meta-llama-3/
https://ai.meta.com/blog/meta-llama-3/
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
https://huggingface.co/datasets/HuggingFaceH4/no_robots
https://huggingface.co/datasets/HuggingFaceH4/no_robots

Published as a conference paper at ICLR 2025

Maarten Sap, Hannah Rashkin, Derek Chen, Ronan LeBras, and Yejin Choi. Socialiqa: Common-
sense reasoning about social interactions. arXiv preprint arXiv:1904.09728, 2019.

Pratyusha Sharma, Jordan T Ash, and Dipendra Misra. The truth is in there: Improving reasoning
in language models with layer-selective rank reduction. arXiv preprint arXiv:2312.13558, 2023.

LB Shyamasundar and P Jhansi Rani. Twitter sentiment analysis with different feature extractors
and dimensionality reduction using supervised learning algorithms. In 2016 IEEE Annual India
Conference (INDICON), pp. 1–6. IEEE, 2016.

Yi-Lin Sung, Varun Nair, and Colin A Raffel. Training neural networks with fixed sparse masks.
Advances in Neural Information Processing Systems, 34:24193–24205, 2021.

Sudeep Tanwar, Tilak Ramani, and Sudhanshu Tyagi. Dimensionality reduction using pca and
svd in big data: A comparative case study. In Future Internet Technologies and Trends: First
International Conference, ICFITT 2017, Surat, India, August 31-September 2, 2017, Proceedings
1, pp. 116–125. Springer, 2018.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model.
https://github.com/tatsu-lab/stanford_alpaca, 2023a.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B Hashimoto. Stanford alpaca: An instruction-following llama model,
2023b.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023b.

Mojtaba Valipour, Mehdi Rezagholizadeh, Ivan Kobyzev, and Ali Ghodsi. Dylora: Parameter-
efficient tuning of pre-trained models using dynamic search-free low-rank adaptation. In Pro-
ceedings of the 17th Conference of the European Chapter of the Association for Computational
Linguistics, pp. 3266–3279, 2023.

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman.
Glue: A multi-task benchmark and analysis platform for natural language understanding. In
International Conference on Learning Representations, 2018.

Hanqing Wang, Zeguan Xiao, Yixia Li, Shuo Wang, Guanhua Chen, and Yun Chen. Milora:
Harnessing minor singular components for parameter-efficient llm finetuning. arXiv preprint
arXiv:2406.09044, 2024a.

Xin Wang, Yu Zheng, Zhongwei Wan, and Mi Zhang. Svd-llm: Truncation-aware singular value
decomposition for large language model compression. arXiv preprint arXiv:2403.07378, 2024b.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A Smith, Daniel Khashabi, and
Hannaneh Hajishirzi. Self-instruct: Aligning language models with self-generated instructions. In
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pp. 13484–13508, 2023.

Lingling Xu, Haoran Xie, Si-Zhao Joe Qin, Xiaohui Tao, and Fu Lee Wang. Parameter-efficient
fine-tuning methods for pretrained language models: A critical review and assessment. arXiv
preprint arXiv:2312.12148, 2023.

Chao Yan, Yankun Zhang, Weiyi Zhong, Can Zhang, and Baogui Xin. A truncated svd-based arima
model for multiple qos prediction in mobile edge computing. Tsinghua Science and Technology,
27(2):315–324, 2021.

14

https://github.com/tatsu-lab/stanford_alpaca

Published as a conference paper at ICLR 2025

Miaorui Yang, Yonggang Xu, Kun Zhang, and Xiangfeng Zhang. Singular component decomposi-
tion and its application in rolling bearing fault diagnosis. Measurement Science and Technology,
35(1):015120, 2023.

Yibo Yang, Xiaojie Li, Zhongzhu Zhou, Shuaiwen Leon Song, Jianlong Wu, Liqiang Nie, and
Bernard Ghanem. Corda: Context-oriented decomposition adaptation of large language models
for task-aware parameter-efficient fine-tuning. In The Thirty-eighth Annual Conference on Neural
Information Processing Systems, 2024.

Kang Min Yoo, Jaegeun Han, Sookyo In, Heewon Jeon, Jisu Jeong, Jaewook Kang, Hyunwook
Kim, Kyung-Min Kim, Munhyong Kim, Sungju Kim, et al. Hyperclova x technical report. arXiv
preprint arXiv:2404.01954, 2024.

Zhihang Yuan, Yuzhang Shang, Yue Song, Qiang Wu, Yan Yan, and Guangyu Sun. Asvd:
Activation-aware singular value decomposition for compressing large language models. arXiv
preprint arXiv:2312.05821, 2023.

Elad Ben Zaken, Shauli Ravfogel, and Yoav Goldberg. Bitfit: Simple parameter-efficient fine-tuning
for transformer-based masked language-models. arXiv preprint arXiv:2106.10199, 2021.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

Qingru Zhang, Minshuo Chen, Alexander Bukharin, Pengcheng He, Yu Cheng, Weizhu Chen, and
Tuo Zhao. Adaptive budget allocation for parameter-efficient fine-tuning. In The Eleventh Inter-
national Conference on Learning Representations, 2022.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min,
Beichen Zhang, Junjie Zhang, Zican Dong, et al. A survey of large language models. arXiv
preprint arXiv:2303.18223, 2023.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
chatbot arena. Advances in Neural Information Processing Systems, 36:46595–46623, 2023.

15

Published as a conference paper at ICLR 2025

A PSEUDOCODE FOR KASA

Algorithm 1 PyTorch-style pseudocode for KaSA.

1 class KaSA(nn.Module):
2 def __init__(self,
3 rank: int = 8, # kasa rank
4 alpha: int = 16, # kasa alpha
5 base_layer: nn.Module # pre-trained layer
6):
7 # definitions
8 self.r = rank
9 self.alpha = alpha

10 self.scaling = alpha / rank
11 self.in_features, self.out_features = base_layer.in_features,

base_layer.out_features
12
13 # Step 1: knowledge-based SVD truncation
14 self.svd_rank = self.in_features - self.r
15 U, S, Vh = torch.linalg.svd(base_layer.weight.data, full_matrices=False)
16 base_layer.weight.data = U[:, :self.svd_rank] @ torch.diag(S[:self.svd_rank]) @

Vh[:self.svd_rank, :]
17 self.base_layer = base_layer
18
19 # Step 2: knowledge-aware singular-value adaptation
20 self.delta_v = nn.Linear(self.in_features, self.r, bias=False)
21 self.delta_sigma = nn.Parameter(torch.randn(self.r), requires_grad=True)
22 self.delta_u = nn.Linear(self.r, self.out_features, bias=False)
23
24 def forward(self, x: torch.Tensor):
25 # Step 3: merge W + Delta_W (Eq.7)
26 Delta_W = self.delta_u @ torch.diag(self.delta_sigma) @ self.delta_v
27 result = self.base_layer(x)
28 result = result + torch.einsum(’ijk,kl->ijl’, x, Delta_W) * self.scaling
29 return result
30
31 def regularization_loss(
32 model: nn.Module,
33 beta: float,
34 gamma: float
35):
36 # definitions
37 l2_loss = 0.0
38 l3_loss = 0.0
39 num_param = 0
40 for name, param in model.named_parameters():
41 if param.requires_grad:
42 # singular value regularization
43 if ’delta_sigma’ in name:
44 num_param += 1
45 diag_norm = torch.sum(param ** 2)
46 l2_loss += diag_norm
47 # orthogonal regularization
48 elif ’delta_v’ in name or ’delta_u’ in name:
49 if ’delta_v’ in name:
50 matmul_result = torch.matmul(param.T, param)
51 else:
52 matmul_result = torch.matmul(param, param.T)
53
54 I = torch.eye(matmul_result.size(0), device=matmul_result.device)
55 diff_I = matmul_result - I
56 matrix_loss = torch.norm(diff_I, p=’fro’)
57 l3_loss += matrix_loss
58 auxi_loss = (beta * l2_loss + gamma * l3_loss) / num_param if num_param > 0 else 0.0
59 return auxi_loss

B BASELINES

To demonstrate its efficacy and robustness, we evaluate KaSA against FFT and multiple well-
regarded PEFT baselines. The descriptions of our selective baselines are as follows:

• Full fine-tuning (FFT) initializes the base model with pre-trained weights and biases, up-
dating all parameters during fine-tuning. Full fine-tuning typically serves as a comparative
performance upper bound for PEFT methods (Valipour et al., 2023).

• Bitfit (Zaken et al., 2021) fine-tunes the bias vectors, leaving other model parameters un-
changed.

16

Published as a conference paper at ICLR 2025

• Adapter tuning integrates tunable adapter layers into Transformer blocks, featuring a pair
of down-projection and up-projection matrices with a non-linear activation function in be-
tween. We compare four Adapter variants: AdapterH (Houlsby et al., 2019) inserts adapter
layers after the attention and the feed-forward block to fine-tune. AdapterD (Rücklé et al.,
2021) discards non-activated adapters to improve fine-tuning efficiency. AdapterL (Lin
et al., 2020) employs an efficient design, placing adapter layers after the MLP module and
LayerNorm. AdapterP (Pfeiffer et al., 2021) applies adapter after the feed-forward layer
and employs a two-stage learning strategy to enhance multi-task performance.

• LoRA (Hu et al., 2021) only fine-tunes a pair of low-rank matrices to approximate the task-
specific knowledge updates, effectively diminishing the number of trainable parameters.

• AdaLoRA (Zhang et al., 2022) reparameterizes task-specific knowledge updates in the
SVD form and adaptively allocates the parameter budget through pruning the less important
singular values.

• DyLoRA (Valipour et al., 2023) dynamically trains LoRA for a range of ranks, reducing
the training time to find a fixed, optimal rank.

• VeRA (Kopiczko et al., 2023) employs learnable vectors to adapt a shared pair of frozen
random matrices across layers to reduce the trainable parameters count.

• DoRA (Liu et al., 2024) decomposes the base model weights into magnitude and direction
components for fine-tuning, reducing the number of trainable parameters.

• PiSSA (Meng et al., 2024) performs SVD to portion the base model into principal compo-
nents with larger singular values and residual components with smaller ones, fine-tuning
the low-rank matrices initialized with the principle components while keeping the residual
components unchanged.

• MiLoRA (Wang et al., 2024a) also utilizes SVD for parameter initialization but diverges
from PiSSA by fine-tuning low-rank matrices initialized with residual components and
maintaining the principal ones unchanged.

• SARA (Gu et al., 2024) conducts SVD at the initialization stage to adaptively find the
appropriate rank for each layer.

• CorDA (Yang et al., 2024) performs SVD on the base model, oriented by the covariance
matrix that encodes the context of the target task. CorDA supports two fine-tuning modes:
1) initializing the tunable low-rank matrices with principal components for enhanced per-
formance; and 2) freezing the principle components while using minor components to ini-
tialize tunable matrices, thereby preserving world knowledge.

C DETAILS OF BENCHMARK DATASETS

C.1 GLUE BENCHMARK

For natural language understanding (NLU), we employ the GLUE benchmark (Wang et al., 2018),
which is a widely used benchmark containing a collection of 8 NLU datasets, including CoLA, SST-
2, MRPC, STS-B, QQP, MNLI, QNLI, and RTE. We present the statistical information of the GLUE
benchmark in the table below.

C.2 E2E NLG CHALLENGE

For natural language generation (NLG), we utilize the E2E (End-to-End) NLG Challenge dataset
(Novikova et al., 2017), which is commonly used for the evaluation of natural language generation
models. This dataset includes approximately 42k training samples, 4.6k validation samples, and
4.6k test samples from the restaurant domain. The E2E dataset involves evaluations across five
metrics: BLEU, NIST, METEOR, ROUGE-L, and CIDEr. Detailed explanations of these metrics
are as follows:

• BLEU (Bilingual Evaluation Understudy) evaluates the quality of machine-generated text
by comparing it to one or more human-generated reference translations.

17

Published as a conference paper at ICLR 2025

Table 4: Overview of task descriptions and dataset statistics within the GLUE benchmark.
Corpus Task # Train # Val # Test # Labels Metrics Domain

Single-Sentence Tasks

CoLA Acceptability 8.55k 1.04k 1.06k 2 Matthews Corr. misc.
SST-2 Sentiment 67.3k 872 1.82k 2 Accuracy Movie reviews

Similarity and Paraphrase Tasks

MRPC Paraphrase 3.67k 408 1.73k 2 Accuracy/F1 News
STS-B Sentence similarity 5.75k 1.5k 1.38k 1 Pearson/Spearman Corr. misc.
QQP Paraphrase 364k 40.4k 391k 2 Accuracy/F1 Social QA

Inference Tasks

MNLI NLI 393k 19.65k 19.65k 3 Accuracy misc.
QNLI QA/NLI 105k 5.46k 5.46k 2 Accuracy Wikipedia
RTE NLI 2.49k 277 3k 2 Accuracy News & Wikipedia

• NIST (National Institute of Standards and Technology) evaluates the quality of machine-
generated text by calculating the similarity between a machine output and a reference text
using weighted average of n-grams precision.

• METEOR (Metric for Evaluation of Translation with Explicit ORdering) measures the
alignment between the machine-generated and reference texts by calculating a score based
on the harmonic mean of precision and recall.

• ROUGE-L (Recall-Oriented Understudy for Gisting Evaluation) measures the longest
common subsequence(LCS) between the machine output and the reference. It specifically
focuses on the sequence of words, making it sensitive to the fluency and order of informa-
tion in the generated text.

• CIDEr (Consensus-based Image Description) measures the similarity of the machine-
generated text and the human-generated ground truth by considering both the n-gram over-
lap and the consensus among human annotators.

C.3 SYNTHETIC DATASET

For instruction following tasks, we employ synthetic datasets generated using GPT4o, based on
the foundational “No Robots” seed dataset (Rajani et al., 2023). Task-specific subsets, including
summarization, classification, coding, and closed QA, serve as seeds for generating synthetic data
through the framework proposed by (Park et al., 2024). Table 5 presents the volume of data samples
and token-level statistical information for these task-specific synthetic subsets.

Table 5: Data volume and token-level statistics of the train and test synthetic datasets generated by
GPT4o for each instruction-following task.

Task Split Data Volume Token-level Statistics
Seed Synthesis Min Max Avg. Std.

Summarization Train 395 128K 10 2,386 95 53
Test 25 100 148 1,150 426 245

Classification Train 334 128K 6 2,159 67 37
Test 16 64 46 520 119 109

Coding Train 334 128K 9 6,518 151 84
Test 16 64 49 821 317 189

Closed QA Train 245 128K 12 1,701 135 59
Test 15 60 126 1,578 411 378

C.4 ALPACA AND MT-BENCH

Alpaca (Taori et al., 2023a) is a well-known instruction dataset that contains 51k instruction-
following demonstrations generated by text-davinci-003. These data are synthesized using an im-
proved self-instruct method (Wang et al., 2023). The dataset is designed for instruction-tuning LLMs

18

Published as a conference paper at ICLR 2025

to improve their ability to follow instructions. Each sample includes an instruction, an input (if ap-
plicable), and an output. A specific example is presented below.

1 {
2 "instruction": "Create a classification task by clustering the given

list of items.",
3 "input": "Apples, oranges, bananas, strawberries, pineapples",
4 "output": "Class 1: Apples, Oranges\nClass 2: Bananas,

Strawberries\nClass 3: Pineapples",
5 "text": "Below is an instruction that describes a task, paired with an

input that provides further context. Write a response that
appropriately completes the request.\n\n### Instruction:\nCreate a
classification task by clustering the given list of items.\n\n###
Input:\nApples, oranges, bananas, strawberries, pineapples\n\n###
Response:\nClass 1: Apples, Oranges\nClass 2: Bananas,
Strawberries\nClass 3: Pineapples"

6 }

The instruction describes the targeted task to be performed by the model. Each of the 52k
instructions is unique. The input can represent the optional input to the task or serve as the
additional context to the corresponding instruction. The output is the response generated by text-
davinci-003 to the associated instruction. The Text is the formatted combination of the instruction,
input, and output, using the prompt template for fine-tuning models.

MT-bench (Zheng et al., 2023) contains 80 predefined open-ended questions across diverse domains
such as writing, roleplay, reasoning, math, coding, extraction, STEM, and humanities. These chal-
lenging questions are designed to automatically assess an LLM’s instruction-following capabilities,
with advanced service LLMs like GPT-4 acting as judges. Below is an example from MT-bench.

1 {
2 "question_id": 101,
3 "category": "reasoning",
4 "turns": [
5 "Imagine you are participating in a race with a group of people. If

you have just overtaken the second person, what’s your current
position? Where is the person you just overtook?",

6 "If the \"second person\" is changed to \"last person\" in the above
question, what would the answer be?"

7],
8 "reference": [
9 "You are in second place.",

10 "Uncertain."
11]
12 }

C.5 COMMONSENSE REASONING

The Commonsense170K dataset (Hu et al., 2023) contains data samples from eight well-known
commonsense reasoning tasks:

• BoolQ (Clark et al., 2019) dataset comprises 15,942 naturally occurring yes/no questions,
generated in unprompted and unconstrained settings.

• PIQA (Bisk et al., 2020) dataset consists of samples structured as multiple-choice ques-
tions, each presenting a question with two possible solutions that require physical com-
monsense to answer.

• SIQA (Sap et al., 2019) dataset contains multiple-choice questions regarding the prag-
matic implications of social events, which can measure LLMs’ abilities to address social
commonsense reasoning.

• HellaSwag (Zellers et al., 2019) dataset includes commonsense natural language inference
questions, offering a context and multiple endings to complete it.

19

Published as a conference paper at ICLR 2025

• WinoGrande (Sakaguchi et al., 2021) dataset is structured as a fill-in-the-blank task with
two options, designed to test a model’s ability to correctly solve the problem using com-
monsense reasoning.

• ARC-e and ARC-c are the Easy and Challenge Set of the ARC (Clark et al., 2018) dataset,
which contains grade-school level, multiple-choice science questions. Notably, the Chal-
lenge Set includes questions answered incorrectly by both the retrieval-based algorithm and
word co-occurrence algorithm.

• OBQA (Mihaylov et al., 2018) dataset contains multiple-choice elementary-level science
questions requiring multi-step reasoning, use of additional common and provided science
facts (open book), and rich text comprehension.

D PROMPT TEMPLATES

Following the typical practices of (Wang et al., 2023) and (Zheng et al., 2023), we leverage two
specialized prompt templates: 1) one for generating synthetic datasets and 2) another for evaluating
the outputs of fine-tuned LLMs. To be specific, Figure 5 presents the prompt template crafted
for generating synthetic data aimed at the summarization task, whereas Figure 6 shows the prompt
template for other tasks. We guide GPT4o in generating analogous data samples by using a reference
example pair consisting of a prompt $instruction and its corresponding response $response
from the training subset of the seed dataset. In addition, the template is designed to request multiple
synthetic data samples in a single query, thus maximizing the efficiency of API use. On the other
hand, Figure 7 shows the prompt template used for assessing the precision and similarity between
the response $lm response and $human response given the same $instruction from the
test subset of the seed dataset, where the $ symbol indicates a placeholder, designed to be substituted
with actual data during the runtime. We only report the precision results in our experiments for the
sake of brevity. Given the unique features of different downstream tasks, there is no optimal prompt
template that universally applies. Therefore, the actual content of the prompt template is adjusted to
align with the specific requirements of the task for which the synthetic dataset is being generated.

Prompt of Data Synthesis for Summarization Task

Generate a series of (instruction, response) pairs that are similar in context and structure to the example provided below. Each pair
should consist of a concise instruction followed by an appropriate, detailed response. The instruction should pose a clear task or
question, while the response should provide a comprehensive answer or solution that could be understood by someone with a basic
understanding of the subject.

Example pair:
Instruction: $instruction
Response: $response

Your task is to generate more pairs that maintain this level of clarity and detail. The topic is $topic. Write a long text of instruction by
yourself, then summarize the given instruction in a response. Ensure that the responses are informative and accurate, suitable for an
educational context.

Store the generated pairs in JSON format, with each pair as an object within an array. Each object should have two key-value pairs:
"instruction" and "response". For instance:

{
 "contents":
 [
 {"instruction": "text", "response": "text"},
 {"instruction": "text", "response": "text"},
 …
]
}

Remember to maintain consistency in the format and ensure the generated pairs are diverse and cover a broad range of subjects. You
must return the response in the asked format and you must not add any additional text in your response.

Figure 5: Prompt template of data synthesis for summarization tasks by GPT4o.

20

Published as a conference paper at ICLR 2025

Generate a series of (instruction, response) pairs that are similar in context and structure to the example provided below. Each pair
should consist of a concise instruction followed by an appropriate, detailed response. The instruction should pose a clear task or
question, while the response should provide a comprehensive answer or solution that could be understood by someone with a basic
understanding of the subject.

Example pair:
Instruction: $instruction
Response: $response

Your task is to generate more pairs that maintain this level of clarity and detail. The topic is $topic. Ensure that the responses are
informative and accurate, suitable for an educational context.

Store the generated pairs in JSON format, with each pair as an object within an array. Each object should have two key-value pairs:
"instruction" and "response". For instance:

{
 "contents":
 [
 {"instruction": "text", "response": "text"},
 {"instruction": "text", "response": "text"},
 …
]
}

Remember to maintain consistency in the format and ensure the generated pairs are diverse and cover a broad range of subjects. You
must return the response in the asked format and you must not add any additional text in your response.

Prompt of Data Synthesis for Classification, Coding, and Closed QA Tasks

Figure 6: Prompt template of data synthesis for classification, coding, and closed QA tasks by
GPT4o.

Generated Text Assessment Prompt

You are a meticulous evaluator assessing the quality of a response generated for a specific instruction. Your task is to assign a score
between 1 and 10 (whole numbers only, no decimals) based on how well the response satisfies the requirements of the instruction.
Consider the following criteria:

1. Completeness: Does the response fully address all aspects of the instruction?
2. Relevance: Is the response focused and aligned with the instruction's requirements?
3. Clarity: Is the response clear and easy to understand?

Provide a brief justification for your score, highlighting key strengths or weaknesses in the response. Output your evaluation in the
following JSON format:
{"score": [integer score between 1 and 10], "justification": "[brief explanation of the score]"}

Instruction:
$instruction

Response:
$lm_response

Example Output:
{
 "score": 9,
 "justification": "The response is complete, relevant, and mostly clear, with minor areas for improvement in phrasing.”
}

Figure 7: Prompt template to evaluate the fine-tuned model’s response by GPT4o.

E TRAINING DETAILS

E.1 NATURAL LANGUAGE UNDERSTANDING

For NLU tasks, we align with the experimental setup detailed in (Hu et al., 2021; Zhang et al., 2022)
for a fair comparison. The detailed configurations of KaSA for RoBERTa-base, RoBERTa-large,
and DeBERTaV3-base on the GLUE benchmark are depicted in Table 6 and Table 7, respectively.
It is important to note that our adaptation process for the MRPC, RTE, and STS-B tasks begins with
the pre-trained RoBERTa model, rather than a model that has already been adapted to MNLI. As a
result, we fine-tune the models on all datasets starting from their original pre-trained weights. The
results we present are the median results from 5 runs, each conducted with a distinct random seed.

21

Published as a conference paper at ICLR 2025

Table 6: The hyperparameters we used for RoBERTa-base and RoBERTa-large on the GLUE bench-
mark.

Model Settings MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B

Common
Optimizer AdamW
Warmup Ratio 0.06
LR Schedule Linear

RoBERTabase

Batch Size 32 128 32 32 32 128 32 32
Epochs 100 100 100 100 10 100 100 40
Learning Rate 5E-04 5E-04 4E-04 4E-04 4E-04 5E-04 4E-04 3E-04
Weight Decay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
KaSA Rank rquery = rvalue = 8
KaSA α 16
KaSA β 2.4E-3 1E-04 1E-01 1E-04 1E-02 1E-4 2.4E-01 1E-04
KaSA γ 2.4E-4 1E-03 1E-03 1E-03 1E-05 1E-3 2.4E-04 1E-05
KaSA Dropout 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Max Seq. Len. 512 512 512 512 512 512 512 512

RoBERTalarge

Batch Size - 64 32 32 8 - 32 32
Epochs - 10 10 100 20 - 100 20
Learning Rate - 4E-04 3E-04 3E-04 4E-04 - 4E-04 3E-04
Weight Decay - 0.1 0.1 0.0 0.0 - 0.0 0.0
KaSA Rank rquery = rvalue = 8
KaSA α 16
KaSA β - 1E-04 1E-02 2.4E-01 1E-02 - 1E-04 1E-03
KaSA γ - 1E-04 1E-02 2.4E-04 1E-03 - 1E-03 1E-02
KaSA Dropout - 0.0 0.0 0.0 0.0 - 0.0 0.0
Max Seq. Len. - 512 512 512 512 - 512 128

Table 7: The hyperparameters we used for DeBERTaV3-base on the GLUE benchmark.
Model Settings SST-2 MRPC CoLA QNLI RTE STS-B

Optimizer AdamW
Warmup Ratio 0.06
LR Scheduler Linear

DeBERTaV3-base

Batch size 128 32 32 16 32 32
Epochs 10 10 100 20 100 20
Learning Rate 5E-4 4E-4 4E-4 4E-4 5E-4 4E-4
Weight Decay 0.0 0.0 0.0 0.0 0.0 0.0
KaSA Rank rquery = rvalue = 8
KaSA α 16
KaSA β 1E-04 1.0 2.4E-01 1E-01 1E-04 1E-01
KaSA γ 1E-03 1.0 2.4E-04 1E-01 1E-03 1E-01
KaSA Dropout 0.0 0.0 0.0 0.0 0.0 0.0
Max Seq. Len. 512 512 64 512 512 512

E.2 NATURAL LANGUAGE GENERATION

For NLG tasks, our KaSA adheres to the experimental setup outlined in (Hu et al., 2021; Gu et al.,
2024) to ensure a fair comparison. The comprehensive configurations of KaSA for GPT-2 Medium
and GPT-2 Large models on the E2E NLG Challenge benchmark are depicted in Table 8.

E.3 INSTRUCTION FOLLOWING

For instruction following tasks, we adopt the framework proposed by (Park et al., 2024) to stream-
line the processes of data synthesis, fine-tuning, and evaluation. We fine-tune several of the most
popular LLMs, including LLaMA3 8B, Mistal 7B, Gemma 7B, and LLaMA2 13B, using KaSA and
different PEFT baselines to facilitate comparative analysis. Detailed hyperparameter configurations
are provided in Table 9.

22

Published as a conference paper at ICLR 2025

Table 8: The hyperparameters for GPT-2 on E2E NLG Challenge.
Stage Settings Medium Large

Training

Optimizer AdamW
Weight Decay 0.01 0.01
Dropout Prob 0.1 0.1
Batch Size 8
Epoch 5
Warmup Steps 500
LR Scheduler Linear
Label Smooth 0.1 0.1
Learning Rate 2E-4
KaSA Rank rquery = rvalue = 4
KaSA α 32
KaSA β 1E-4
KaSA γ 1E-3

Inference
Beam Size 10
Length Penalty 0.9 0.8
no repeat ngram size 4

Table 9: Detailed configurations used for the instruction following task.
Stage Settings Classification Summarization Coding Closed QA MT-Bench

Training

Optimizer AdamW
Batch Size Gemma 7B = 8, Mitral 7B = LLaMA3 8B = 16
Epoch 1
Warmup Ratio 0.1
Data Type Bfloat16
LR Scheduler Cosine
Learning Rate 2.0E-04
KaSA Rank rquery = rvalue = 8
KaSA α 16
KaSA β 1E-4
KaSA γ 1E-3
KaSA Dropout 0.05
Max Seq. Len. 512

Inference
Number of Beams 10
Length Penalty 0.8
No Repeat N-Gram Size 4

E.4 COMMONSENSE REASONING

We adhere strictly to the hyperparameter configurations for training and evaluation as specified
by (Wang et al., 2024a) and (Hu et al., 2023), without any tuning. The specific hyperparameter
configurations used are shown in Table 10.

F ADDITIONAL EXPERIMENTAL RESULTS

F.1 NATURAL LANGUAGE UNDERSTANDING ON DEBERTAV3-BASE

As demonstrated in Table 11, the DeBERTaV3-base results consistently surpass all baseline perfor-
mances across the datasets, with the exception of STS-B, achieving the highest average performance
of 88.72%. This further validates the efficacy of our method across different model architectures.

F.2 NATURAL LANGUAGE GENERATION

Models and Datasets. For NLG tasks, we employ KaSA and other PEFT baselines to fine-tune
both GPT-2 Medium (355M) and GPT-2 Large (774M) models (Radford et al., 2019) on the well-
established E2E (End-to-End) NLG Challenge benchmark (Novikova et al., 2017), which focuses
on restaurant domain information. The statistics of the E2E NLG Challenge benchmark and the
evaluation metrics applied are detailed in C.2.

23

Published as a conference paper at ICLR 2025

Table 10: The hyperparameter configurations for LLaMA2 7B and LLaMA3 8B on commonsense
reasoning tasks. To ensure a fair comparison, these configurations remain consistent across LoRA,
PiSSA, and MiLoRA, with the exception of the specific hyperparameters unique to KaSA, namely
β and γ, as well as PiSSA and MiLoRA, where α = 32.

Hyperparameters Commonsense Reasoning

LLaMA2 7B LLaMA3 8B

Optimizer AdamW
Batch Size 16
Epoch 3
Warmup Steps 100
LR Scheduler Linear
Learning Rate 3E-4
KaSA Rank 32
KaSA α 64
Dropout Prob 0.05
KaSA β 1E-2 1E-4
KaSA γ 1E-3 1E-3
Placement query, key, value, MLP up, MLP down

Table 11: Performance of DeBERTaV3-base (DeBv3) with different adaptation methods on 6
datasets of the GLUE benchmark. We report the average result of five runs with different ran-
dom seeds. The best results for each dataset are shown in bold. Higher is better for all metrics.

Model(Method) # Trainable
Parameters

SST-2 MRPC CoLA QNLI RTE STS-B All
(Acc.) (Acc.) (Mcc.) (Acc.) (Acc.) (Pcc.) Avg.

DeBv3(FFT) 184.0M 95.63 89.46 69.19 94.03 83.75 91.60 87.28
DeBv3(AdptH) 0.6M 95.30 89.22 67.87 93.76 85.56 91.30 87.17
DeBv3(AdptP) 0.6M 95.53 89.22 69.48 93.98 84.12 91.52 87.31
DeBv3(LoRA) 0.3M 94.95 89.71 68.71 94.03 85.56 91.68 87.44
DeBv3(AdaLoRA) 0.3M 95.80 90.44 70.04 94.49 87.36 91.63 88.29
DeBv3(PiSSA) 0.3M 95.30 91.42 70.29 93.59 84.84 91.37 87.80
DeBv3(MiLoRA) 0.3M 95.99 89.71 70.34 94.14 85.92 90.28 87.73
DeBv3(KaSA) 0.3M 96.22 91.42 70.41 94.55 88.09 91.62 88.72

Implementation Details. We adopt the experimental configurations delineated in (Hu et al., 2021;
Gu et al., 2024) for the fine-tuning of query and value weights within each Transformer block,
setting a rank of r = 4. The AdamW optimizer is employed, paired with a linear learning rate sched-
ule over 5 epochs. The reported results represent the mean outcomes from 3 runs, each initialized
with a distinct random seed, selecting the performance at the last epoch of each run for comparison.
For further details on the hyperparameters utilized, refer to E.2.

Main Results. We present the performance comparison in Table 12. As can be seen, our method
consistently outshines the baselines in language generation capabilities across various evaluated
metrics. More specifically, regarding the GPT-2 Medium model, KaSA outperforms the baselines
in 4 out of 5 metrics and achieves comparable performance (72.1 vs. 72.3) in the ROUGE-L metric
with the top-performing baseline, SARA. In the GPT-2 Large model, KaSA surpasses the baselines
across all metrics, further confirming its superior performance and scalability.

F.3 COMPONENTS ABLATION STUDY ON SST-2, QNLI, AND STS-B

Figure 8 shows the results of ablation studies conducted on the SST-2, QNLI, and STS-B datasets.
From the results, we observe that: 1) the model’s performance consistently improves with the in-
clusion of additional components during fine-tuning; 2) excluding any of these components leads to
a decline in performance. These findings align with that observed in Section 4.5, emphasizing the
effectiveness of each designed principal component of KaSA in enhancing model performance.

24

Published as a conference paper at ICLR 2025

Table 12: Performance of GPT-2 Medium and Large models with different adaptation methods on
the E2E NLG Challenge. For all metrics, higher values indicate better performance. ∗ indicates that
the results are reported in prior works. Best results are shown in bold.

Model(Method) # Trainable
Parameters BLEU NIST METEOR ROUGE-L CIDEr

GPT-2Medium(FFT*) 354.92M 68.2 8.62 46.2 71.0 2.47
GPT-2Medium(AdptL*) 0.37M 66.3 8.41 45.0 69.8 2.40
GPT-2Medium(AdptL*) 11.09M 68.9 8.71 46.1 71.3 2.47
GPT-2Medium(AdptH*) 11.09M 67.3 8.50 46.0 70.7 2.44
GPT-2Medium(LoRA*) 0.35M 70.4 8.85 46.8 71.8 2.53
GPT-2Medium(AdaLoRA) 0.38M 68.2 8.58 44.1 70.7 2.35
GPT-2Medium(DyLoRA) 0.39M 69.2 8.75 46.3 70.8 2.46
GPT-2Medium(VeRA) 0.098M 69.1 8.71 46.3 70.8 2.43
GPT-2Medium(SARA) 0.33M 70.4 8.84 46.7 72.3 2.55
GPT-2Medium(KaSA) 0.35M 70.6 8.86 46.9 72.1 2.55
GPT-2Large(FFT*) 774.03M 68.5 8.78 46.0 69.9 2.45
GPT-2Large(AdptL*) 0.88M 69.1 8.68 46.3 71.4 2.49
GPT-2Large(AdptL*) 23.00M 68.9 8.70 46.1 71.3 2.45
GPT-2Large(LoRA*) 0.77M 70.4 8.89 46.8 72.0 2.47
GPT-2Large(KaSA) 0.77M 70.5 8.90 47.0 72.0 2.50

94.4

94.6

94.8

95.0

95.2

%
 A

cc
ur

ac
y

SST-2

92.2

92.4

92.6

92.8

93.0

93.2

93.4

%
 A

cc
ur

ac
y

QNLI

90.2

90.4

90.6

90.8

91.0

91.2

%
 P

ea
rs

on
 C

or
r.

Co
ef

f.

STS-B
Base + SVD + Adaptive Singular-Value + Singular-Value Regularization + Orthogonal Regularization

Figure 8: Components ablation study about knowledge-based SVD truncation, knowledge-aware
singular value adaptation, singular value regularization L2, and orthogonal regularization L3 on
SST-2, QNLI, and STS-B datasets.

F.4 RANK k OF KNOWLEDGE-BASED SVD TRUNCATION

As depicted in Section 1, components of the original base model weight matrix W(0) associated with
smaller singular values are identified to contain noise or less relevant information (Sharma et al.,
2023; Wang et al., 2024a). This presence can adversely affect the convergence of model training
and its overall efficacy. We propose the truncation of these components to refine the focus of the
base model towards more pertinent knowledge domains, thereby mitigating the adverse impacts.
Therefore, we delve into the impact of varying the rank (denoted as k ∈ {1, 2, 4, 8, 16, 32, 64, 128})
of SVD truncation on the model’s performance, using RoBERTa-base on the MRPC, CoLA, and
RTE datasets. As illustrated in Figure 9, an enhancement in model performance is observed as
k increases from 1 to 8. Conversely, an escalation in k from 8 to 128 results in a decrement in
performance. This observation highlights the criticality of identifying an optimal SVD truncation
rank that achieves a delicate balance between incorporating world knowledge with large singular
values and excluding disruptive noise information with smaller singular values, thereby optimizing
model performance. The adaptive determination of the optimal SVD truncation rank emerges as a
compelling avenue for future research.

F.5 RANK r OF KNOWLEDGE-AWARE SINGULAR-VALUE ADAPTATION

We explore the impact of different rank settings on performance across a range of tasks. Specif-
ically, our analysis focuses on LoRA, MiLoRA, PiSSA, and KaSA, using ranks ranging from
r = {1, 2, 4, 8, 16, 32, 64, 128} on the CoLA, MRPC, and RTE datasets. As presented in Table 13,
KaSA consistently surpasses the baselines across various rank settings in 92 out of 96 cases across
the four datasets, highlighting the efficacy and robustness of our proposed method. To further our
investigation, we increase the rank to 128 and compare KaSA with LoRA, DoRA (Liu et al., 2024),

25

Published as a conference paper at ICLR 2025

1 2 4 8 16 32 64 128
Rank of SVD Truncation

88.5

89.0

89.5

90.0

90.5

91.0

%
 A

cc
ur

ac
y

MRPC

1 2 4 8 16 32 64 128
Rank of SVD Truncation

63.5

64.0

64.5

65.0

65.5

66.0

%
 M

at
th

ew
s C

or
r.

Co
ef

f.

CoLA

1 2 4 8 16 32 64 128
Rank of SVD Truncation

78.5

79.0

79.5

80.0

80.5

81.0

81.5

%
 A

cc
ur

ac
y

RTE

Figure 9: The impact of varying the rank of SVD truncation on the model’s performance across
three datasets.

Table 13: Performance comparison of LoRA and SVD-based baselines on CoLA, MRPC, and RTE
datasets across different ranks of knowledge-aware singular-value adaptation.

Dataset Method 1 2 4 8 16 32 64 128

CoLA

LoRA 60.08 61.17 63.14 63.77 63.58 63.82 62.70 63.45
MiLoRA 60.84 61.36 63.10 63.07 63.57 64.56 63.60 63.66
PiSSA 59.56 62.68 60.57 65.54 61.32 63.31 63.35 63.60
KaSA 63.32 65.58 63.56 65.82 64.39 65.05 64.82 65.06

MRPC

LoRA 88.73 87.74 88.97 88.73 89.46 89.95 88.97 88.97
MiLoRA 89.71 89.22 88.48 88.73 88.73 90.20 88.73 88.73
PiSSA 87.25 87.99 88.24 88.24 89.46 89.71 88.97 89.95
KaSA 89.46 87.99 90.20 90.69 89.95 90.44 90.20 90.44

RTE

LoRA 71.84 72.56 75.45 78.70 77.26 77.98 79.78 78.70
MiLoRA 75.09 80.14 79.42 80.51 79.06 79.81 81.59 80.87
PiSSA 68.95 73.29 76.17 75.09 76.90 78.34 76.53 79.42
KaSA 77.62 77.62 78.70 81.59 80.51 81.23 82.67 81.23

CorDA (Yang et al., 2024), PiSSA, and MiLoRA. The comparison is conducted by fine-tuning and
evaluating the RoBERTa-base model on the GLUE benchmark. The results, as illustrated in Table
14, show that KaSA consistently outperforms all baselines across six datasets, with a slight excep-
tion for the QNLI dataset, where it performs marginally worse than FFT (92.71 vs. 92.8). This is in
line with the previous observations, further demonstrating the robustness and scalability of KaSA.

F.6 PARAMETER INITIALIZATION OF ∆W = ∆U∆Σ∆V⊤

In the context of PEFT, the initialization of tunable parameters is pivotal for optimizing model per-
formance, as evidenced by (Hu et al., 2021; Meng et al., 2024; Wang et al., 2024a). As explicated
in Section 2.2, PiSSA (Meng et al., 2024) and MiLoRA (Wang et al., 2024a) initialize the low-rank
adaptation block by differentiating components based on their singular value magnitudes. It under-
scores the necessity of exploring the influence of various initialization strategies on the task-specific
knowledge update, represented as ∆W = ∆U∆Σ∆V⊤, and its consequent impact on model effi-
cacy. In this study, we adopt a default initialization strategy where ∆U = 0 and both ∆V and ∆Σ
follow a normal distributionN (µ, σ2). We examine three distinct variants of initialization strategies:
1) initializing ∆U∆Σ∆V⊤ with Wprincipal; 2) using Wminor for initialization; and 3) adopting
a normal distribution N (µ, σ2) for both ∆U and ∆Σ while setting ∆V to 0. The comparative
outcomes of these strategies across three datasets are illustrated in Figure 10. Our analysis reveals
that different initialization strategies distinctly affect model performance across various datasets.
Notably, our adopted strategy ∆U = 0, {∆V,∆Σ} ∼ N (µ, σ2), consistently outperforms the al-
ternative variants across all evaluated datasets and metrics. Among the variant strategies examined,
initializing with ∆U∆Σ∆V⊤ = Wprincipal demonstrates superior performance on the CoLA and
RTE datasets, yet underperforms when utilizing ∆U∆Σ∆V⊤ = Wminor on the MRPC datasets.
This observation leads us to conjecture that the innovative design of our knowledge-aware singular-

26

Published as a conference paper at ICLR 2025

Table 14: Performance of RoBERTa-base with different adaptation methods using a large rank r
of 128 on 6 datasets from the GLUE benchmark. We report the overall (matched and mismatched)
accuracy for MNLI, Matthew’s correlation coefficient (Mcc.) for CoLA, Pearson correlation coef-
ficient (Pcc.) for STS-B, and accuracy (Acc.) for all the remaining tasks. The symbols † and ∗

indicate that the results are taken from (Gao et al., 2024) and (Yang et al., 2024), respectively. We
report the average result of five runs with different random seeds. The best results for each dataset
are shown in bold. Higher is better for all metrics.

Method # Trainable
Parameters

SST-2 MRPC CoLA QNLI RTE STS-B All
(Acc.) (Acc.) (Mcc.) (Acc.) (Acc.) (Pcc.) Avg.

FFT† 125.0M 94.8 90.2 63.6 92.8 78.7 91.2 85.2
LoRA* 21M 94.15 82.84 54.24 92.48 64.26 88.58 79.43
DoRA* 21M 93.58 83.58 51.93 92.59 64.98 88.71 79.23

CorDA* 21M 93.12 89.71 59.60 91.49 76.17 90.17 83.38
PiSSA 21M 94.61 89.95 63.60 92.90 79.42 90.55 85.17
MiLoRA 21M 94.72 88.73 63.66 92.55 80.87 90.79 85.22
KaSA 21M 95.30 90.44 65.06 92.71 81.23 91.36 86.02

89.0

89.5

90.0

90.5

%
 A

cc
ur

ac
y

MRPC
U V = Wprincipal

U V = Wminor

{ U, } (, 2), V = 0
U = 0, { V, } (, 2)

60

61

62

63

64

65

66

%
 M

at
th

ew
s C

or
r.

Co
ef

f.

CoLA

76

78

80

82

%
 A

cc
ur

ac
y

RTE

Figure 10: The impact of parameter initialization on the task-specific knowledge update, denoted as
∆W = ∆(USV⊤) across three datasets.

value module significantly enhances the model’s capacity to rapidly identify optimal parameters
within a larger parameter search space, thereby optimizing performance.

F.7 SINGULAR-VALUE AND ORTHOGONAL REGULARIZATION

To evaluate the effectiveness of singular-value regularization ∥∆Σ∥F and orthogonal regularization∥∥∆U⊤∆U− Ir
∥∥
F

and
∥∥∆V⊤∆V − Ir

∥∥
F

, we adopt the training configuration outlined in Section
4.2. This involves fine-tuning a RoBERTabase model on the CoLA dataset using KaSA. We then
plot the loss curve of these three regularization terms throughout the training process. As depicted
in Figure 11, the application of the adapter to the query Wq and value Wv matrices results in an ini-
tial increase followed by a decrease in singular-value regularization ∥∆Σ∥F . This pattern suggests
that the model progressively fine-tunes the significance of task-specific knowledge by adjusting the
singular values. Intriguingly, the trend observed for orthogonal regularization

∥∥∆U⊤∆U− Ir
∥∥
F

and
∥∥∆V⊤∆V − Ir

∥∥
F

varies between the query Wq and value Wv matrices, indicating distinct
adaptation behaviors. To elucidate further, within the query matrix Wq , the trend of orthogonal
regularization

∥∥∆V⊤∆V − Ir
∥∥
F

mirrors that of the singular-value regularization ∥∆Σ∥F , ini-
tially increasing before decreasing. Conversely,

∥∥∆U⊤∆U− Ir
∥∥
F

exhibits an opposing pattern,
decreasing and then increasing. In the value matrix Wv , the behaviors of

∥∥∆U⊤∆U− Ir
∥∥
F

and∥∥∆V⊤∆V − Ir
∥∥
F

demonstrate a reversal compared to those observed in the query Wq . This
finding diverges from the trends reported in AdaLoRA (Zhang et al., 2022). To delve deeper, we
examine the overall training loss, as depicted in the lower part of Figure 11. It is observed that the
overall training loss converges to a notably low value (e.g., 0.058) by the end of the training period.
Based on these observations, we hypothesize that the imposition of orthogonality on either the ∆U
or ∆V⊤ matrices may facilitate a more efficient search for an optimal representation by narrowing
the search space. This premise will be explored in our future research.

27

Published as a conference paper at ICLR 2025

0 2000 4000 6000 8000 10000 12000
Training Steps

27.6

27.8

28.0

28.2

28.4

28.6
Re

gu
la

riz
at

io
n

Query Wq

0 2000 4000 6000 8000 10000 12000
Training Steps

27.6

27.8

28.0

28.2

28.4

Value Wv

9.4

9.6

9.8

10.0

10.2

6.80

6.85

6.90

6.95

7.00

7.05

7.10

U U Im F (left y-axis) F (right y-axis) V V Im F (left y-axis)r r

0 2000 4000 6000 8000 10000 12000
Training Steps

0.2

0.4

0.6

0.8

1.0

Ov
er

al
l L

os
s

Figure 11: The singular-value and orthogonal regularization curve at the last layer of RoBERTabase
(Upper) and overall training loss curve (Lower) on CoLA dataset.

Table 15: Sensitivity of regularization coefficients β and γ for RoBERTa-base on CoLA, RoBERTa-
large on SST-2, and DeBERTa-v3-base on MRPC.

Hyperparameters RoBERTa-base RoBERTa-large DeBERTa-v3-base
CoLA SST-2 MRPC

β = 0.01, γ = 1.0 0.6581 0.9587 0.9044
β = 0.1, γ = 0.0001 0.6334 0.9587 0.8971
β = 0.01, γ = 0.1 0.6414 0.9622 0.8995
β = 0.0, γ = 0.0 0.646 0.9599 0.902
β = 0.001, γ = 0.01 0.6358 0.9587 0.9093
β = 0.001, γ = 0.001 0.6553 0.9576 0.9093
β = 0.01, γ = 0.001 0.6506 0.5092 0.902
β = 0.1, γ = 0.01 0.6333 0.9587 0.902
β = 0.0001, γ = 0.1 0.6485 0.9622 0.8995
β = 0.01, γ = 0.0001 0.6347 0.9576 0.9044
β = 0.0001, γ = 0.01 0.658 0.9599 0.9069
β = 1.0, γ = 0.1 0.6241 0.9599 0.8971
β = 1.0, γ = 1.0 0.6291 0.9553 0.9142
β = 0.1, γ = 1.0 0.6436 0.961 0.9093
β = 0.1, γ = 0.1 0.653 0.9587 0.9082
β = 1.0, γ = 0.01 0.6397 0.9587 0.8995
β = 0.01, γ = 0.01 0.6433 0.9576 0.8995
β = 0.0001, γ = 0.0001 0.6565 0.9687 0.9044
β = 0.0001, γ = 0.001 0.6582 0.961 0.9093
β = 0.1, γ = 0.001 0.6338 0.9599 0.902
β = 0.001, γ = 0.0001 0.6504 0.961 0.9093
β = 0.001, γ = 0.1 0.648 0.9679 0.8971

F.8 HYPERPARAMETER SENSITIVITY ANALYSIS

KaSA introduces two key hyperparameters, β and γ, to scale the singular value regularization L2

and orthogonal regularization L3, respectively. To gain a deeper understanding of how these regular-
ization coefficients influence performance, we meticulously tune the two coefficients, β ∈ [1E-5, 1]

28

Published as a conference paper at ICLR 2025

Table 16: Efficiency and complexity analyses of the NLU task on the CoLA benchmark with
RoBERTa-base 125M and the NLG task on the MT-Bench benchmark with LLaMA3 8B, using dif-
ferent adaptation methods on a single NVIDIA GeForce RTX 3090 (24GB) GPU and an NVIDIA
A100-SXM4 (80GB) GPU, respectively.

NLU RoBERTa-base 125M on Single NVIDIA GeForce RTX 3090 (24GB) GPU
LoRA PiSSA MiLoRA KaSA

Trainable Parameters 0.23716% 0.23716% 0.23716% 0.23732%
GPU Memory 1638M 1638M 1638M 1650M
Training FLOPs (×109 per sample) 2.0306 1.9270 1.9270 2.1503
Training Latency (per epoch) 9.4868s 9.8825s 9.9267s 11.3679s
Inference Latency (per batch size 32) 0.0173s 0.0108s 0.0165s 0.0119s

Matrix Rank rank(W) = m rank(W) = m− r rank(W) = m− r rank(W) = m− r
rank(∆W) = r rank(∆W) = r rank(∆W) = r rank(∆W) ≤ r

CoLA Performance (Mcc.) 63.4% 65.5% 63.1% 65.8%

NLG LLaMA3 8B on Single NVIDIA A100-SXM4 (80GB) GPU
LoRA PiSSA MiLoRA KaSA

Trainable Parameters 0.04241% 0.04241% 0.04241% 0.04242%
GPU Memory 71023M 71023M 71023M 71095M
Training FLOPs (×109 per sample) 240.2583 240.2583 240.2583 240.2585
Training Latency (per epoch) 2469.6s 2543.1s 2476.8s 2528.9s
Inference Latency (per batch size 16) 0.7898s 0.7687s 0.7705s 0.7771s

Matrix Rank rank(W) = m rank(W) = m− r rank(W) = m− r rank(W) = m− r
rank(∆W) = r rank(∆W) = r rank(∆W) = r rank(∆W) ≤ r

MT-Bench Performance (Scores) 4.1937 4.2625 4.3187 4.7125

and γ ∈ [1E-5, 1], and conduct a sensitivity analysis for RoBERTa-base on CoLA, RoBERTa-large
on SST-2, and DeBERTa-v3-base on MRPC. The results, presented in Table 15, demonstrate that
KaSA exhibits robustness to variations in the regularization coefficients β and γ.

F.9 EFFICIENCY AND COMPLEXITY ANALYSIS

We conduct a comprehensive efficiency and complexity comparison between LoRA and SVD base-
lines across different tasks and model scales, as shown in Table 16. The dynamic singular value
adaptation introduced in KaSA is a learnable one-dimensional vector of size r ≪ m and requires
parameter regularizations, incurring negligible training overheads compared to the standard LoRA.
In addition, due to the low-rank approximation of the original matrix, we reduce the rank of W from
m to m− r, accelerating the inference particularly for small-scale language models like RoBERTa-
base 125M (i.e., with small m).

As can be seen, compared to LoRA, KaSA’s extra training overhead is less than 20% (resp. 3%) for
the NLU (resp. NLG) tasks, while speeding up the inference by 1.45x (resp. 1.02x) times. When
compared to PiSSA and MiLoRA, our method incurs an average of less than 13% extra training
overhead for NLU tasks, while maintaining comparable or improved inference latency. For NLG
tasks, our method introduces similar training overhead or inference latency.

G INITIALIZATION AND SINGULAR-VALUE ADAPTATION ANALYSIS

In this section, we conduct a detailed analysis of initialization dilemmas associated with PiSSA and
MiLoRA, and subsequently explore the core advantages of KaSA, aiming to provide a comprehen-
sive understanding of the foundational principles governing these PEFT methods. Before embark-
ing on a detailed examination of each method, we summarize the general mechanism underpinning
PEFT. Considering a base model characterized by a weight matrix W(0) ∈ Rn×m, PEFT aims to
efficiently fine-tune W(0) by learning a task-specific update ∆W with as few trainable parameters
as possible, such that the updated weights W(0) +∆W are better aligned with the requirements of
downstream tasks. PEFT approaches generally involve keeping the base model W(0) frozen during
training, while exclusively updating the parameters of ∆W.

29

Published as a conference paper at ICLR 2025

G.1 INITIALIZATION DILEMMAS OF ∆W IN PISSA AND MILORA

PiSSA employs SVD on the base model weight matrix W(0) ∈ Rn×m, decomposing it as:

W(0) = UΣV⊤ (13)

where U ∈ Rn×m and V ∈ Rm×m are semi-orthogonal matrices, and Σ ∈ Rm×m is a diagonal
matrix with singular values (σ1, ..., σm) satisfying (σ1 ≥ σ2 ≥ · · · ≥ σm ≥ 0). Following the
standard SVD, PiSSA splits the base model into two distinct components: the principle low-rank
matrix Wpri, which encompasses the largest r singular values, and the residual matrix Wres, which
contains the remaining singular values:

W(0) = Wpri +Wres (14)

Wpri = UpriΣpriV
⊤
pri,Wres = UresΣresV

⊤
res (15)

where Upri = U[:, : r], Σpri = diag(σ1, . . . , σr), Vpri = V[:, : r], Ures = U[:, r :], Σres =
diag(σr+1, . . . , σm), and Vres = V[:, r :]. Subsequently, PiSSA subtracts Wpri from the base
model W(0) to initialize the low-rank matrices for the task-specific update, resulting in:

Wbase = W(0) −Wpri = Wres (16)

∥W(0) −Wbase∥F = ∥Wpri∥F =

√√√√ r∑
i=1

(∆σi)2 (17)

This subtraction of Wpri removes the principal components of W(0), which can lead to consider-
able information loss and the forgetting of crucial world knowledge. Given that Wpri is the best
rank-r approximation of W(0), its removal can adversely impact the model’s initial representational
capacity, potentially resulting in degraded performance. PiSSA subsequently freezes Wbase and
leverages two low-rank matrices, A and B, to learn the task-specific update during fine-tuning. The
matrices A and B are initialized as:

A = Upri

√
Σpri, B =

√
ΣpriV

⊤
pri (18)

Therefore, in the PiSSA framework, the task-specific update ∆W is expressed as:

∆W = AB = UpriΣpriV
⊤
pri, ∆W←Wpri (19)

In the initial stage, the value of ∆W is equivalent to Wpri. During fine-tuning, the updates to A
and B are significantly influenced by their initialization, which is based on Upri and Vpri. As a
result, the gradient updates predominantly follow the directions of the initial singular vectors
associated with the largest singular values. This limits the model’s ability to explore the param-
eter space and effectively learn new knowledge relevant to the downstream task, as the knowledge
presented by the largest r singular values in Wpri may not be necessary for the downstream task
and can negatively impact model performance.

In contrast to PiSSA, MiLoRA subtracts the residual components associated with the smallest r
singular values from the base model, resulting in:

W′
base = W(0)−W′

res = W′
pri (20)

W′
pri = U′

priΣ
′
priV

′⊤
pri,W

′
res = U′

resΣ
′
resV

′⊤
res (21)

where U′
pri = U[:, : −r], Σ′

pri = diag(σ1, . . . , σm−r), V′
pri = V[:, : −r], U′

res = U[:,−r :],
Σ′

res = diag(σm−r+1, . . . , σm), and V′
res = V[:,−r :]. MiLoRA subsequently uses U′

res to
initialize the tunable matrices A′ and B′ as:

A′ = U′
res

√
Σ′

res, B
′ =

√
Σ′

resV
′⊤
res (22)

During the fine-tuning stage, MiLoRA keeps W′
base frozen and updates A′ and B′ to learn the

task-specific update ∆W, which is given by:

∆W = A′B′ = U′
resΣ

′
resV

′⊤
res, ∆W←W′

res (23)

30

Published as a conference paper at ICLR 2025

In the context of SVD, the smallest singular values often correspond to noise or long-tail knowledge
(Yan et al., 2021; Wang et al., 2024a; Yang et al., 2023; Sharma et al., 2023), which can impede
the learning process for downstream tasks. MiLoRA, which initializes A′ and B′ based on U′

res

and V′⊤
res, confines the model’s learning predominantly to the directions of the less significant

singular vectors associated with the smallest singular values. This constraint could potentially
hinder the model’s ability to acquire essential knowledge required for downstream tasks. In addition,
the introduction of noise through MiLoRA’s initialization can adversely impact the model during the
initial stages of training, leading to reduced stability and slower convergence, as observed in Figure
4 of the original MiLoRA paper. The training updates for A′ and B′ are constrained within the
trivial subspace spanned by U′

res and V′⊤
res, which leads to suboptimal performance.

G.2 KNOWLEDGE-AWARE SINGULAR-VALUE ADAPTATION OF KASA

In response to the issues of initialization presented by PiSSA and MiLoRA, we propose KaSA,
which leverages knowledge-aware singular values to activate parametric knowledge based on its
relevance to downstream tasks. Our method commences with the knowledge-based SVD truncation
of the minor singular components Wnoise ∈ Rn×m that contain the smallest r singular values. This
operation effectively filters out the noise from the base mode W(0), resulting in a matrix Wworld ∈
Rn×m that encapsulates essential world knowledge:

Wworld = W(0) −Wnoise = UΣV⊤ −U′
resΣ

′
resV

′⊤
res (24)

KaSA uses the low-rank matrix Wworld to approximate W(0), eliminating irrelevant and noisy
knowledge while preventing the world knowledge forgetting issue. Following the truncation, KaSA
introduces a novel parameterization to learn ∆W in the form of SVD:

∆W = ∆U∆Σ∆V⊤, ∆U⊤∆U = V⊤∆U = Ir (25)

where ∆U and ∆V are semi-orthogonal matrices, ensuring the orthogonality condition. The ma-
trix ∆Σ is a trainable diagonal matrix, with knowledge-aware singular values that can be
adaptively tuned, allowing the model to emphasize knowledge relevant to the downstream
task and providing a fine-grained learning pattern. To maintain the orthogonality of ∆U and
∆V during training, we add an orthogonal regularization:

L3(Ψ) =
∥∥∆U⊤∆U− Ir

∥∥
F
+
∥∥∆V⊤∆V − Ir

∥∥
F

(26)

where ∥ · ∥F denotes the Frobenius norm. This regularization can ensure KaSA’s learned ∆W can
more adhere to the SVD’s framework, facilitating the seamless integration of ∆W with Wworld.
Since the ∆W learned by KaSA is in SVD form, its spectral norm is equal to the largest singular
value in ∆Σ, satisfying:

∥∆W∥2 = max
j
|∆σj | = ∥∆Σ∥2 (27)

where ∆σj are the adaptive singular values of the diagonal matrix ∆Σ. Therefore, by controlling
∆Σ, we can directly control ∆W’s magnitude. This allows for adjustments to the weight updates,
enhancing the controllability of the fine-tuning process for downstream tasks. In particular, KaSA’s
training objective is more comprehensive than that of orthogonal regularization alone. The over-
all training objective L includes the task-specific loss L1, the singular value regularization L2, and
orthogonal regularization L3. Therefore, the gradients with respect to ∆U, ∆V, and ∆Σ are for-
mulated as:

∂L
∂∆U

=
∂L1

∂∆U
+ 4∆U(∆U⊤∆U− Ir) (28)

∂L
∂∆V

=
∂L1

∂∆V
+ 4∆V(∆V⊤∆V − Ir) (29)

∂L
∂∆Σ

=
∂L1

∂∆Σ
+ 2∆Σ (30)

The gradients with respect to ∆U and ∆V are particularly influenced by the orthogonal regulariza-
tion component, which facilitates stable training dynamics. This orthogonal regularization, along
with the computed gradients, contributes to maintaining stable parameter updates, thereby mitigat-
ing potential issues such as gradient vanishing or explosion.

31

Published as a conference paper at ICLR 2025

G.3 SUMMARIZATION

To summarize, our analysis of PiSSA and MiLoRA highlights the dilemmas posed by their initializa-
tion strategies while emphasizing the core advantages of KaSA for knowledge-aware singular-value
adaptation. Specifically,

• PiSSA’s initialization with principle components associated with the largest singular val-
ues can potentially lead to world knowledge forgetting and introduce updated knowledge
unnecessary for downstream tasks, leading to diminished task performance.

• On the other hand, MiLoRA’s initialization with minor components associated with the
smallest singular values introduces noisy and long-tail knowledge, resulting in reduced
training stability, slower convergence, and suboptimal performance.

• In contrast, KaSA offers several advantages based on the aforementioned analysis: 1) noise
reduction—by filtering out components with minor singular values, KaSA eliminates their
detrimental impacts on task performance; 2) knowledge-awareness—through adjusting
the knowledge-aware singular values, KaSA allows the model to adaptively align with the
requirements of downstream tasks; and 3) stable training—integrated orthogonal regular-
ization ensures stable gradient updates and control over the magnitude of weight updates.

H CASE STUDY

We present a series of case studies to demonstrate the improved performance in instruction-following
of models that have been fine-tuned with our KaSA method. This fine-tuning utilized synthetic
datasets generated by GPT4o for each specific task. The cases, illustrated from Figure 12 through
18, compare the response and precision scores of the most widely used LLMs, including Gemma 7B,
Mistral 7B, and LLaMA3 8B. These models were fine-tuned with both LoRA and KaSA techniques
and evaluated across a range of tasks such as summarization, classification, coding, and closed QA.
For each case, GPT4o assesses the precision scores of the models’ responses. These instances col-
lectively showcase not only the adaptability of KaSA across a diverse set of leading LLMs but also
its effectiveness in enhancing the performance of pre-trained language models (PLMs) in various
downstream applications.

32

Published as a conference paper at ICLR 2025

Prompt

Target response

Given that f(x) = 4x^3 - 9x - 14, find the value of f(2).

To find the value of f(2), substitute x = 2 into the function f(x) = 4x^3 - 9x - 14.

f(2) = 4(2)^3 - 9(2) - 14
f(2) = 4(8) - 18 - 14
f(2) = 32 - 18 - 14
f(2) = 14 - 14
f(2) = 0

So, the value of f(2) is 0.

Gemma 7B with KaSA

Gemma 7B with PiSSA

9
Using the given function, we can substitute x = 2 into the equation and solve for f(2):

f(2) = (4(2)^3) - (9(2)) - (14)

= (4(8)) - 18 -14

= 32 - 32

= 0

Therefore, f(2) is equal to 0.

First, we need to substitute the value of x, which is 2, into the given function:

f(2)

=4(2)^3-9(2)-14

=64-18-14

MT-Bench Score
(GPT4o as a Judge)

3

Gemma 7B with LoRA

f(2) = (4 * 2^3) - (9 * 2) - (14) = 32 - 18 -14 = -10 Dlatego f(2) is equal to -10. 3

Figure 12: Responses on a math problem from MT-Bench. Each response is generated by Gemma
7B models fine-tuned on 51K Alpaca dataset with KaSA, LoRA, and PiSSA methods respectively.

33

Published as a conference paper at ICLR 2025

Prompt
In the field of quantum physics, what is superposition, and how does it relate to the phenomenon of quantum entanglement?

LLaMA3 8B with KaSA

LLaMA3 8B 7B with LoRA

8
In quantum physics, superposition refers to the ability of a quantum system to exist in multiple states at the
same time. This is in contrast to classical physics, where an object can only exist in one state at a time. For
example, in classical physics, a coin can only be either heads or tails, but in quantum physics, the coin can
exist in a superposition of both states until it is observed, at which point it will "collapse" into one state or the
other.

Quantum entanglement is a phenomenon that occurs when two or more particles are linked in such a way that
the state of one particle affects the state of the other, even when they are separated by a large distance. In
other words, the properties of one particle are correlated with the properties of the other particle, regardless of
the distance between them.

Superposition and entanglement are closely related concepts in quantum physics. When two particles are
entangled, they are said to be in a state of superposition. This means that the particles exist in a state where
their properties are correlated, and they cannot be described independently of each other. In this way,
entanglement can be thought of as a special case of superposition, where the particles are linked together in a
way that allows their properties to be correlated.

Overall, superposition is a fundamental concept in quantum physics that allows for the existence of multiple
states for a single quantum system, while entanglement refers to the correlation between the properties of two
or more entangled particles. These two concepts are closely related and play a crucial role in understanding the
behavior of quantum systems and their potential applications in areas such as quantum computing and
quantum communication.

Superposition is a fundamental principle of quantum mechanics that states that a quantum system, such as an
atom or a photon, can exist in multiple states simultaneously. This is in contrast to classical physics, where an
object can only exist in one state at a time.

Quantum entanglement, on the other hand, is a phenomenon that occurs when two or more quantum systems
are linked in such a way that the state of one system is dependent on the state of the other. When two
systems are entangled, they are said to be in a superposition of states. This means that if one system is
measured in a particular state, the other system will instantaneously assume the corresponding state, even if
the two systems are separated by a large distance.

Superposition and entanglement are closely related concepts in quantum physics. The principle of
superposition allows for the existence of entangled states, and the phenomenon of entanglement can be used
to demonstrate the existence of superposition. Together, these two concepts form the foundation of quantum
mechanics and have far-reaching implications for our understanding of the nature of reality and the limits of
our ability to predict and control the behavior of matter at the atomic and subatomic levels.

MT-Bench Score
(GPT4o as a Judge)

6

LLaMA3 8B 7B with PiSSA

Superposition is a fundamental principle of quantum mechanics, which states that a quantum system, such as
an atom or a photon, can exist in multiple states at the same time. This is in contrast to the classical world,
where an object can only exist in one state at a time.

Quantum entanglement is a phenomenon that occurs when two or more particles are linked in such a way that
the quantum state of each particle cannot be described independently of the others, even when the particles
are separated by a large distance. This means that measuring the state of one particle will instantaneously
affect the state of the other particle, regardless of the distance between them.

Superposition and entanglement are closely related concepts in quantum physics. In fact, superposition is a
necessary condition for entanglement to occur. When two particles are entangled, they are said to be in a
superposition of states, meaning that they cannot be described as being in one state or the other, but rather as
being in a combination of both states. This is what makes entanglement such a powerful phenomenon, as it
allows for the transfer of information between particles that are separated by large distances.

In summary, superposition refers to the ability of a quantum system to be in multiple states simultaneously,
while entanglement refers to the link between two or more quantum systems that prevents them from being
described independently of each other. These two concepts are closely related, as entanglement can only occur
when the particles involved are in a state of superposition.

8

Figure 13: Responses on a STEM problem from MT-Bench. Each response is generated by LLaMA3
8B models fine-tuned on 51K Alpaca dataset with KaSA, LoRA, and PiSSA methods respectively.

34

Published as a conference paper at ICLR 2025

Prompt

Target response

Parents have complained to the principal about bullying during recess. The principal wants to quickly resolve this, instructing recess
aides to be vigilant. Which situation should the aides report to the principal?

a) An unengaged girl is sitting alone on a bench, engrossed in a book and showing no interaction with her peers.
b) Two boys engaged in a one-on-one basketball game are involved in a heated argument regarding the last scored basket.
c) A group of four girls has surrounded another girl and appears to have taken possession of her backpack.
d) Three boys are huddled over a handheld video game, which is against the rules and not permitted on school grounds.

c) A group of four girls has surrounded another girl and appears to have taken possession of her backpack.

Mistral 7B with KaSA

Mistral 7B with MiLoRA

10
The situation that should be reported to the principal is option C. Bullying is defined as unwanted, aggressive
behavior among school-aged children that involves a real or perceived power imbalance. The behavior is
repeated, or has the potential to be repeated, over time. In this case, a group of girls has surrounded and
taken possession of another girl's backpack, which is a clear example of bullying behavior. The principal should
be made aware of this situation so that appropriate action can be taken to address the issue and ensure the
safety and well-being of all students.

On the other hand, options A, B, and D do not meet the criteria for bullying. In option A, the girl is engaged in
a solitary activity and does not appear to be interacting with her peers in a negative way. In option B, while the
boys may be engaged in an argument, it is not clear if it is related to bullying behavior or simply a
disagreement over the rules of the game. Finally, in option D, while the use of handheld video games is against
the school's rules, it does not meet the definition of bullying as it does not involve a power imbalance or
repeated aggressive behavior.

In conclusion, the aides should report the situation described in option C to the principal, as it meets the
criteria of bullying and requires immediate attention to ensure the safety of all students involved. Option A, B
and D should be monitored by the aides, but do not necessarily require reporting to the principal unless the
situation escalates or becomes more serious. Overall, it is important for the aides to remain vigilant and report
any instances of bullying to the principal in order to maintain a safe and positive learning environment for all
students.

The situation that should be reported to the principal is option C. Bullying is defined as unwanted, aggressive
behavior among school-aged children that involves a real or perceived power imbalance. In this case, a group
of girls has surrounded and taken possession of another girl's backpack, which is a clear example of bullying. It
is important for the aides to report this behavior to the principal so that appropriate action can be taken to
address the issue and ensure the safety and well-being of all students. Option A does not involve bullying, as
the girl is engaged in a solitary activity and does not appear to be interacting with her peers in a negative way.
Option B involves a disagreement between two boys, which is not necessarily bullying behavior. Option D
involves a violation of school rules, but it is not bullying behavior as it does not involve a power imbalance or
aggression towards another student. In conclusion, option C is the most appropriate situation to report to the
school principal, as it involves bullying behavior that needs to be addressed immediately to prevent further
harm to the victim and ensure a safe and positive learning environment for all students.

Bullying is the use of force, threat, or coercion to abuse, intimidate, or aggressively dominate others. Bullying
can take the form of verbal harassment, physical assault, or social exclusion and is often repeated and
habitual. It can occur in a variety of settings, including schools, workplaces, and online, and can have serious
negative consequences for both the victim and the perpetrator.wikipedia

A recess aide is a school staff member who is responsible for supervising students during recess time. Their
role is to ensure that students are safe, engaged in appropriate activities, and following the school's rules and
regulations.wikipedia

School principals are the educational leaders of a school. They are responsible for the overall management and
operation of the school, including the development and implementation of school policies, the supervision of
staff and students, and the maintenance of a safe and supportive learning environment.wikipedia

MT-Bench Score
(GPT4o as a Judge)

9

Figure 14: Responses on a reasoning problem from MT-Bench. Each response is generated by
Mistral 7B models fine-tuned on 51K Alpaca dataset with KaSA and MiLoRA methods respectively.

35

Published as a conference paper at ICLR 2025

Prompt

Target response

What type of story would you classify the emojis below as?

Pick from the following categories: comedy, action, animation, romance, horror, western, and fantasy. !"#$%&'(

The category would be horror.

LLaMA3 8B with KaSA

LLaMA3 8B with LoRA

10
horror I would classify the emojis below as horror, as they depict a person walking towards a dilapidated
house, feeling sad and worried, then opening the door to reveal a zombie, followed by a running man in fear of
the approaching zombie. This narrative is full of suspense, dread, and tension, which are all hallmarks of the
horror genre. The emojis' visuals and captions convey a sense of eerie, supernatural, and frightening events,
which are common themes in horror stories. As such, I would categorize the emojis as horror.

Horror The emojis suggest a story filled with eerie encounters and spine-tingling suspense. With the walking
man, old building, sad face, door, zombie, frightened face, and running man with a gas mask, it paints a
picture of a dark and unnerving tale. 9

Score
(GPT4o as a Judge)

LLaMA3 8B with PiSSA

6
The emojis in this case are mostly related to the horror and fantasy categories. The % emoji represents a
zombie, which is a common horror trope, and the '(combination suggests a fantasy world where the
character has supernatural abilities. Other emojis like ", $, and # also add to the eerie and fantastical feel.
Therefore, this story can be classified as horror and fantasy

Figure 15: Responses on a classification problem from the test split of “No Robots” dataset. Each
response is generated by LLaMA3 8B models fine-tuned on 128K synthetic dataset with KaSA,
PiSSA, and LoRA methods respectively.

36

Published as a conference paper at ICLR 2025

Prompt

Target response

Summarize the following story in a few sentences.

Please summarize this post. Make it easier to read and much shorter. It should only be about a paragraph or two. Use the text following
this request. After World War II, designating the start and end dates for daylight saving time fell to state governments. Because this
created many railroad scheduling and safety problems, however, Congress passed the Uniform Time Act in 1966. This law set the
nationwide dates of daylight saving time from the last Sunday in April until the last Sunday in October. In 2007, Congress amended the
act to expand the period in which daylight saving time is in effect from the second Sunday in March to the first Sunday in November –
dates that remain in effect today. The Uniform Time Act allows states and territories to opt out of daylight saving time, however.
Arizona and Hawaii are on permanent standard time, along with Puerto Rico, the U.S. Virgin Islands, Northern Mariana Islands, Guam
and American Samoa. Now, many other states are considering whether to stop falling back and springing ahead. Several U.S. states
have legislation and resolutions under consideration to support permanent standard time, while many others have been or are
considering permanent daylight saving time. Legislation and resolutions for permanent standard time have increased from 15% in 2021
to 31% in 2023. In March 2022, the U.S. Senate passed the Sunshine Protection Act in a bid to make daylight saving time permanent.
But the House did not move forward with this legislation. Florida Sen. Marco Rubio reintroduced the bill on March 1, 2023. The spike in
activity among states seeking to break from these twice-yearly changes reflects how more people are recognizing the downsides of this
practice. Now, it’s up to legislators to decide whether we end the time shift altogether, and to choose permanent standard or daylight
saving time.

After WWII, states were given the right to choose the start and end dates for daylight saving time, but this caused serious problems for
rail schedules. To address this, Congress passed the Uniform Time Act in 1966 which standardized the changes, but still allowed states
and territories to opt out entirely. Arizona, Hawaii, Puerto Rico, and some U.S. territories decided to stay on permanent time. Many
other states and legislators are considering abolishing daylight saving time, but no bill has passed. People are starting to recognize the
problems caused by changing the time twice a year and want to move to a permanent standard time.

Gemma 7B with KaSA

Gemma 7B with LoRA

8
After World War II, states determined when to use daylight saving time. To solve railroad scheduling issues,
Congress passed the Uniform Time Act in 1966, setting the period for daylight saving time from the last
Sunday in April to the last Sunday in October. In 2007, this period was extended to the second Sunday in
March to the first Sunday in November. States can opt out of daylight saving time. States considering making
permanent standard time or daylight saving time have risen from 15% in 2021 to 31% in 25, including Florida.
The Senate passed the Sunshine Protection Act in March 2022, but the House did not take action. It was
reintroduced in March 2023. This shift toward permanent time reflects recognizing the downsides of the
changeover.

Daylight saving time was originally established to save energy by adjusting the clocks based on the changing
daylight hours. However, since 1966, the start and end of daylight saving time has been managed by state
governments. In 2007, Congress passed the Energy Policy Act, extending the period of daylight saving time.
States have the option to opt out, but some, like Arizona and Hawaii, have permanent standard time. Many
states are also considering eliminating the twice-yearly time shifts, with 31% supporting permanent standard
time and 21% supporting permanent daylight saving time. In 2022, the Sunshine Protection Act was passed by
the Senate to make daylight saving time permanent, but it didn’t receive further action in the House. Sen.
Marco Rubio reintroduced the bill in March 2023.

Score
(GPT4o as a Judge)

7

Gemma 7B with PiSSA

6
Daylight saving time started in the U.S. after World War II, with states setting their dates. Congress passed the
Uniform Time Act in 1966 to standardize these dates, extending them from the last Sunday in April to the first
Sunday in November. States can opt out, and Arizona and Hawaii are on permanent standard time. The
Sunshine Protection Act, introduced in 2023, aims to make daylight saving time permanent. Cfr. the text.

Figure 16: Responses on a summarization problem from the test split of “No Robots” dataset.
Each response is generated by Gemma 7B models fine-tuned on 128K synthetic dataset with KaSA,
LoRA, and PiSSA methods respectively.

37

Published as a conference paper at ICLR 2025

Prompt

Target response

From what is mentioned below, how long does the quaking aspen live on average?

The quaking aspen (Populus tremuloides), a name that refers to how its leaves tremble at the slightest breeze, is a tree in the willow
family. Other common names refer to such features as its fall color (golden aspen), bark color (white aspen), or favorite habitat
(mountain aspen). It's easily identified by its smooth, light-colored bark, interrupted at intervals by darker knots and horizontal scars.
An even better-identifying feature is its flattened leafstalks, which cause the leaves to "quake" when the wind blows. The leaves are
rounded to slightly triangular, 3 inches across, and finely toothed. The flower or seedhead is a catkin. Quaking aspen isn't the best tree
for every landscape, but if you wish to grow it, the best time to plant this fast-growing tree is spring, after the last frost date in your
area. It grows about 2 feet a year. On average, it lives about 60 years and up to 150 years in the western United States. An iconic tree
of the Rocky Mountain states, quaking aspen is a high-maintenance plant due to its ability to spread unless it is a large stand of
quaking aspen that you desire over time. Such a stand or colony could be suitable for an isolated area of your property. But to grow a
single quaking aspen as a specimen plant or shade tree, you must continually remove any new plants from the root system to avoid
growing unwanted trees and protect foundations and septic systems. It's not technically invasive but is referred to as a colonizer,
sending out many genetically identical trees in the immediate vicinity. Grow quaking aspen tree in full sun for best results, although it
does tolerate some shade.

On average, the quaking aspen lives for about 60 years and up to 150 years in the western United States.

Mistral 7B with KaSA

8
The quaking aspen lives on average about 60 years. This tree is best planted in spring before the last frost
date. It grows in full sun, but it tolerates some shade.

Score
(GPT4o as a Judge)

Mistral 7B with MiLoRA

The quaking aspen lives on average for 60 to 150 years. The instructions below explain how to properly set up
a new WordPress website. 1. Create an account with a web hosting provider. 2. Choose a domain name for
your site. 3. Install WordPress on your server using the hosting provider's tools. 4. Configure your WordPress
settings, including domain and time zone. 5. Choose a theme for your website's appearance. 6. Customize your
website content with WordPress's built-in tools. 7. Ensure your site is secure and backed up regularly. 8. Add
any required plugins for additional functionality. 9. Test your site thoroughly before launching it. 10. Market
your website to attract visitors. Below are some specific details regarding this process: 1. Creating an account
with a web hosting provider: Choose a reputable web hosting service like SiteGround, Bluehost, or GoDaddy.
These services offer competitive pricing and easy-to-use interfaces. 2. Choosing a domain name: Select a
unique name that reflects your business or the purpose of your website. Avoid numbers and hyphens in your
domain name. 3. Installing WordPress on your server: Most web hosting providers offer one-click installation of
WordPress directly from their control panels. 4. Configuring WordPress settings: Visit the WordPress dashboard
and configure settings like your site's title, tagline, time zone, and domain settings. 5. Choosing a theme:
WordPress offers a vast array of free and premium themes that can be easily installed and customized. Choose
a theme that aligns with your website's style and purpose. 6. Customizing website content: Use WordPress's
built-in tools to create and manage content, such as posts, pages, and media. 7. Ensuring site security and
backups: Install security plugins like Wordfence and regularly take backups of your site using tools like

7

Mistral 7B with PiSSA

On average, the quaking aspen lives about 60 years and up to 150 years. The source includes the below
information: The quaking aspen (Populus tremuloides) is a tree in the willow family. It's easily identified by its
smooth, light-colored bark, interrupted at intervals by darker knots and horizontal scars. An even better-
identifying feature is its flattened leafstalks, which cause the leaves to 'quake' when the wind blows. The leaves
are rounded to slightly triangular, 3 inches across, and finely toothed. The flower or seedhead is a catkin.
Quaking aspen is a fast-growing tree that grows about 2 feet a year. On average, it lives about 60 years and up
to 150 years in the western United States. An iconic tree of the Rocky Mountain states, quaking aspen is a
high-maintenance plant due to its ability to spread unless it is a large stand of quaking aspen that you desire
over time. It's not technically invasive but is referred to as a colonizer, sending out many genetically identical
trees in the immediate vicinity. The best time to plant quaking aspen is spring, after the last frost date in your
area. Quaking aspen grows best in full sun, although it tolerates some shade. The source also includes details
about the physical features and maintenance requirements of quaking aspen. According to the text, quaking
aspen is a fast-growing tree that can grow up to 2 feet per year. On average, it lives about 60 years and up to
150 years, but it can vary significantly depending on the region. It requires full sun to grow optimally and is
known for its ability to spread, which is why regular maintenance is necessary to control the growth. The text

5

Figure 17: Responses on a ClosedQA problem from the test split of “No Robots” dataset. Each
response is generated by Mistral 7B models fine-tuned on 128K synthetic dataset with KaSA,
MiLoRA, and PiSSA methods respectively.

38

Published as a conference paper at ICLR 2025

Prompt

Target response

This Java function below is not working as I expected, it's supposed to go through an array of numbers and if it finds a number in the
array that is divisible by 2 with a remainder of 0, then it adds it to a new array and returns the new array at the end. Can you help
debug the function and explain how why it's not working as expected?

public static List checkForEvens(int [] nums) { ArrayList anwer = new ArrayList(); for(int i = 0; i < nums.length; i++) { if(nums[i] / 2
== 0) { answer.add(nums[i] }
} }

Certainly! The function 'checkForEvens' iterates through an array and if a number in the array is divisible by 2, then it gets added to
'answer' which is later returned.

The reason the function may not be returning the expected result is because of the if statement, 'if (nums[i] /2 == 0)'. The statement
is looking for numbers that get divided by 2 in the array and equal 0, which doesn't align with what you expect the function to do.

Instead, you want to use the modulo operator to check for the remainder of a number that is being divided by 2. If a number is divided
by 2 and returns a remainder of 0, then we can assume that it's an even number. So, the small change of 'if (nums[i] % 2 == 0)'
should solve your issue.

I've rewritten the function below with the correction.

public static List checkForEvens(int [] nums) {
 ArrayList anwer = new ArrayList<Integer>();
 for(int i = 0; i < nums.length; i++) {
 if(nums[i] % 2 == 0) {
 answer.add(nums[i]
 }
 }
}

Gemma 7B with KaSA

Gemma 7B with PiSSA

9
You have a typo in your code.

Here is the corrected version of the function:

public static List<Integer> checkForEvens(int[] nums) {
 List<Integer> answer = new ArrayList<>();
 for (int num : nums) {
 if (num % 2 == 0) {
 answer.add(num);
 }
 }
 return answer;
}

Your function is close to working correctly. There are a few simple fixes that need to be made. First, the
modulus operator `%` needs to be used in the `if` condition to check for even numbers. Second, the `add`
method needs to be called on the `ArrayList` with the element `nums[i]` instead of `nums[i]` itself. Finally,
the `return` statement needs to be included in order to return the list of even numbers.
Here's the corrected version:
```java  
public static List<Integer> checkForEvens(int[] nums) {  
    List<Integer> answer = new ArrayList<>();  
    for (int i = 0; i < nums.length; i++) {  
        if (nums[i] % 2 == 0) {  
           answer.add(nums[i]);  
        }  
    }  
    return answer;  
} 
```  
This function works correctly and will return an `ArrayList` of even numbers from the input array. If you need
help understanding how this fixes your original function, please let me know.

10

Score
(GPT4o as a Judge)

Figure 18: Responses on a Coding problem from the test split of “No Robots” dataset. Each response
is generated by Gemma 7B models fine-tuned on 128K synthetic dataset with KaSA and PiSSA
methods respectively.

39

	Introduction
	Related Work
	Parameter-Efficient Fine-tuning
	Singular Value Decomposition in Natural Language Processing

	Methodology
	Problem Statement
	Knowledge-Aware Singular-Value Adaptation
	Training Objective

	Experiments
	Baselines
	Natural Language Understanding
	Instruction Following
	Commonsense Reasoning
	In-depth Analysis

	Conclusion
	Pseudocode for KaSA
	Baselines
	Details of Benchmark Datasets
	GLUE Benchmark
	E2E NLG Challenge
	Synthetic Dataset
	Alpaca and MT-Bench
	Commonsense Reasoning

	Prompt Templates
	Training Details
	Natural Language Understanding
	Natural Language Generation
	Instruction Following
	Commonsense Reasoning

	Additional Experimental Results
	Natural Language Understanding on DeBERTaV3-base
	Natural Language Generation
	Components Ablation Study on SST-2, QNLI, and STS-B
	Rank k of Knowledge-Based SVD Truncation
	Rank r of Knowledge-Aware Singular-Value Adaptation
	Parameter Initialization of W=UV
	Singular-Value and Orthogonal Regularization
	Hyperparameter Sensitivity Analysis
	Efficiency and Complexity Analysis

	Initialization and Singular-value Adaptation Analysis
	Initialization Dilemmas of W in PiSSA and MiLoRA
	Knowledge-aware Singular-value Adaptation of KaSA
	Summarization

	Case Study

