Under review as a conference paper at ICLR 2024

SUPPLEMENTARY MATERIALS

Anonymous authors
Paper under double-blind review

1 FORMULATIONS FOR ALGORITHM

This section serves as an introduction for the underlying formulation of the algorithm. Since we use
a meta reinforcement learning to train the programmatic policy, the training procedure consists of
an outer loop and an inner loop. We use Reptile as the meta reinforcement learning framework to
update the parameter in outer loop. For inner loop, we use Proximal Policy Optimization (PPO) as
the basic reinforcement learning (RL) algorithm to learn “fast” parameter for outer loop.

In our method, we use PPO-Clip, which utilizes a clipping mechanism in the objective function to
remove incentives that may prompt a new policy towards diverging greatly from an existing policy.
The PPO-Clip algorithm does not incorporate a KL-divergence term in its objective function. The
PPO-Clip objective is:

Or+1 = arg max J(0)

T
1 . Po (at ‘ St) P P
= — — = A% A7
arg max Drl E E min ( o (ar [ 1) (st,at), ¢ (e, (st,at))

, Where

(I+e)A A>0
A =
9(e, 4) {(1+6)A A<0

To illustrate, Dy, represents a set of trajectories by running the policy Py, in the environment. The
AP%: is the advantage estimation based on the value function and the hyperparameter e corresponds
to how far away the new policy can go from the old while still profiting the objective. The 6 is
the parameter for the programmatic policy Py, which indeed are two parameters § = (W, ¢). The
W represents the policy architecture as well as the ¢ is the parameter for policy actions. These
two parameters are jointly optimized by PPO. The train process is a bilevel iterative optimization
process. At each iteration k of training, we carry out two steps. During the first step, we optimize
the ¢ while preserving the frozen architecture parameter weights W:

Pht1 = argmax J(Wr, ¢)

Next, during the second step, we optimize the W by fixing ¢:
Wia1 = arg max JW, 1)

The bilevel training steps alternate throughout the training iterations until the reward converges.
Then we choose the optimal WV to freezing the architecture of the programmatic policy. Finally, we
train the parameters of the selected architecture, continuously until the parameter values learned by

means of RL converge to 9.

In the outer loop, the “fast” parameter is used for updating the ’slow” parameter. Multiple gradient
descents are applied on each task in order to obtain the corresponding parameter value 6;. After-
wards, the difference vector between the parameters of each task and the main task is calculated as
the update direction:
Oit1 < B(60; — 0;)

, where [ is the meta learning rate. By repeating this process iteratively, the global initialized
parameters are finally obtained. Intuitively, by using the gradient of a single task’s parameter as
the rough direction of gradient descent and decreasing the total loss function of the training tasks
roughly but steadily, one can often obtain a good initialization parameter.



Under review as a conference paper at ICLR 2024

2 IMPLEMENTATION DETAILS

In this section, we present the details of implementation, which cover the input and reward structures
of each environment, architecture design and training hyperparameters.

2.1 ENVIRONMENT DETAILS

A& |l &L

(a) initial state (b) subgoal state
(c) subgoal state (d) goal state

Figure 1: Details for sub-goals in hanoi

Hanoi In the Tower of Hanoi environment, there are three adjacent pillars labeled A, B, C, and
several different-sized discs stacked in a pyramid shape from bottom to top on pillar A. The objective
is to move all the discs one by one to pillar B, but at no time can a larger disc be placed on top of a
smaller one on the same pillar. Each action is to move a disc from the current pillar to another pillar.

In the Tower of Hanoi environment, the aspect of the variations is the number of discs. For different
environment variations, the goal of the task is to move all the discs to another pillar. Based on the
number of discs on each pillar, as well as the location of the discs, based on their size, we encode
the input of this environment into a vector with a dimension of 1 x 9. Regardless of the number of
discs, we can only set 6 actions, i.e., Ato B, AtoC,BtoA,BtoC, Cto A, and C to B.

The Tower of Hanoi environment is a discrete environment with low input and output dimensions.
However, completing such a task requires the agent to sequentially complete a series of actions, and
a small number of mistakes in the action sequence can result in very low rewards for the whole task,
or even the inability to complete it. Thus, we set some intermediate rewards for hanoi environment
to assist the agent in learning the policy more easily. As shown in the Figure[T} for a Tower of Hanoi
environment with three discs, we set (b) and (c¢) as sub-goals, the environment returns a small reward
when the agent accomplishes this for the first time. When the agent moves a disc once, the reward
value is -1. When the agent performs an invalid action, such as placing a large disc on top of a small
disc, the environment will judge that the action has failed, keep the environment state unchanged,
and give a penalty of reward value -2 to the agent. When the agent completes the task, i.e. placing
the discs in the state shown in (d), the environment gives a large reward value.

Stacking In the Stacking environment, there are several differently-sized plates on the table, and
a gripper that can move above the table. The goal is to collect them one by one using the gripper,
putting them together in descending order of size.

In the Stacking environment, the aspects of the environment are the number, size, and location of
the plates. To simplify, we use a grid to represent the table. The gripper can move on the grid in
up, down, left, and right directions, and can grab a plate. In this environment, we encode the table
status, the stacked plates and the location of the gripper as the environment state, with a dimension
of 1 x 35. The gripper can perform actions of moving up, down, left, and right and selecting a plate
to stack and the action is a 5-dimension vector.



Under review as a conference paper at ICLR 2024

(a) subgoal state (b) goal state

Figure 2: Details for sub-goals in stacking

The Stacking environment is similar to the Tower of Hanoi environment, as the agent needs to
control the gripper to select plates in a specific order to complete the task. To reduce the sparseness
of rewards, we also set intermediate rewards. For example, as shown in (a) of Figure 2] when the
agent first completes stacking two plates, it receives a small reward. Each action taken by the gripper
results in a reward value of -1. When the gripper performs an incorrect action, such as moving out
of the table or trying to stack plates of wrong size, the environment will judge that the action has
failed. Then the environment state keeps unchanged, and give a penalty of -2 to the agent. When the
agent completes the task, i.e. stacking the plates in the state shown in (b), the environment gives a
positive final reward.

(a) initial state (b) subgoal state (c) goal state

Figure 3: Details for sub-goals in hiking

Hiking In the Hiking environment, the characters on the map represent the agent and the stars on
the map are the targets that the agents need to collect. The character can move on the ground, with
green and gray blocks indicating walkable ground and blue water blocks representing obstacles that
the character cannot pass through. The goal in this environment is to make the character move step
by step and collect all the stars on the map.

The aspects of the variations in this environment include the number and location of the stars. The
environment is also discretized into a grid. The entire state of the map is encoded as the state of the
environment. The character, ground, and water on the map are all marked with different symbols.
By flattening the state matrix, we can get a 1x100 vector to represent the state of the environment.
The character’s actions are up, down, left, and right, so the dimension of the action vector for the
environment is 1 x 4.

In the Hiking environment, we also set up intermediate rewards, as shown in (b) of Figure 3] where
the environment gives the agent a intermediate reward when the character moves to a star and the
star disappears from the map. Every time the character take an action in this environment, the
environment returns a reward of -1. When the character moves out of the map boundary or into the
water, the environment judges the action as a failure and keeps the entire state unchanged, while
giving a punishment of reward value -2 to the agent. The final state is shown as in (c).



Under review as a conference paper at ICLR 2024

2.2 HYPERPARAMETERS

The actor and critic of PPO are both 3-layer linear networks. The input layer is used to process
the input of environment state. The middle layer is with a hidden size of 64. The dimension of the
output layer is determined by the action space of the environment. Following hyperparameters are
used to train PPO algorithm.

max train steps 2e6.

Replay buffer of size 2048.

Mini-batch size 64.

Discount factor 0.99.

Adam optimizer; actor learning rate 3e — 4; critic learning rate 3e — 4.
clip parameter € 0.2.

Entropy coefficient 0.01.

Max gradient norm 0.5.

KL-Divergence limit 0.03.

Following hyperparameters are used to train ReptilePPO algorithm.

max train steps 5e6.

meta iterations 250.

inner iterations 1.

max train steps 2e6.

Replay buffer of size 2048.

Mini-batch size 64.

Discount factor 0.99.

Adam optimizer; actor learning rate 2e-2; critic learning rate 2e-2.
Adam optimizer; actor learning rate 1e-5; critic learning rate le-5.
clip parameter € 0.2.

Entropy coefficient 0.01.

Max gradient norm 0.5.

KL-Divergence limit 0.03.

The components of the programmatic policy are all linear cells. Following hyperparameters are used
to train ReptilePRL algorithm.

depth 6.

max train steps 5e6.

meta iterations 250.

inner iterations 1.

max train steps 5e6.

Replay buffer of size 2048.

Mini-batch size 64.

Discount factor 0.99.

Adam optimizer; actor learning rate 2e-2; critic learning rate 2e-2.
Adam optimizer; actor learning rate 1e-4; critic learning rate le-4.
clip parameter € 0.2.

Entropy coefficient 0.01.



Under review as a conference paper at ICLR 2024

* Max gradient norm 0.5.
» KL-Divergence limit 0.03.

In our method, compared with ReptilePRL algorithm, some of the components are GRU layers. And
in the updating process, the state of the RNN will be preserved across different episodes. Besides,
due to the use of RNN, we have slightly changed the structure of the replay buffer. Following
hyperparameters are used to train our method.

* depth 6.

* max train steps 5e6.

* meta iterations 250.

* inner iterations 1.

* max train steps 2e6.

* Replay buffer of size 500.

* Batch size 16

* Mini-batch size 2.

* Discount factor 0.99.

* Adam optimizer; actor learning rate 2e-2; critic learning rate 2e-2.
* Adam optimizer; actor learning rate 4e-4; critic learning rate 4e-4.
* clip parameter € 0.2.

* Entropy coefficient 0.01.

* Max gradient norm 0.5.

» KL-Divergence limit 0.03.

3 ADDITIONAL EXPERIMENTS RESULTS

This section is dedicated to presenting supplementary experimental results and analyses. We apply
PPO trained within different variations, ReptilePPO, ReptilePRL and our method in the Tower of
Hanoi and the stacking environment respectively.

The performance of these algorithms are shown in Figure [d] We train four PPO policies within the
number of plates ranging from 1 to 4 respectively, e.g., PPO—-Stackingl means the agent is train
by using PPO in the environment with one plate. The ReptilePPO, ReptilePRL and our method are
also performed in the Stacking environment with the number of plates ranging 1 to 4. And each
policy is evaluated in 8 environments with the number of plates ranging from 1 to 8.

From the figure, it can be seen that PPO-Stackingl, PPO-Stacking2,and PPO-Stacking3
can basically complete the task, but they are clearly not optimal. Additionally, in more complex
scenarios, they do not explore effectively and optimize parameters. For the policy Rept 11ePPO,
it can converge to the optimal policy in simple scenarios, but it cannot learn impactful policy in
complex environments, such as stacking6, stacking7, and stacking8. For the methods that use the
programmatic policy structure, such as ReptilePRL and our method, they do not only perform well
in simple scenarios but can also converge to the optimal policy in complex or unseen environments.
This indicates that learning RL policies in the form of program structures is useful for improving
generalization. However, there is not much difference in performance between our method and
ReptilePRL, indicating that the use of RNN structures in this type of environment is not effective.

We also apply PPO, ReptilePPO, ReptilePRL and our method in the Tower of Hanoi environments
with the number of discs ranging from 1 to 4. The performance of each policy is evaluated in 7
environments with the number of discs ranging from 1 to 7, as shown in Figure [5]

Through the figure, we can see that the PPO-Hanoil can hardly finish this task in complex en-
vironments. This is understandable because as the number of discs increases in the Hanoi Tower
environment, the number of steps in the actions will increase exponentially. As the complexity of
the environment increases, most policies trained with PPO perform poorly. However, the policies



Under review as a conference paper at ICLR 2024

300 350
250 300
200 250
a 4
3150 g 200
@ @
150
100
100
50 el ———
s N Eimsnnsand
0
0 50 100 150 200 250 0 50 100 150 200 250
iterations iterations
stacking 1 stacking 2
500
400
300
0
a
[
@
200
100
0 0
0 50 100 150 200 250 0 50 100 150 200 250
iterations iterations
stacking 4 stacking S
500 500
400 400
a a
g 300 8 300
@ @
200 200
100 100
0 50 100 150 200 250 0 50 100 150 200 250
iterations iterations
stacking 7 stacking 8

Figure 4: The Performance of PPO, ReptilePPO, ReptilePRL and our method in the Stacking envi-
ronments with the number of plates ranging from 1 to 8.

trained with meta reinforcement learning can have better performance in complex environments.
The performances of Rept i 1ePPO and Rept i 1ePRL are similar. Our method also performs well
in complex scenarios, with an optimal number of steps of 127 for hanoi7, and our method almost
reaches the optimum. Compared with ReptilePRL, this demonstrates the effectiveness of the RNN

structure we used.

0 250

o

I

3 200
150
100

0 50

100 150 200

iterations

stacking 3

500

400

200 A
N St wrag wraTu et
100 N
0 50 100 150 200 250
iterations
stacking 6

PPO-Stackingl
PPO-Stacking2
PPO-Stacking3
PPO-Stacking4
* ReptilePPO
ReptilePRL
Ours



Under review as a conference paper at ICLR 2024

500
350
300 400 400
250 200
2200 2 5300
Q I I
%150 @ 500 @
200 Tty
100
50 100 100 e et
0 0
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
iterations iterations iterations
hanoi 1 hanoi 2 hanoi 3
500 SR 500 500
400 400 400 ~ ..................................
o .\"-...- - |
" " [ N gl
2100 2300 ae a ~ ey,
o o oo e cmcmeme i e, © 300 N \
] 7 ) < s & RS N
N 0 R S RN
o S 5 ~ SN ™
200 D 200 S NS N 200 N temreai et
=y N SR -
\\ o hh“m*-.c.‘a \\ —— s~ il \\'
~ fatanal -
100 e ——— 100 N M tm——— e
100
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
iterations iterations iterations
hanoi 4 hanoi 5 hanoi 6
500 = PPO-Hanoil
v == = PPO-Hanoi2
400 A
===== PPO-Hanoi3
«
5 === PPO-Hanoi4
3 300 .
==+ ReptilePPO
200 === ReptilePRL
=== Qurs
100
0 50 100 150 200
iterations
hanoi 7

Figure 5: The Performance of PPO, ReptilePPO, ReptilePRL and our method in the Tower of Hanoi
environments with the number of discs ranging from 1 to 7.



	Formulations for Algorithm
	Implementation Details
	Environment Details
	Hyperparameters

	Additional Experiments Results

