
Published in Transactions on Machine Learning Research (11/2023)

Appendix

A Additional Description and Discussion for DeDES

A.1 Description of Model Filtering

median

Filter Out

Figure 1: Illustration of the model filtering algorithm.

Fig. 1 is a sample illustration of our model filter algorithm, i.e., algorithm 2 in the main paper. This technique
is essentially an innovative adaptation of the box-plot method, employed specifically for identifying outliers
that possess scores beneath the threshold value δ.

Given the range parameters plow and phigh, in conjunction with a pre-determined scaling factor s, the
threshold δ can be computed using the formula s × (Ŝm×phigh

− Ŝm×plow
).

In the context of our experimental setup, we opted to set plow at 0.25 and phigh at 0.75. Under these
settings, Ŝm×plow

and Ŝm×phigh
denote the first quartile (25th percentile) and third quartile (75th percentile),

respectively, as typically depicted in a traditional box-plot diagram.

It should be emphasized that the primary aim of this procedure is to eliminate models exhibiting exceptionally
low-performance scores, as demonstrated by their respective local validation accuracies in our experiments.
As evident from Figure 1, any models scoring beneath the threshold δ are effectively filtered out, thereby
excluding them from future clustering pursuits.

A.2 Description of Model Representation

Here we discuss the details about the model representation technique. Given a model structure such as
Resnet-18, we can choose all or part of the model parameters to represent the model. E.g., as Fig. 2 of the
main paper illustrates, we choose to represent models by the parameters of the last layer in every model
within the set M. These parameters are preferred as they hold a wealth of individualized information and
adequately depict model behavior, particularly for the classifier, and data manifold/space in relation to local
training.

If Resnet-18 is used as the model structure for a 10-class dataset, the last layer of its model parameters will
be the layer with the name of linear.weight and linear.bias, which contains 512 × 10 and 10 parameters,
respectively. Then, we will flatten these in total 512 × 10 + 10 = 51210 parameters into a one-dimensional
vector with the size of 51210.

Following this, the model parameter matrix, denoted by RM′ , is the result of concatenating all these models’
one-dimensional vectors and will have the size of m′× 51210, where m′ is the number of models in M′. Prior
to leveraging this matrix as the model representation for subsequent clustering, we will employ wide-ranging,
commonly used preprocessing mechanisms. These may include MIN-MAX scaling, and/or dimensional re-
duction on RM′ . This optimizes the representation for better clustering results. Further details regarding
the suitability and efficacy of diverse preprocessing techniques are elaborated upon in section C.2.

A.3 Discussion on Representative Model Selection

It is widely known that in machine learning and AI, a model’s accuracy can often be directly related to the
volume of data it has been trained on. In essence, the more diverse and abundant the data available for

1

Published in Transactions on Machine Learning Research (11/2023)

Table 1: The impact of Representative Model Selection method for the EMNIST Balanced Dataset, VGG-5
(Spinal FC) structure when m=100, K = 50, where DeDES_CV, DeDES_data refers to our DeDES method
that always selects the model with the highest score/ model with the most number of local data within a
cluster, respectively. DeDES_mixed is our mixed selection strategy used in the experiments.

Method DeDES_mixed DeDES_CV DeDES_data
homo 85.19 84.87 84.81
iid-dq 87.34 83.92 87.34

noniid-lds 83.43 83.1 83.29
noniid-l18 85.43 85.14 85.33

training, the higher is the potential for the model to comprehend and discern the intricacies of the underlying
data. If a client only has a small amount of data, then the trained model might struggle to identify significant
patterns or it might overfit to that specific data, meaning it could perform well on that data but poorly on
new, unseen data. Inversely, models trained on large volumes of data have a broader foundation to learn from
and are typically better at generalizing their findings to new data, thereby often yielding higher accuracy.

We can also validate this conclusion from our experiment results, as depicted in Fig. 4 and Table 1 of the main
paper, it is clear that Data Selection (DS) consistently outperforms other methods in most datasets when
it comes to the iid-dq partition. This is particularly true when one or a few parties have significantly larger
pools of data compared to other clients. The single TOP 1/2 models as in Fig. 4 (b) have the the largest
dataset with samples of every class in the label set, which leads to their strong generalization ability under
this partition. However, when data distribution is more uniform or balanced, referred to as the homogenous
partition, the Data Selection method doesn’t necessarily offer the best model selection strategy. It’s simple to
comprehend that in scenarios where data is uniformly distributed among different parties, selecting models
purely based on the volume of data becomes ineffective. This is due to the lack of a significant data volume
disparity between the client with the highest data volume and the rest. Therefore, a modification to the
selection strategy becomes necessary, focusing more on models with the highest validation accuracy rather
than just data volume.

We refined a strategy to choose the representative model. If the models within a cluster equivalently distribute
the training data, our strategy selects the model with the highest local validation accuracy. Conversely, if
the distribution is skewed, the model with the maximum training data is chosen. This strategy was enforced
by calculating the ratio of the quantity of local training data for the median model in a cluster to that of
the model with the most local training data. If this ratio is less than the prescribed selection threshold
τ , the cluster is deemed unbalanced. To substantiate the soundness of our representative model selection
technique, we performed an ablation study on three different methodologies:

1. Mixed: Both data distribution and model validation accuracies were taken into account in this model
selection method.

2. CV: This method consistently chose the model with the highest local validation accuracy.

3. Data: This method invariably selected the model with the most local data within a cluster.

The data in Table 1 reveals that the mixed model selection method exceeds other methods across all four data
partitions. While the disparity among the selection strategies is not significantly vast (since the representative
model selection is just an aspect of the whole model selection algorithm), it still displays superior performance.
Not that for the iid-dq data partition, the accuracy of the mixed selection strategy matches that of the data
selection strategy. This is a testament to the fact that given a significantly unbalanced dataset, our mixed
strategy will invariably choose the model with the most data, mirroring the data selection strategy.

A.4 Description of Adaptation to Heterogeneous models

In this section, we will provide more details about how to apply DeDES to heterogeneous models. As mentioned
in the main paper, our method transforms these models into a unified model parameter matrix RM′ .

2

Published in Transactions on Machine Learning Research (11/2023)

flatten selected
parameters

Heterogeneous models

flatten selected
parameters

flatten selected
parameters

concatenate

concatenate

concatenate

Figure 2: Process diagram for handling heterogeneous models

Fig. 2 shows the whole handling process, as described as follows:

Assuming that there are s types of model structures and each contains any number of models, the model set
M′ for all those models is,

M′ = {M1, M2, . . . , Mm′} group by s=
s⋃

i=1
M′

i with M′
i = {Mi,1, . . . , M1,m′

i
},

where m′
i denotes the number of models in M′

i that share the i-th model structure; and the total number
of models in M′ is m′ =

s∑
i=1

m′
i.

We extract part of the model parameters and flatten them to be a one-dimensional vector as the represen-
tation of the model. For the model Mi ∈ M′, let θi denote the flattened selected parameters (e.g., the
parameters of the last layer) of Mi. Let Vi = {θi,1, . . . , θi,m′

i
} be the vector set for the model subset M′

i.

Thus, the vector set V for all models M′ will be V =
s⋃

i=1
Vi = {θ1, θ2, θ3, . . . , θm′}.

Since the model structures vary for different Mi, the sizes of the vectors in V are also different, which makes
it hard to directly apply the clustering methods. To solve such an issue, we reduce the dimension of all

3

Published in Transactions on Machine Learning Research (11/2023)

vectors to a unified dimension d. Given a Dimension Reduction (DR) algorithm, we transform the size of
all vectors θi of V into d = minθ∈V |θ| by applying DR to each sub-vector set Vi, separately. The model
parameter matrix RM′ is obtained by combining all these matrices together,

RM′ = [DR(V1, d), DR(V2, d), · · · , DR(Vs, d)]T . (1)

RM′ ∈ Rm′×d with each sub-matrix DR(Vi, d) ∈ Rm′
i×d. We can then perform further clustering on RM′ ,

since all heterogeneous models are transformed to the same dimensions.

For some dimension reduction algorithms such as PCA, it is required to set the maximum dimensionality
that can be reduced to the minimum value between the two dimensions of the original matrix. In this case,
we set the dimensionality d to min(minθ∈V |θ|, min1≤i≤s m′

i).

Here we show an example:

Assuming that three distinct model structures are given (s = 3), each structure comprises 600, 700, and
800 models, respectively. We will have in total m′ = 600 + 700 + 800 = 2100 models. The last layer is
selected to serve as the model’s representation, with the representation sizes for the three model structures
being 300, 400, and 500, respectively. Then, we can obtain three vector sets: V1 = {θ1,1, θ1,2, . . . , θ1,600},
V2 = {θ2,1, θ2,2, . . . , θ2,700}, V3 = {θ3,1, θ3,2, . . . , θ3,800}, and the lengths of the vectors within the V1, V2,
and V3 sets are respectively 300, 400, and 500. Then the vector set V for all models M′ will be:

V =
3⋃

i=1
Vi = {

V1︷ ︸︸ ︷
θ1,1, θ1,2, . . . , θ1,600, θ2,1, θ2,2, . . . , θ2,700,︸ ︷︷ ︸

V2

V3︷ ︸︸ ︷
θ3,1, θ3,2, . . . , θ3,800}. (2)

Then, the unified dimension d will be:

d = min
θ∈V

|θ| = min{
|V1|=600︷ ︸︸ ︷

300, 300, . . . , 300, 400, 400, . . . , 400︸ ︷︷ ︸
|V2|=700

,

|V3|=800︷ ︸︸ ︷
500, 500, . . . , 500} = 800 (3)

Thus, we can get the model parameter matrix RM′ by:

RM′ = [DR(V1, 300), DR(V2, 300), . . . , DR(Vs, 300)]T (4)

with RM′ size of 2100 × 300. And this model parameter matrix can be then used by DeDES to conduct
further clustering.

A.5 Discussion on Privacy Analysis

We recognize the potential privacy leakages and are dedicated to mitigating risks in our proposed method.
The generator of the GAN is prevented from directly accessing the real data, and our one-shot setting with
only a single communication round helps to minimize the exposure of sensitive information. Prior to model
submission to the server, we can employ various mechanisms (Kolluri et al., 2021; Liu et al., 2021) to reinforce
model privacy against GAN attacks (Hitaj et al., 2017), ensuring enhanced security and data confidentiality.

To thwart model inference attacks, which aim to recover training data from the models, and membership
inference attacks that can determine if a particular record was part of the model’s training dataset or not,
we can choose to incorporate several strategic responses. For instance, the application of differential pri-
vacy (Xiong et al., 2021) introduces random noise to the model’s outputs, obscuring the model’s predictions.
Additionally, including the regularization terms (Niknam et al., 2020), such as L1 and L2 regularization, to
the model’s loss function is also a way to discourage the model from overly fitting the training data, thus
safeguarding the training data’s privacy.

4

Published in Transactions on Machine Learning Research (11/2023)

Table 2: Physical running time (second) for different model selection methods, KMeans is used as the
clustering method for DeDES.

Dataset Model Partition m K DeDES AS
EMNIST Letters VGG-5 (Spinal FC) noniid-l8 400 200 33.73 2.12 × 10−5

FEMNIST Resnet-18 noniid-lds 3597 100 70.2 2.13 × 10−5

In terms of model extraction attacks, where the adversary attempts to replicate the targeted machine learning
model without direct access to its parameters or training data, a similar approach of differential privacy (Yan
et al., 2021) and regularization (Li et al., 2023b) could be applied during model training. Furthermore, we
can also try to integrate techniques such as watermarking (Tekgul et al., 2021), which embeds identifiable
information into the model, to detect any unauthorized replication attempts. Other defense policies can also
be applied to defend against attack, such as the defense scheme based on the physical unclonable function
(PUF) (Li et al., 2023a), etc.

In summation, by incorporating these diverse measures into our model selection method, we aim to strengthen
the protections for model privacy and enhance the security of the model ensemble team.

A.6 Discussion on Computational/Time Complexity

In this section, we explore the circumstances wherein a model selection approach such as DeDES is more
efficient than the All Selection (AS) method. As we know, for the ensemble selection problem in ensemble
learning, the time cost will have two parts: model selection and ensemble learning.

1. The time complexity involved in selecting models from the complete set M is denoted as O(selection).
As illustrated in Lemma 1 of the primary paper, DeDES’s overall time complexity is defined as O(m log m +
md + m) + O(clustering), where O(clustering) represents the time complexity of the applied model clus-
tering methodology. When KMeans is utilized in conjunction with DeDES, the total time complexity equals
O(m log m + md + mKd + m). On the other hand, the AS method’s time complexity is O(1), as it entails
selecting all models for the ensemble team, with no additional calculations required.

2. The time complexity for ensemble learning (weighted voting) determined by the ensemble team M∗
K is

denoted as O(ensemble). For the purposes of our hypothesization, we’ll assume that all model structures
within M∗

K are identical. Consequently, given this homogeneity in structure and runtime environment, the
inference time for a single sample is consistent across all models, denoted as O(C). Assuming that we possess
nt samples suitable for testing by M∗

K , DeDES’s total ensemble learning time complexity will be: O(KnC).
Given that the weighted averaging time O(1) is relatively negligible, the AS method’s ensemble learning time
complexity will be: O(mnC).

To summarize, the overall time complexity for DeDES and AS will be:

1. O(DeDES) = O(selection) + O(ensemble) = O(m log m + md + m) + O(clustering) + O(KntC).

2. O(AS) = O(selection) + O(ensemble) = O(1) + O(mntC) ≈ O(mntC) .

In order for DeDES to be considered more efficient than AS, the time complexity of AS would need to be
greater than that of DeDES. In other words, O(mntC) > O(m log m + md + m) + O(clustering) + O(KntC).

Assuming the clustering method used is KMeans, the inequality can be further refined as: O(mntC) >
O(m log m + md + mKd + m + KntC).

I.e., for a chosen K, it requires the number of test samples, nt, to be greater than m log m+md+mKd+m
(m−K)C .

This condition is feasibly attainable in practical situations, due to the frequent necessity to test a significant
number of samples. Consequently, nt can effortlessly transcend a nominal value.

To defend our argument, consider the following example. Table. 2 and Table. 3 display the physical running
time comparison for various model selection methods and the inference time for a single test sample on two
different datasets, respectively. These were tested on our Linux server, the details of which are provided in

5

Published in Transactions on Machine Learning Research (11/2023)

Table 3: Physical running time (second) for the inference of one sample.

Dataset Model Partition Inference Time
EMNIST Letters VGG-5 (Spinal FC) noniid-l8 2.2216 × 10−4

FEMNIST Resnet-18 noniid-lds 1.7291 × 10−4

Table 4: Physical running time (second) comparison of DeDES and AS for the whole ensemble selection
process, including model selection and inference of ensemble learning where KMeans is used as the clustering
method for DeDES on nt = 100, 000 test samples.

Dataset Model Partition m K DeDES AS
EMNIST Letters VGG-5 (Spinal FC) noniid-l8 400 200 4479.93 8886.40

FEMNIST Resnet-18 noniid-lds 3597 100 1799.3 62195.73

section C.4. Upon inspection, it’s evident that our DeDES method takes more time in model selection than
the AS method. It’s essential, however, to note that this model selection process will be carried out only
once. Thus, despite the seemingly lengthier process, the overall time cost is manageable given that we only
have to wait for approximately 1 minute to obtain the selection results for both datasets.

Table 3 shows that processing a test sample through the VGG-5 (Spinal FC) model takes 2.2216 × 10−4

second, denoted as C = 2.2216 × 10−4. In the case of the EMNIST Letters dataset, we selected K = 200
from a pool of m = 400 models for our ensemble. Therefore, gauging by our earlier assertion, DeDES can
be considered more efficient than the AS method when: Time(All Selection) + Time(AS Ensemble) >
Time(DeDES) + Time(DeDES Ensemble), i.e,

2.12 × 10−5︸ ︷︷ ︸
All Selection

+nt × 400︸︷︷︸
m

× 2.2216 × 10−4︸ ︷︷ ︸
C

>

DeDES︷ ︸︸ ︷
36.73 +nt ×

K︷︸︸︷
200 ×

C︷ ︸︸ ︷
2.2216 × 10−4 (5)

Consequently, we get that nt > 826.66, suggesting that when we have over 827 test samples at our disposal to
carry out ensemble learning, the time efficiency of the DeDES surpasses that of the All Selection method. This
implication becomes particularly encouraging when dealing with the FEMNIST dataset with K = 100 among
m = 3597 models, whereby nt merely requires to exceed 116.09 for us to reap both superior performance
(performance results can be seen from Table 1. in the main paper) and efficiency through the adoption of
the DeDES method in lieu of AS.

In practice, we often encounter thousands of test samples in need of inference from the ensemble team.
Hence, it is no doubt that applying a model selection method is beneficial for ensemble learning. Table. 4
presents the comprehensive running time for both methods when we have nt = 100,000 test samples available
for voting. The clear observation is that the AS method consumes considerable time due to its model testing
and execution of ensemble learning, however, our DeDES provides tangible savings of approximately 49.59%
of the time than AS for the EMNIST Letters dataset, and a remarkable 97.1% of the time than AS for
the FEMNIST dataset with no compromise on performance. This empirically attests the superior efficiency
and effectiveness of our proposed method.

Computation Complexity and Communication Cost: Since our approach adheres to the one-shot
federated learning scheme, which inherently requires every client to communicate with the server only once
- when they transmit their respective models. Consequently, the sole communication cost incurred by every
client is the transmission of its meticulously trained model to the central server. To illustrate, a client, such
as a smartphone, may train a Resnet model with a 44-MB size, and dispatch it to our server via the internet.
This task is not a challenge for modern devices. We would like to emphasize that our usual protocol does
not impose any fixed constraints on the computational resources designated for the central server. This is
based on our fundamental belief that the central server possesses an exceptional computational capability.
Hence, in discussing communication costs and computational resources, our method exhibits flexibility and

6

Published in Transactions on Machine Learning Research (11/2023)

Table 5: Details of experiment configurations. Note that the bold model structure is the default structure
used in our experiment for the corresponding dataset.

Dataset C Size (
∑

i
ni) k in noniid-lk Model m

EMNIST Digits 10 280,000 3 VGG-5 (Spinal FC),
ResNet-50 100, 200, 400EMNIST Letters 26 145,600 8

EMNIST Balanced 47 131,600 18

SVHN 10 99,289 3 ResNet-18 200

FEMNIST 62 805,263 - ResNet-18 3597

CIFAR10 10 60,000 4 ResNet-50,
DenseNet-121 50, 100, 200

CIFAR100 100 60,000 45 ResNet-50,
Deep Layer Aggregation 5, 10, 20

scalability. It can be comfortably expanded to accommodate a large-scale federated learning system without
compromising efficiency.

B Justification on DeDES

Here we provide a justification for why DeDES is a good approximation for solving Problem 1.

Theorem 1 presented by Luis A Ortega et al. (Ortega et al., 2022) states that the expected loss of an ensemble
decreases as the diversity measure among model ensembles increases. Theorem 3, also presented by Ortega
et al. (Ortega et al., 2022), bolsters this evidence, showcasing that the diversity measure proliferates with a
decrease in correlation among ensembles.

To sum up, a lower correlation among model ensembles encourages lower expected loss. This rationalization
is reinforced within algorithm 1 in the main paper, which within Lines 5 through 13, clusters models and
subsequently selects one from each cluster, ensuring that the models in the generated model ensemble are
highly uncorrelated among each other thus strengthening the diversity of the ensemble team, and setting the
stage for an optimal approximation to Problem 1.

Notably, Theorem 1 and 3 are primarily designed for a scenario where data is distributed independently
and identically (i.i.d.). Our empirical findings, however, suggest that they perform impressively even in a
non-i.i.d data setting, provided that the ensemble group is carefully selected for high diversity. Consequently,
the relationship between the diversity measure and the expected loss in a non-i.i.d. environment presents a
potentially profound area of future theoretical exploration that is worthy of further investigation.

C Experiment Setup

C.1 Dataset and Model Structure Configurations

As shown in Table. 5, we run our method on 7 datasets with 5 different model structures to validate the
effectiveness of our method. The EMNIST dataset has three different types of split: Digits, Letters, and
Balanced which have 10, 26, and 47 classes respectively.

The CIFAR-10 and CIFAR-100 are labeled subsets of the 80 million tiny images dataset, they are two widely
used datasets for machine learning and computer vision research. The CIFAR-10 dataset contains 60,000
32x32 color images in 10 different classes, making a total of 6,000 images per class. The CIFAR-100 dataset
is just like the CIFAR-10, except it has 100 classes containing 600 images each.

7

Published in Transactions on Machine Learning Research (11/2023)

The Street View House Numbers (SVHN) dataset is a public dataset that contains real-world, full-color
images of house numbers extracted from Google Street View images. We use this dataset to validate that
our method is generalizable and can be applied to real-world applications.

Meanwhile, to validate that our method can be applied to large-scale federated learning systems, we use the
FEMNIST dataset, which is a benchmark dataset that contains in total 3597 clients, whose data distribution
is non-i.i.d among these clients.

All model structures we used are CNN models, such as Resnet-18 which is a popular convolutional neural
network model in the realm of deep learning. We use 5 different model structures to show that our method
is generalizable for different model structures.

C.2 Component Configurations

In this subsection, we describe the default configurations of our DeDES framework for the experiments in the
main paper.

For local model training, we utilize the SGD optimizer to get 200 models for every party through 200 epochs
of training with learning rate started at 0.1 and decrease at later epochs, i.e., we save all the models from
the 200 training rounds. After the training is finished, for every party, we select the model with the highest
local validation accuracy (among these 200 models) as the final well-trained model and then upload it to the
server of model market. Meanwhile, we record the test results on the whole test set for this final model.

In our experiments, we use the local validations of the parties as our model score S, which are uploaded from
the clients; we select parameters of the final model layer (last layer) as the model representation; we utilize
the MINMAX scaler to preprocess the Model Representation Matrix, and the Gaussian Normalization scaler
to preprocess the Label Distribution ground-truth input data; we do not utilize any dimension reduction
strategy for the model representation matrix because the last layer of model parameters are already few in
number.

Hierarchical clustering is used on the homo and iid-dq partitioned dataset; KMeans clustering is used on the
noniid-lds and noniid-lk partitioned dataset.

Our proposed model representative selection approach is utilized to determine the representative model
within each cluster; as we have stated, we apply the weighted voting strategy based on the size of local
clients’ datasets to perform ensemble learning; we use the test accuracy on the whole test set Dtest as the
evaluation metric for all the ensemble selection methods.

C.3 Method for Tuning Hyperparameters

As described in the main paper, we have five hyperparameters to tune: K, τ , plow, phigh, and s. How to
select these hyperparameters is an important problem. First, we discuss how to select K, K is the number of
models we want to select to form the ensemble team. In practice, it is the final users’s decision to determine
K, depending on their requirements. For example, after evaluating their computational resources, a user
may decide to establish an ensemble by selecting 40 models from a pool of 100. In classical ensemble selection
literature, this K will be pre-defined by the author (Fan et al., 2002). In section 5.4 of our main paper, we
studied how K will affect the performance of ensemble learning and we picked K around half of the total
number of models m in our experiments to show the good performance of our method.

For other hyperparameters, like τ that is used to decide how to select the model within a cluster, and plow,
phigh, s are used to decide how many models to be filtered out at the first step of DeDES, we adopted a variant
of the widely used Grid Search (Nagaraj et al., 2022) method to tune them. In the grid search approach,
a method is tested for every combination of specified hyperparameters and the best-performed combination
on the validation set will be picked as the final hyperparameters. First, we show the search ranges for these
parameters, then, we will illustrate how to design a good grid search method for DeDES under FL setting.

The search ranges for different hyperparameters are:

8

Published in Transactions on Machine Learning Research (11/2023)

• τ : [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9], and 0.9 is chosen in our experiments. The logic behind
this is as follows: if the model with median local training data in a cluster has less than 90 % the
data of the model with most local training data, the cluster is identified as unbalanced. In this case,
the model with the most training data is selected. If not, the model with the highest score is chosen.

• plow: [0.05, 0.10, 0.15, 0.25, 0.30, 0.35]. We finally choose plow to be the 0.25 (25-percentile), just
the same as the classical box-plot method since it is widely proven effective.

• phigh: [0.6, 0.65, 0.70, 0.75, 0.80, 0.85]. We finally choose phigh to be the 0.75 (75-percentile), just
the same as the classical box-plot method.

• s: [0, 0.5, 1.0, 2.0, 3.0], and 1.0 is ultimately selected. How many models will be filtered out before
conducting further clustering will depend on the model score distribution of the clients.

Then we discuss how to apply grid search for DeDES. Based on the federated learning setting, the central
server cannot get the validation set from local clients, so we cannot apply grid search to DeDES directly.
However, we can still get the data distribution statistics from these clients, i.e., we know the quantity of
training/validation data each individual client possesses. With this information, we developed a customized
version of grid search specifically designed to fine-tune the hyperparameters within a federated learning
framework. This is attained by dispatching the chosen model parameters back to their originating clients
and computing a weighted average of their local ensemble validation accuracies. Consequently, even the
constraints of a federated learning environment cannot inhibit our method’s proficiency and adaptability.

Let’s walk through the fine-tuning of hyperparameters using DeDES:

Consider a scenario where we need to select K = 3 models from m = 100 clients. The central model server
will collect 100 models M1, M2, · · · , M100, each corresponding to a client, from 1 to 100. We employ a
systematic grid search strategy to identify the optimal hyperparameter combinations out of a set of C=20
possibilities. For each i-th hyperparameter combination, ranging from 1 to 20, we accomplish the following:

1. Implement DeDES on the central server to select the best K = 3 models in reference to the i-th hyperpa-
rameter combination. In this context, let’s assume our selection led us to M5, M36, and M74.

2. Transmit these 3 models back to their corresponding clients, omitting their own model. Thus, client 5
will receive M36, M74; and likewise, client 36 will get M5, M74 and client 74 will acquire M5, M36.

3. Client 5, 36, and 74 will then execute ensemble learning (through voting) based on the selected ensemble
team M∗

3 = {M5, M36, M74}, using their respective local validation sets Dval
5 , Dval

36 , Dval
74 . Following this,

they will send their local ensemble validation accuracies Accval
5 , Accval

36 and Accval
74 back to the central server.

4. The central model server will then derive the final validation accuracy Acchyper
i for the i-th hyperparameter

combination by implementing a weighted average calculation:

Acchyper
i =

K=3∑
j=1

nval
j × Accval

j∑K
k=1 nval

k

= nval
5 × Accval

5 + nval
36 × Accval

36 + nval
74 × Accval

74
nval

5 + nval
36 + nval

74
(6)

Repeat the above process until we get all test all validation accuracies Acchyper
i for i from 1 to 20. Then, we

will identify and select the combination of hyperparameters that yields the highest validation accuracy:

index = arg max
i∈{1,··· ,20}

Acchyper
i (7)

We accordingly select the index-th hyperparameter combination as our optimal set of hyperparameters.

9

Published in Transactions on Machine Learning Research (11/2023)

Table 6: Test accuracy (%) comparison for different dataset on different data partitions and model structures.
The best and next best methods are bolded and underlined, respectively. If our DeDES method is better
than the LD ground-truth method, the value of LD method will be marked in skyblue. The FedAvg and
MeanAvg algorithms cannot be utilized on heterogeneous models. Thus, they did not yield results under
heterogeneous settings such as EMNIST digits (50% VGG-5 Spinal FC and 50% Resnet-50).

Dataset Partition m K DeDES CV DS RS FedAvg MeanAvg AS LD Oracle

EMNIST Digits
(100% Resnet-50)

homo 400 150 96.33 96.65 96.23 96.31 10.25 10.22 96.46 96.70 99.71
iid-dq 400 150 98.13 98.08 98.07 97.94 10.63 10.64 98.01 98.13 99.70

noniid-lds 400 150 96.52 86.58 95.48 96.04 10.24 10.19 96.50 94.80 99.70
noniid-l3 400 150 96.64 89.21 58.59 94.72 9.74 9.61 96.81 96.83 99.67

EMNIST Letters
(100% VGG-5 Spinal FC)

homo 200 120 88.64 88.88 88.82 88.68 3.72 3.71 88.77 88.77 95.12
iid-dq 200 120 92.32 91.97 92.33 92.13 3.84 3.82 92.19 92.33 95.12

noniid-lds 200 120 87.93 86.52 83.45 82.25 4.03 4.02 87.74 85.01 94.90
noniid-l8 200 120 89.10 84.40 86.98 85.95 3.85 3.84 87.93 87.54 95.06

EMNIST Letters
(100% Resnet-50)

homo 200 120 78.01 78.77 77.13 77.08 3.86 3.89 77.91 77.41 94.76
iid-dq 200 120 88.88 88.88 88.89 88.45 3.82 3.80 88.88 88.85 95.13

noniid-lds 200 120 79.78 79.53 77.27 78.65 4.23 4.28 80.55 78.37 94.86
noniid-l8 200 120 81.10 80.54 78.86 80.28 3.74 3.69 82.79 82.33 95.08

EMNIST Balanced
(100% Resnet-50)

homo 100 50 80.12 80.33 79.38 79.20 2.15 2.18 80.11 78.93 89.44
iid-dq 100 50 85.68 85.68 85.71 84.54 2.11 2.14 85.68 85.76 89.12

noniid-lds 100 50 76.34 71.64 74.16 75.00 2.23 2.21 77.56 70.75 89.52
noniid-l18 100 50 77.99 77.71 77.98 77.40 2.13 2.13 80.28 78.58 89.39

CIFAR10
(100% Densenet)

homo 200 100 46.84 46.47 45.37 45.68 10.49 10.08 46.30 46.34 90.57
iid-dq 200 100 52.38 53.55 53.47 51.76 10.45 10.56 53.01 54.03 90.38

noniid-lds 200 100 44.90 40.89 40.54 41.49 10.38 10.52 43.91 41.61 91.01
noniid-l4 200 100 47.04 46.08 40.92 45.43 9.71 9.47 48.51 47.45 90.79

CIFAR100
(100% Deep Layer Aggregation)

homo 20 12 23.01 22.47 22.27 22.63 0.95 0.94 24.80 22.12 52.63
iid-dq 20 12 39.18 39.18 39.18 37.04 1.01 0.95 39.18 39.18 55.61

noniid-lds 20 12 22.29 21.37 21.88 21.15 0.94 0.94 25.11 21.42 55.94
noniid-l45 20 12 24.41 24.07 23.08 23.59 0.87 0.85 27.42 23.19 54.90

EMNIST Digits
(50% VGG-5 Spinal FC,

50% Resnet-50)

homo 400 250 97.46 98.04 97.41 97.10 - - 97.93 97.67 99.74
iid-dq 400 250 98.63 98.61 98.64 97.58 - - 98.61 98.89 99.71

noniid-lds 400 250 97.31 94.51 94.25 91.21 - - 97.25 95.86 99.72
noniid-l3 400 250 97.64 96.47 88.16 96.38 - - 97.65 97.55 99.61

EMNIST Letters
(50% VGG-5 Spinal FC,

50% Resnet-50)

homo 400 200 81.90 83.49 54.66 79.82 - - 83.05 82.58 95.12
iid-dq 400 200 90.00 89.38 89.50 88.39 - - 89.04 88.89 95.12

noniid-lds 400 200 82.91 82.87 81.27 81.78 - - 82.97 82.9 94.9
noniid-l8 400 200 80.69 81.19 64.56 65.58 - - 82.90 81.58 95.06

C.4 Environment

All our experiments are running on a single machine with 1TB RAM and 256 cores AMD EPYC 7742
64-Core Processor @ 3.4GHz CPU. The GPU we used is NVIDIA A100 SXM4 with 40GB memory. The
environment settings are: Python 3.9.12, PyTorch 1.12.1 with CUDA 11.6 on Ubuntu 20.04.4 LTS.

All the experimental results are the average over three trials.

D Additional Experiments

In this section, we will show more experimental results as a supplement to the main paper. Due to the
relatively large amount of experimental data, for each conclusion/finding, we take one of the experimen-
tal cases as presentation (one dataset, one m and one K), while the conclusion remains similar to other
datasets/m/K.

D.1 Performance Analysis

Table 6 shows the performance of different methods when we apply them on the 5 datasets with 4 partitions,
but different model structures than the main paper. K is selected about half of m. Note that when

10

Published in Transactions on Machine Learning Research (11/2023)

Method Rank Accuracy (%)
DeDES 214/1024 98.34

AS 372/1024 97.09
DS 608/1024 89.63
LD 675/1024 87.86
CV 933/1024 74.73
RS 952/1024 72.45

Table 7: Complete inspection on ensemble
teams for EMNIST Digits dataset with m =
10, K = 5, noniid-lds partition.

Figure 3: The relationship of K and Ensemble
Test Accuracy of DeDES for the EMNIST Balanced
Dataset when m=400.

Table 8: Test accuracy comparison among model ensemble, DENSE and FedAvg for the CIFAR10 Dataset,
Resnet-50 structure when m=5.

Method Model Ensemble DENSE FedAvg
homo 62.15 58.84 15.93
iid-dq 53.33 13.25 13.42

noniid-lds 46.63 44.27 15.99
noniid-l4 33.63 31.66 19.9

m = 200, K = 120 on the EMNIST Letters dataset when the model structure is Resnet-50, the test accuracy
of DeDES and AS, CV are the same, which means they both selected the same ensemble team. Compared
to other baseline methods, DeDES can still achieve good performance (at least the second best, close to the
best method of All Selection, which is very time-consuming).

Under the heterogeneous models setting, DeDES is still able to achieve a relatively better performance, though
it may not perform as well as the homogeneous one which results from the significant variation in the structure
of the models and making models of the same type to the same group when performing clustering. Therefore,
to ensure that the clustering algorithm can find diverse models in the same structure type, a relatively large
value of K is required.

Table 7 enumerated the accuracy of all 1024 teams and the ranking of ensemble teams selected by different
methods for another data partition (noniid-lds) of the EMNIST balanced dataset. We can see that the
ensemble team selected by DeDES is ranked higher than other baseline methods, which validates the efficacy
of our method. Note the value of K here is 5 while the size of the best ensemble team among all 1024 teams
is 4, therefore, how to select an appropriate K remains an open problem.

D.2 Impact on Efficiency

Fig. 3 gives another plot of the relationship between K and test accuracy for the EMNIST Balanced
dataset. The conclusion remains the same as the main paper that we don’t have to select all models to form
an ensemble team for most of the cases, which saves the inference time and also keeps good performance.

D.3 Compare DENSE with ensemble

To show the necessity of model ensemble rather than knowledge distillation (KD), we give another comparison
between DENSE and model ensemble with m = 5 for CIFAR10 dataset, Resnet-50 model structure on Table
8. As we can see, no matter under what data partitions, it is discernible that the performance of the model
ensemble consistently surpasses that of DENSE, which employs KD, even with a minimal party size of just
5 clients. Thus, to achieve desirable performance under the one-shot federated learning setup, it becomes
essential to leverage model ensemble.

11

Published in Transactions on Machine Learning Research (11/2023)

Table 9: Performance comparison of choosing different hyperparameter combinations for the SVHN dataset,
Resnet-18 structure when m = 200, K = 80. Here we provide 7 hyperparameter combinations to show the
effects of these hyperparameters.

ID τ plow phigh s homo iid-dq noniid-lds noniid-l3
1 0.9 0.25 0.75 1 38.90 65.83 32.56 31.45
2 0.9 0.25 0.75 0 38.90 65.46 32.21 30.92
3 0.9 0.25 0.75 2 38.90 65.82 32.50 31.45
4 0.1 0.25 0.75 1 38.90 65.03 32.41 31.07
5 0.5 0.25 0.75 1 38.90 65.35 32.51 31.11
6 0.9 0.35 0.85 1 38.90 65.82 32.54 31.45
7 0.9 0.05 0.6 1 38.90 65.81 32.53 31.44

E Additional Ablation Studies

In this section, we will give more ablation studies about the effect of each component of DeDES including
model representation, dimension reduction, etc.

E.1 Comparison with different hyperparameter combinations

Table 9 presents the comparative analysis of seven distinct hyperparameter combinations. Initially, one
can observe that the fluctuation in hyperparameters does not bring a substantial change in performance,
thereby solidifying the stability of our DeDES approach. Simultaneously, Table 9 reaffirms that regardless of
the hyperparameters selected, the homo data partition will consistently deliver identical performance. This
consistency can be attributed to the homo data partition generating models with nearly the same model
parameters, thereby ensuring that no matter how many models we filter out or what model will we choose
within a cluster, the eventual ensemble performance remains largely similar.

Observing other data partitions reveals a similar influence of varying hyperparameters. For instance, the
necessity for a model filtering algorithm becomes apparent when comparing combinations 1, 2 and 3, with
s = 0 implying that no models are filtered out, resulting in a performance decrement. When comparing
combinations 1, 4, and 5, it is implied that there’s a requirement for an effective threshold τ to determine
the degree of data imbalance among all clients. A τ value of 0.9 signifies data-sensitivity and a tendency
to select a model with a significant amount of local training data. Nevertheless, it is not advisable to set
τ=1, as it implies always select the model with the highest quantity of data within a cluster, which could
potentially overshadow models with superior model scores, leading to a dip in performance, echoing the
findings in section A.3.

An examination of combinations 1, 6, and 7 indicates that the value of the threshold pair (plow, phigh) doesn’t
significantly impact performance, with the commonly utilized 25-percentile and 75-percentile exhibiting the
best performance among all combinations.

E.2 Performance comparison on different model representation

As shown in Fig. 4, for the VGG-5 (Spinal FC) model, we pick its first batch of input layers (layer_1),
first and fourth batch of fc_spinal_layers (fs_layer1 and fs_layer4), and final/last fully-connected layers
(last_layer) as the model representations.The rnd_layer denotes the random selection of 10% of all layers as
our model representation. For the iid partitions (homo and iid-dq), there is almost no performance difference
observed, irrespective of the layer chosen. However, for the non-iid partitions (noniid-lds and noniid-l18), a
performance gap is evident when using different layers as representations. In Fig. 4, it is evident that using
parameters from the models’ later layers as representation is moderately better than using parameters from
their front layers. However, this is a crude observation and does not apply to all situations. Therefore, the
selection of an optimal model representation to achieve better performance, particularly for the non-iid data
partition, remains an open problem.

12

Published in Transactions on Machine Learning Research (11/2023)

Figure 4: Comparison on the Ensemble Test Accu-
racy when applying different model representations
on DeDES for the EMNIST Letters Dataset, VGG-5
(Spinal FC) structure when m=200, K = 120.

Figure 5: Comparison on the Ensemble Test Ac-
curacy when applying different dimension reduction
methods with the last layer as model representation
on DeDES for the CIFAR-10 Dataset, Resnet-50 struc-
ture when m=50, K = 30.

E.3 Importance of dimension reduction methods

As shown in Fig. 5, we compare three DR methods: PCA, Kernel-PCA, and no-compression which means
we don’t compress the model representation (here is the parameters of model’s last layer). For PCA and
Kernel-PCA, we reduced the model representation to m − |O| dimensions. We can see that for most of
the partitions, the Kernel-PCA is better than other methods such as PCA and no-compression. This is
because the Kernel-PCA can convert non-linear separable data to a new low-dimensional subspace suitable
for alignment for linear classification, thus is suitable for the non-linearly separable deep learning models.
But we can also see that for the noniid-lds partition, we don’t have to do the dimension reduction to get
better ensemble learning results. Therefore, similar to the ablation study of model representations, how to
design a more effective dimension reduction method is still an open problem.

E.4 Comparative analysis of clustering methods

Our analysis, as reflected in Table 5 of the main paper, shows that for iid data, hierarchical clustering
outperformed all other methods with regard to performance. Nevertheless, the variance in accuracy between
the methods is minuscule in an iid framework, a point we addressed earlier in section 5.3 of the main paper.
The rationale behind these results could be attributed to the fact that under iid conditions, the model
parameters across clients tend to be similar and positioned closely in terms of the feature space. In such a
situation, the data points representing these model parameters might be challenging to separate distinctly.
Hence, as KMeans is predominantly proficient in dealing with spherical and well-spaced data, data points in
proximity might not exhibit a spherical form or sufficient separation. On the contrary, hierarchical clustering
is capable of repeatedly identifying two models that are nearest to each other, regardless of the shape of the
data it is working on.

In contrast, under non-iid circumstances, KMeans is expected to outshine other algorithms, particularly un-
der severely non-iid conditions. This behavior is accounted to the fact that, as compared to iid environments,
the model parameters are relatively sparse under non-iid settings. Consequently, models trained on similar
datasets will likely cluster in a spherical form, enhancing the KMeans clustering method’s efficiency over
other clustering algorithms.

Moreover, our observations highlighted that Spectral Clustering consistently delivered the lowest perfor-
mance. This is because Spectral Clustering relies on a presumption that the data encapsulates a low-
dimensional structure, which can be exposed via spectral decomposition. In circumstances where the data
deviates from this assumption, the performance of Spectral Clustering deteriorates. Hence, for our model
selection scenario, Spectral Clustering does not emerge as an ideal choice.

13

Published in Transactions on Machine Learning Research (11/2023)

Continuing further in our experimental trajectory, we extensively tested the DBSCAN clustering algorithm.
However, DBSCAN failed to segregate the models effectively. This can be attributed to the fact that
DBSCAN is fundamentally a density-based clustering method and handles our model parameters, which
represent high-dimensional data. As such, the points become considerably sparse, which results in difficulty
in defining density.

References
Wei Fan, Fang Chu, Haixun Wang, and Philip S Yu. Pruning and dynamic scheduling of cost-sensitive

ensembles. In AAAI/IAAI, pp. 146–151, 2002.

Briland Hitaj, Giuseppe Ateniese, and Fernando Perez-Cruz. Deep models under the gan: information leakage
from collaborative deep learning. In Proceedings of the 2017 ACM SIGSAC conference on computer and
communications security, pp. 603–618, 2017.

Aashish Kolluri, Teodora Baluta, and Prateek Saxena. Private hierarchical clustering in federated networks.
In Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security, pp.
2342–2360, 2021.

Dawei Li, Di Liu, Ying Guo, Yangkun Ren, Jieyu Su, and Jianwei Liu. Defending against model extraction
attacks with physical unclonable function. Information Sciences, 628:196–207, 2023a.

Jingtao Li, Adnan Siraj Rakin, Xing Chen, Li Yang, Zhezhi He, Deliang Fan, and Chaitali Chakrabarti.
Model extraction attacks on split federated learning. arXiv preprint arXiv:2303.08581, 2023b.

Ruixuan Liu, Yang Cao, Hong Chen, Ruoyang Guo, and Masatoshi Yoshikawa. Flame: Differentially private
federated learning in the shuffle model. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 35, pp. 8688–8696, 2021.

P Nagaraj, V Muneeswaran, G Deshik, et al. Ensemble machine learning (grid search & random forest)
based enhanced medical expert recommendation system for diabetes mellitus prediction. In 2022 3rd
International Conference on Electronics and Sustainable Communication Systems (ICESC), pp. 757–765.
IEEE, 2022.

Solmaz Niknam, Harpreet S Dhillon, and Jeffrey H Reed. Federated learning for wireless communications:
Motivation, opportunities, and challenges. IEEE Communications Magazine, 58(6):46–51, 2020.

Luis A Ortega, Rafael Cabañas, and Andres Masegosa. Diversity and generalization in neural network
ensembles. In International Conference on Artificial Intelligence and Statistics, pp. 11720–11743. PMLR,
2022.

Buse GA Tekgul, Yuxi Xia, Samuel Marchal, and N Asokan. Waffle: Watermarking in federated learning.
In 2021 40th International Symposium on Reliable Distributed Systems (SRDS), pp. 310–320. IEEE, 2021.

Zuobin Xiong, Zhipeng Cai, Daniel Takabi, and Wei Li. Privacy threat and defense for federated learning
with non-iid data in aiot. IEEE Transactions on Industrial Informatics, 18(2):1310–1321, 2021.

Haonan Yan, Xiaoguang Li, Hui Li, Jiamin Li, Wenhai Sun, and Fenghua Li. Monitoring-based differ-
ential privacy mechanism against query flooding-based model extraction attack. IEEE Transactions on
Dependable and Secure Computing, 19(4):2680–2694, 2021.

14

	Additional Description and Discussion for DeDES
	Description of Model Filtering
	Description of Model Representation
	Discussion on Representative Model Selection
	Description of Adaptation to Heterogeneous models
	Discussion on Privacy Analysis
	Discussion on Computational/Time Complexity

	Justification on DeDES
	Experiment Setup
	Dataset and Model Structure Configurations
	Component Configurations
	Method for Tuning Hyperparameters
	Environment

	Additional Experiments
	Performance Analysis
	Impact on Efficiency
	Compare DENSE with ensemble

	Additional Ablation Studies
	Comparison with different hyperparameter combinations
	Performance comparison on different model representation
	Importance of dimension reduction methods
	Comparative analysis of clustering methods

