
Supplementary Material
Exploration-Exploitation in Multi-Agent Competition:

Convergence with Bounded Rationality

A Omitted Proofs and Materials: Section 3

We first restate and prove Proposition 3.1.

Proposition 3.1. Consider the Q-learning updates

Qi(n+ 1) = Qi(n) + α[ri(n)−Qi(n)] (12)

where n ≥ 0 are discrete time steps and assume that Qi(0) = 0 for all i ∈ A. Then, in continuous
time, the updates are given by

Qi(t) = α

∫ t

0

e−αsri(t− s)ds = αe−αt

∫ t

0

eαsri(s) ds, for any t > 0.

Proof. We will provide two proofs of the above statement. For the first, we solve the recursion in
equation (12) and then use the approximation of the exponential function by the geometric sum.
Specifically, we have that

Qi(n+ 1) = αri(n) + (1− α)Qi(n)

= αri(n) + (1− α)[αri(n− 1) + (1− α)Qi(n− 1)]

= αri(n) + (1− α)αri(n− 1) + (1− α)2Qi(n− 1)

= αri(n) + (1− α)αri(n− 1) + (1− α)2[αri(n− 2) + (1− α)Qi(n− 2)]

= . . .

= (1− α)n+1Qi(0) +

n∑
k=0

α(1− α)kri(n− k)

=

n∑
k=0

α(1− α)kri(n− k)

where in the last equation we did a change of variables in the summation since Qi(0) = 0 by
assumption. By taking continuous time steps (i.e., if instead of k → k + 1, we consider k → ∆k
with ∆k → 0), then the above becomes

Q(t) = α

∫ t

0

e−asri(t− s)ds

as claimed. By a change of variables, we also obtain the second expression in the Lemma’s statement.
The second way to prove this statement is by directly considering a continuous time version of (12).
In this case, we have that

Q̇i(s) = α[ri(s)−Qi(s)],

where Q̇i(s) denotes the time derivative of Qi(s), i.e., dQi(s)/ds. This is a first order non-
homogeneous (in the constant term) linear differential equation of the form

Q̇i(s) + αQi(s) = αri(s).

By multiplying both sides with the integrating factor eαs, we obtain that

eαs[Q̇i(s) + αQi(s)] = αeαsri(s) =⇒ d

ds
(eαsQi(s)) = αeαsri(s).
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We can now integrate both sides of the last expression from 0 to t to obtain that

eαtQi(t) = α

∫ t

0

eαsri(s)ds =⇒ Qi(t) = αe−αt

∫ t

0

eαsri(s)ds

as claimed, where the integration constant disappears due to the boundary condition Qi(0) = 0.

A.1 Derivation of Q-learning dynamics

We next provide two formal derivations of the Q-learning dynamics of equation (QLD). Similar
calculations can be found in [51, 48, 47, 31] and [21, 42].
Proposition A.1 (Derivation of Q-learning Dynamics). Assume that agents select their actions
according to a Boltzmann (or softmax) distribution with parameter T , i.e.,

xi(t) =
exp (Qi(t)/T )∑

j∈A exp (Qj(t)/T )
for any t > 0, (13)

with xi(0) is initialized arbitrarily for all i ∈ A, where Qi(t) is the Q-value of action i at time t.
Then, the evolution of the action probabilities is governed by the Q-learning dynamics

ẋi(t) = xi(t)

ri(t)−∑
j∈A

rj(t)xj(t)− T

lnxi(t)−
∑
j∈A

xj(t) lnxj(t)

 . (14)

Proof. The time derivative of xi(t) is equal to

ẋi(t) =
exp (Qi(t)/T )

T
∑

j∈A exp (Qj(t)/T )

[
Q̇i (t)−

∑
j∈A Q̇j(t) exp (Qj(t)/T )∑

j∈A exp (Qj(t)/T )

]

=
1

T
xi(t)

Q̇i (t)−
∑
j∈A

(
exp (Qj(t)/T )∑
j∈A exp (Qj(t)/T )

)
Q̇j(t)


=

1

T
xi(t)

Q̇i (t)−
∑
j∈A

xj(t)Q̇j(t)

 .

Hence, using that Q̇i(t) = α[ri(t)−Qi(t)], the above yields

ẋi(t) =
α

T
xi(t)

ri(t)−Qi(t)−
∑
j∈A

xj(t)[rj(t)−Qj(t)]



=
α

T
xi(t)

ri(t)−∑
j∈A

xj(t)rj(t)−

Qi(t)−
∑
j∈A

xj(t)Qj(t)

 . (∗)

Finally, taking ln in equation (13), and solving for Qi(t), we have that

Qi(t) = T

lnxi(t) + ln

∑
j∈A

exp (Qj(t)/T )


In the above expression, we may set C := ln

(∑
j∈A exp (Qj(t)/T )

)
since this term is the same for

all i ∈ A. Thus, we have that

Qi(t)−
∑
j∈A

xj(t)Qj(t) = T (lnxi(t) + C)−
∑
j∈A

xj(t)T (lnxi(t) + C)

= T

lnxi(t)−
∑
j∈A

xj(t) lnxj(t)

+ T

C −
∑
j∈A

xj(t)C


= T

lnxi(t)−
∑
j∈A

xj(t) lnxj(t)


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since
∑

j∈A xj(t) = 1 and hence, the terms C and
∑

j∈A xj(t)C cancel out. Substituting the last
expression in equation (∗), we obtain the desired solution, namely

ẋi(t) =
α

T
xi(t)

ri(t)−∑
j∈A

xj(t)rj(t)− T

lnxi(t)−
∑
j∈A

xj(t) lnxj(t)

 .

Rescaling time by t→ αt/T , we obtain the solution.

An Alternative Derivation (see also [21, 42]). Another way to obtain the Q-learning dynamics in
equation (14) is by a direct substitution of (12) in (13). In this case, we have that

xi(t+ 1) =
exp (Qi(t+ 1)/T )∑

j∈A exp (Qj(t+ 1)/T )

=
exp ((αri(t+ 1) + (1− α)Qi(t)) /T )∑

j∈A exp ((αrj(t+ 1) + (1− α)Qj(t)) /T )

=
exp ((1− α)Qi(t)/T ) · exp (αri(t+ 1)/T )∑

j∈A exp ((1− α)Qj(t)/T ) · exp (αrj(t+ 1)/T )

=
(exp (Qi(t)/T ))

(1−α) · exp (αri(t+ 1)/T )∑
j∈A (exp (Qj(t)/T ))

(1−α) · exp (αrj(t+ 1)/T )

=
xi(t)

(1−α) · exp (αri(t+ 1)/T )∑
j∈A xj(t)(1−α) · exp (αrj(t+ 1)/T )

where the last equality is obtained by dividing both numerator and denominator with the normalizing
constant

∑
k∈A (exp (Qk(t)/T ))

(1−α). By taking ln of both sides in the previous equation, we then
have that

lnxi(t+ 1) = lnxi(t)− α lnxi(t) +
α

T
ri(t+ 1)− ln

∑
j∈A

xj(t)
(1−α) · exp (αrj(t+ 1)/T )


or equivalently

lnxi(t+ 1)− lnxi(t) =
α

T
ri(t+ 1)− α lnxi(t)− lnC

where C :=
∑

j∈A xj(t)
(1−α) · exp (αrj(t+ 1)/T ) is the denominator of the previous expression

which is the same for all i ∈ A. Thus, in continuous time, the above equation becomes

d

dt
lnxi(t) =

α

T
ri(t)− α lnxi(t)− lnC

which yields

ẋi(t) =
α

T
xi(t)

[
ri(t)− T lnxi(t)−

T

α
lnC

]
. (∗∗)

To determine lnC, note that
∑

i∈A ẋi(t) = 0 since
∑

i∈A xi(t) = 1 for all t (i.e., the sum of the xi’s
remains constant, and equal to 1, at all times t ≥ 0). Thus, summing over all i ∈ A, we obtain

0 =
∑
i∈A

xi(t)ri(t)− T
∑
i∈A

xi(t) lnxi(t)−
T

α
lnC

∑
i∈A

xi(t)

=
∑
i∈A

xi(t)ri(t)− T
∑
i∈A

xi(t) lnxi(t)−
T

α
lnC

or equivalently
T

α
lnC =

∑
i∈A

xi(t)ri(t)− T
∑
i∈A

xi(t) lnxi(t)
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Substituting this expression back in equation (∗∗), we obtain

ẋi(t) =
α

T
xi(t)

ri(t)− T lnxi(t)−
∑
j∈A

xj(t)rj(t) + T
∑
j∈A

xj(t) lnxj(t)


=

α

T
xi(t)

ri(t)−∑
j∈A

xj(t)rj(t)− T

(
lnxi(t)−

∑
i∈A

xj(t) lnxj(t)

) ,

which after rescaling time to t → αt/T is precisely the expression of the Q-learning dynamics in
equation (14).

Relation to Experience Weighted Attraction (EWA) Learning (see also [42]). In Experience
Weighted Learning (EWA), the attractions (the equivalent of Q-values), Qi(t) of each action i ∈ A
are updated according to the following scheme

Qi(t+ 1) =
(1− α)N(t)Qi(t) + [δ + (1− δ)I(i, si(t))]ri(t)

N(t+ 1)
,

N(t+ 1) = ρN(t) + 1,

where I(i, s(t)) = 1 if i = s(t) and 0 otherwise. Here s(t) denotes the action taken by the agent at
time t. The variables N(t) and Qi(t) are initialized arbitrarily at t = 0, but typically, they are set to
be 0 at t = 0. For ρ = 0, i.e., in the case in which previous experience does not reduce the impact of
current rewards, the above system becomes

Qi(t+ 1) = (1− α)Qi(t) +

{
ri(t), if s(t) = i,

δri(t), otherwise

Thus, for δ = 1, the EWA update rule becomes equal to the Q-learning updates, up to a constant α in
the rewards.

A.2 Q-learning and Quantal Response Equilibria

We next restate and prove Proposition 3.2.

Proposition 3.2. Let Γ be an arbitrary game, with positive exploration rates Tk and consider the
associated Q-learning dynamics

˙xki = xki

[
rki(x−k)− x⊤

k rk (x−k)− Tk

(
ln (xki)− x⊤

k ln (xk)
)]

, i ∈ Sk, k ∈ V.

The interior fixed points, p = (pk)k∈V of the Q-learning dynamics are the solutions of the system

pki =
exp (rki(p−k)/Tk)∑

j∈Sk
exp (rkj(p−k)/Tk)

, for all i ∈ Sk. (15)

Such fixed points always exist and coincide with the Quantal Response Equilibria (QRE) of Γ. Given
any such fixed point p, we have, for all xk ∈ ∆k and for all k ∈ V , that

(xk − pk)
⊤ [rk(p−k)− Tk ln (pk)] = 0. (16)

Proof. Solving equation (6) for ln qki and applying the exponential function on both sides of the
resulting equation yields that

pki = exp

(
rki(p−k)− p⊤

k rk (p−k) + Tkp
⊤
k ln (pk)

Tk

)
= exp

(
rki(p−k)

Tk

)
· exp

(
−p⊤

k rk (p−k) + Tkp
⊤
k ln (pk)

Tk

)
.

The second term in the last equation, i.e., exp
(

−p⊤
k rk(p−k)+Tkp

⊤
k ln (pk)

Tk

)
, is the same (constant) for

all i ∈ Sk. Thus, denoting this term by Z, we have that

pki = exp

(
rki(p−k)

Tk

)
· Z, for alli ∈ Sk.
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Since pk lies in ∆k, it must be the case that
∑

j∈Sk
pki = 1, which implies that∑

i∈Sk

pki =
∑
i∈Sk

exp

(
rki(p−k)

Tk

)
· Z = 1 =⇒ Z =

(∑
i∈Sk

exp

(
rki(p−k)

Tk

))−1

.

Substituting back in the expression for pki, we obtain that

pki =
exp (rki(p−k)/Tk)∑
j∈Sk

exp (rkj(p−k)Tk)
,

as claimed in equation (15). Existence follows from the application of Brouwer’s fixed point theorem
on the continuous map defined by the previous in ∆k, see [36]. To obtain equation (16), we observe
that for each xk ∈ ∆k and each k ∈ V , equation (6) implies that

x⊤
k rk(p−k) = p⊤

k rk (p−k)− Tk(pk − xk)
⊤ ln (pk), for all k ∈ V.

or equivalently that
(xk − pk)

⊤ [rk(p−k)− Tk ln (pk)] = 0,
for all k ∈ V as claimed in equation (16).

B Omitted Proofs and Materials: Section 4

In this section, we develop the necessary technical framework for the proof of Theorem 4.1. The-
orem 4.1 is based upon two critical lemmas and properties of both KL divergence and rescaled
zero-sum polymatrix games.

First, recall that in KL-divergence is not symmetric, i.e., it need not hold that DKL(p ∥ x(t)) =
DKL(x(t) ∥ p). However, KL-divergence does obey the following property.
Property 1. Let k ∈ V and let pk,xk be interior points of ∆k. Then, it holds that

DKL(pk ∥ xk) +DKL(xk ∥ pk) = (xk − pk)
⊤ [ln (xk)− ln (pk)] .

Proof. It is immediate to check that

(xk − pk)
⊤ [ln (xk)− ln (pk)] = x⊤

k ln

(
xk

pk

)
− p⊤

k ln

(
xk

pk

)
= x⊤

k ln

(
xk

pk

)
+ p⊤

k ln

(
pk

xk

)
= DKL(xk ∥ pk) +DKL(pk ∥ xk),

as claimed.

Lemma 4.2. Let k ∈ V . The time-derivative of the DKL-divergence between the k-th component,
pk ∈ ∆k, of a QRE p ∈ ∆ of Γ, and the k-th component, xk(t) ∈ ∆k of a system trajectory with
x(0) an interior point, is given by
d

dt
DKL(pk ∥ xk(t)) = (xk − pk)

⊤ [rk (x−k)− rk(p−k)]− Tk [DKL(pk ∥ xk) +DKL(xk ∥ pk)] .

(17)

Proof. The time derivative of the term DKL(pk ∥ xk) for k ∈ V can be calculated as follows (note
that after the first line, we omit the dependence of x on t to simplify notation)

d

dt
DKL(pk ∥ xk(t)) = −

∑
i∈Sk

pki
d

dt
(ln (xki(t))) = −

∑
i∈Sk

pki
˙xki(t)

xki(t)

= −
∑
i∈Sk

pki
[
rki(x−k)− x⊤

k rk (x−k) + Tk

(
− ln (xki) + x⊤

k ln (xk)
)]

= −
[
p⊤
k rk (x−k)− x⊤

k rk (x−k) + Tk

(
−p⊤

k ln (xk) + x⊤
k ln (xk)

)]
= (xk − pk)

⊤rk (x−k)− Tk(xk − pk)
⊤ ln (xk)

= (xk − pk)
⊤ [rk (x−k)− Tk ln (xk)] .
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Using equation (16), i.e., that

(xk − pk)
⊤ [rk(p−k)− Tk ln (pk)] = 0,

we can write the time derivative of DKL as follows
d

dt
DKL(pk ∥ xk(t)) = (xk − pk)

⊤ [rk (x−k)− Tk ln (xk)]− (xk − pk)
⊤ [rk(p−k)− Tk ln (pk)]

= (xk − pk)
⊤ [rk (x−k)− rk(p−k)]− Tk(xk − pk)

⊤ [lnxk − lnpk]

= (xk − pk)
⊤ [rk (x−k)− rk(p−k)]− Tk [DKL(pk ∥ xk) +DKL(xk ∥ pk)]

where the last equation holds due to Property 1. This concludes the proof of the Lemma.

Lemma 4.3. Let p = (pk)k∈V be a QRE of Γ and let x = (xk)k∈V . Then, it holds that∑
k∈V

wk

[
x⊤
k rk (p−k) + p⊤

k rk (x−k)
]
= 0. (18)

Before proceeding with the proof of Lemma 4.3, note that if there only two agents, i.e., if V = {1, 2},
then p = (p1,p2) and x = (x1,x2), and it is rather immediate to check the validity equation (18),
since∑

k=1,2

wk[x
⊤
k rk (p−k) + p⊤

k rk (x−k)] =

= w1

[
x⊤
1 r1(p2) + p⊤

1 r1(x2)
]
+ w2

[
x⊤
2 r2(p1) + w2p

⊤
2 r2(x1)

]
=
[
w1x

⊤
1 r1(p2) + w2p

⊤
2 r2(x1)

]
+
[
w2x

⊤
2 r2(p1) + w2p

⊤
1 r1(x2)

]
=
∑
k=1,2

wkuk(x1,p2)︸ ︷︷ ︸
=0 by equation (2)

+
∑
k=1,2

wkuk(p1,x2)︸ ︷︷ ︸
=0 by equation (2)

= 0.

In particular, the last equation holds because the summations are over all payoffs in the strategy
profiles (x1,p2) and (p1,x2). When we have more than two agents, this argument does not hold
since the summation is over different strategy profiles. However, it still holds that the summation is
equal to zero. To show this, we will need to apply the following property that has been established
in [12] for zero-sum polymatrix games to the case of weighted zero-sum polymatrix games (the
extension is rather straightforward as we show below). To state the property in the general case, we
will use the following definition.
Definition 2 (wk-Payoff equivalence). Consider two arbitrary games Γ = ((V,E), (Sk, uk)k∈V ) and
Γ′ = ((V,E), (Sk, u

′
k)k∈V ). We will say that Γ is wk-payoff equivalent to Γ′ if there exist positive

constants wk, k ∈ V so that
uk(x) = wku

′
k(x), for all x ∈ ∆.

Property 2 (Payoff equivalent transformation [12].). Let Γ =
(
(V,E), (Sk, wk)k∈V , (Akl)[k,l]∈E

)
be a rescaled zero-sum polymatrix game. Then, Γ is 1/wk-payoff equivalent to a pairwise constant-

sum (unweighted) polymatrix game Γ̂ =

(
(V,E), (Sk)k∈V ,

(
Âkl

)
[k,l]∈E

)
, i.e., a game in which

every two-agent game [k, l] ∈ E is constant-sum and all these constants sum up to zero. Specifically,
for all k, l ∈ V with [k, l] ∈ E, there exist payoff matrices Âkl = (âkl(sk, sl)){sk∈Sk,sl∈Sl} and
constants ckl ∈ R, so that

âkl(sk, sl) + âlk(sl, sk) = ckl, for all sk ∈ Sk, sl ∈ Sl, (19)
with ∑

[k,l]∈E

ckl = 0, (20)

and
r̂ki(x−k) :=

∑
[k,l]∈E

{Âklxl}i =
∑

[k,l]∈E

wk{Aklxl}i = wkrki(x−k), (21)

for all k ∈ V and all i ∈ Sk, i.e., for every pure (and hence, also for every mixed) strategy profile,
the payoff of each agent k ∈ V in Γ̂ is equal to 1/wk their payoff in the original game Γ.
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Proof. As mentioned above, all claims of Property 2 have been established for (unweighted) zero-sum
polymatrix games in [12]. Thus, it remains to show that the proof extends to the weighted case.
To see this, consider a weighted zero-sum polymatrix game Γ with weights w = (wk)k∈V , payoff
matrices (Akl)[k,l]∈E and utilities uk, k ∈ V as in equation (1) and define the transformed game ΓB

with payoff matrices (Bkl)[k,l]∈E given by

Bkl := wkAkl, for all k ∈ V, [k, l] ∈ E,

and utilities uB
k , k ∈ V . Then, it follows from equation (1) that uk(x) =

1
wk

uB
k (x) for all x ∈ ∆

and k ∈ V since

uB
k (x) =

∑
[k,l]∈E

x⊤
k Bklxl =

∑
[k,l]∈E

x⊤
k (wkAkl)xl = wk

∑
[k,l]∈E

x⊤
k Aklxl = wkuk(x).

Moreover, ΓB is an unweighted zero-sum game since∑
k∈V

uB
k (x) =

∑
k∈V

wkuk(x) = 0,

where the last equality follows from the fact that Γ is a weighted zero-sum polymatrix game with
weights (wk)k∈V . Thus, transforming Γ to ΓB and then applying the transformation of [12] on ΓB

to obtain the payoff equivalent (to ΓB) game Γ̂ with payoff matrices Âkl, [k, l] ∈ E yields the result,
i.e., the 1/wk-payoff equivalence between the original weighted zero-sum polymatrix game Γ and
the pairwise constant-sum, unweighted polymatrix game Γ̂.

Using Property 2, we can now prove Lemma 4.3 for general k ≥ 2.

Proof of Lemma 4.3. Equation (21) in Property 2 implies that∑
k∈V

wk

[
x⊤
k rk (p−k) + p⊤

k rk (x−k)
] (21)
=
∑
k∈V

wk

[
x⊤
k

(
1

wk
r̂k(x−p)

)
+ p⊤

k

(
1

wk
r̂k(x−k)

)]
=
∑
k∈V

∑
[k,l]∈E

[
x⊤
k Âklpl + p⊤

k Âklxl

]
=

∑
[k,l]∈E

[
x⊤
k Âklpl + p⊤

k Âklxl + x⊤
l Âlkpk + p⊤

l Âklxk

]
=

∑
[k,l]∈E

[
x⊤
k Âklpl + p⊤

l Âklxk

]
︸ ︷︷ ︸

= ckl by equation (19)

+
[
x⊤
l Âlkpk + p⊤

k Âklxl

]
︸ ︷︷ ︸

= ckl by equation (19)

= 2
∑

[k,l]∈E

ckl = 0,

where the last equality holds by equation (20).

B.1 Proof of Theorem 4.1

Combining Lemmas 4.2 and 4.3, we can now restate and prove Theorem 4.1.

Theorem 4.1. Let Γ be a rescaled zero-sum polymatrix game, with positive exploration rates Tk.
There exists a unique QRE p such that if x(t) is any trajectory of the associated Q-learning dynamics
ẋ = f(x), with fi is given via (QLD), where x(0) is an interior point, then x(t) converges to p
exponentially fast. In particular, we have that

d

dt
DKL(w)(p ∥ x(t)) = −

∑
k∈V

wkTk [DKL(pk ∥ xk) +DKL(xk ∥ pk)] . (22)

Proof. Proposition 3.2 states that there must exist some a QRE equilibrium p = (pk). We first
establish (22), from which the remaining statements will follow. The time derivative of the KL-
divergence between p and x(t) is given by (as in the proof of Lemma 4.2, we again omit the
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dependence of x on t after the first line to simplify notation)

d

dt
DKL(p ∥ x(t)) =

∑
k∈V

d

dt
wkDKL(pk ∥ xk)

=
∑
k∈V

wk

[
(xk − pk)

⊤ [rk (x−k)− rk(p−k)]− Tk (DKL(pk ∥ xk) +DKL(xk ∥ pk))
]

=
∑
k∈V

wk(xk − pk)
⊤ [rk (x−k)− rk(p−k)]−

∑
k∈V

wkTk [DKL(pk ∥ xk) +DKL(xk ∥ pk)] .

The first term in the right-hand side of the last equation is equal to zero, since∑
k∈V

wk(xk − pk)
⊤ [rk (x−k)− rk(p−k)] =

∑
k∈V

wkx
⊤
k rk (x−k) +

∑
k∈V

wkp
⊤
k rk(p−k)

+
∑
k∈V

wk

[
x⊤
k rk (p−k) + p⊤

k rk (x−k)
]
= 0,

where in the last equality, we used the zero-sum property (cf. equation (2)) to conclude that the terms∑
k∈V wkx

⊤
k rk (x−k) and

∑
k∈V wkp

⊤
k rk (p−k) are equal to 0 and equation (18) in Lemma 4.3 to

conclude that the term
∑

k∈V wk

[
x⊤
k rk (p−k) + p⊤

k rk (x−k)
]

is also equal to 0. Thus,

d

dt
DKL(p ∥ x(t)) = −

∑
k∈V

wkTk [DKL(pk ∥ xk) +DKL(xk ∥ pk)] , (23)

which implies that d
dtDKL(p ∥ x) < 0 for all x ̸= p as Tk > 0 for each k. In other words,

Φ(x) := DKL(p ∥ x) obeys the properties i) Φ(p) = 0, ii) Φ(x) > 0 if x ̸= p and iii) Φ̇(x) < 0
for x ̸= p, i.e., Φ is a Lyapunov function for the Q-learning dynamics (QLD). In particular, since
DKL (xk ∥ pk) > 0 as long as the distributions pk,xk are not equal, then

Φ̇(x) ≤ −min
k

Tk · Φ(x), (24)

thus, the KL-divergence converges to zero exponentially fast. As any QRE p′ ̸= p must also satisfy
Φ̇(p′) = ∇Φ · f(p′) = 0 (as p′ is a fixed point for ẋ = f(x), where f is given in (QLD)), but we
have that Φ̇(x) < 0 for all x ̸= p, it follows that p is unique.

C Additional Experiments

In the section, we present additional simulations and calculations that complement our experimental
results in Section 5 in the main paper.

C.1 Q-learning dynamics in the AMPs game

We start with Figure 6 which completes the possible combinations of the two representative policies
that we consider, CLR-1 and ETE, in the AMPs game (cf. Section 5). The plots are similar to that in
Figure 1.

C.2 Q-learning dynamics in two-agent games with more actions

We next turn to visualizations of the Q-learning in games with two-agents but more than two actions
for each agent. For this purpose, we consider the (symmetric) zero-sum game, Rock-Paper-Scissors
(RPS) with payoff matrices given by

A =

(
0 −1 1
1 0 −1
−1 1 0

)
, B = −A⊤. (RPS)

The RPS game has a unique (interior) Nash equilibrium given by (p∗, q∗) = ((1/3, 1/3, 1/3),
(1/3, 1/3, 1/3)). This is also the unique QRE for any positive exploration rates (since exploration
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Figure 6: QRE surface and exploration paths (upper panels) for two different exploration policy
profiles (lower panels) in the Asymmetric MPs game. As in Figure 1 in the main part, the sequence of
play converges to the unique QRE for any combination of exploration policies (CLR-1 and ETE). As
the exploration rates decrease zero, the sequence of play converges to the unique Nash equilibrium of
the game.

Figure 7: Q-learning dynamics in Rock-Paper-Scissors for Tx = 0 (no exploration by x-agent) and
six different exploration rates, Ty ≥ 0 by y-agent. The light to dark trajectories (with darkening color
indicating increasing time) show the choice distribution for the x-agent in the Rock-Paper space.

favors the uniform distribution). In Figure 7, we visualize the Q-learning dynamics (cf. equation
(QLD)) for Tx = 0 and various values of Ty . The setup and the plots are similar to that of Figure 2.

The trajectories in Figure 7 have been generated for random initial conditions (similar plots are
obtained for any other initial condition) and show the choice distribution of the x-agent at each time
point of the simulation (we used 2× 107 iterations with a step 0.0003 for the discretization of the
continuous time ODE in equation (QLD)). We obtain similar plots for the exploring agent (y-agent),
see Figure 8. When Ty = 0, the Q-learning dynamics reduce to the replicator dynamics, and we
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Figure 8: Q-learning trajectories for the y-agent in the instances of the RPS game that are shown in
Figure 7.

recover their cyclic behavior (Poincaré Recurrence) around the unique interior Nash equilibrium
(upper left panel) (see [43] and references therein). In all other cases, exploration by one agent
suffices for the convergence of the joint-learning dynamics as in the AMPs game (in panels 2 and
3, the dynamics spiral inwards and will eventually converge to the QRE (blue dot)). As we saw in
Section 5 this is in sharp contrast to the (MMG) game in which exploration (even) by several agents
was not sufficient for the convergence of Q-learning to a single QRE. It is worth mentioning that this
behavior of the Q-learning dynamics in RPS does not rely on the symmetry of the game. We obtain
similar plots for the modified RPS game (with asymmetric Nash equilibrium) (not depicted here).

C.3 Edge Case: Exploration by one agent in 2× 2 games

Up to now, we have treated the case of exploration by only agent experimentally (cf. Figures 2, 7
and 8). In this part, we consider the edge-case in which only one of two agents is exploring in 2x2
games which is also analytically tractable. Our result is presented in Proposition C.1 and the ensuing
intuition is summarized in Remark 1. For the following (technical) calculations, we will use the
notation

A =

(
a11 a12
a21 a22

)
, B =

(
b11 b12
b21 b22

)
.

We assume that the game has a (unique) interior Nash equilibrium. This implies (without loss of
generality, see e.g., [42]) that

a11 > a21, a12 < a22, and b11 < b21, b12 > b22. (25)

By letting a1 := a12 − a22 and a2 := a12 + a21 − a11 − a22 with a1, a2 < 0 and b1 := b12 − b22
and b2 := b12 + b21 − b11 − b22 with b1, b2 > 0, we have that the unique Nash equilibrium, (p,q),
with p = (p, 1− p),q = (q, 1− q) of this game is given by q = a1

a2
and p = b1

b2
with p, q ∈ (0, 1) by

assumption.

Since agents have two strategies, we can represent their mixed strategies by the vectors x = (x, 1−x)
and y = (y, 1− y) with x, y ∈ [0, 1]. Using this notation and under the assumption that Tx = 0, i.e.,
that the x agent is not exploring, the dynamics for the x agent in equation (QLD) take the form

ẋ = x

[
(1, 0)A

(
y

1− y

)
− (x, 1− x)A

(
y

1− y

)]
= x(1− x) [a1 − a2y]
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by assumption (25). Similarly, the dynamics for the y agent in equation (QLD) take the form

ẏ = y

[
(1, 0)B

(
x

1− x

)
− (y, 1− y)B

(
x

1− x

)
+ Ty(y ln y + (1− y) ln 1− y − ln y)

]
= y(1− y)

[
b1 − b2x+ Ty ln

(
1

y
− 1

)]
where we defined b1 := b12 − b22 and b2 := b12 + b21 − b11 − b22 with b1, b2 > 0 by assumption
(25). For the y agent, we will consider various values for Ty ≥ 0. Putting these together, we obtain
the system

ẋ = x(1− x) [a1 − a2y]

ẏ = y(1− y)

[
b1 − b2x+ Ty ln

(
1

y
− 1

)]
(26)

with x, y ∈ [0, 1] and Ty ≥ 0. It is immediate that all four points (x, y) ∈ {0, 1} × {0, 1} are resting
point of the system. All these points lie on the boundary. For the system to have an interior resting
point, we have the conditions

y =
a1
a2

, and x =
1

b2

[
b1 + Ty ln

(
a2
a1
− 1

)]
. (27)

The condition for y is always satisfied by assumption (25). In particular, this yields the Nash
equilibrium strategy for the y agent. However, the condition for x may yield an x that does not lie
within (0, 1). For Ty = 0, the condition becomes x = b1/b2 which is the Nash equilibrium strategy
for the x agent. By assumption, this is strictly between 0 and 1. However, x depends linearly on Ty

and depending on whether a2/a1 > 2 or a2/a1 < 2 it either increases or decreases in Ty.2 Thus,
there exists a critical threshold, T ∗

y , for which x hits the boundary of [0, 1], i.e., it either becomes 0 or
1. Assume that x = 1 without loss of generality. At that point, the upper equation in (26) is satisfied
regardless of whether y = a1/a2. Thus, we turn to the lower equation in (26) to obtain a condition
for y, which yields

b1 − b2 · 1 + Ty ln

(
1

y
− 1

)
= 0 ⇐⇒ y = [1 + exp ((b2 − b1)/Ty)]

−1
.

Note, that in all the above cases, if an interior resting point exists (for either or both agents), then it is
unique. We summarize our findings for the 2× 2 case in Proposition C.1.

Proposition C.1. Let Γ = ({1, 2},A,B) with A,B ∈ R2×2 be a two-agent, two-strategy (2× 2)
game with a2 > 2a1 and a unique interior Nash equilibrium, i.e., such that condition (25) holds, and
let

T crit
y := (b2 − b1) ·

[
ln

(
a2
a1
− 1

)]−1

.

If Tx = 0, then for any interior starting point (x0, y0) ∈ (0, 1), the fixed points (p,q) = ((p, 1 −
p), (q, 1− q)) with p, q ∈ [0, 1] of the Q-learning dynamics

ẋ = x(1− x) [a1 − a2y]

ẏ = y(1− y)

[
b1 − b2x+ Ty ln

(
1

y
− 1

)]
depend on Ty as follows:

• if Ty = 0, then the dynamics are cyclic, i.e., they do not have a resting point.
• if 0 < Ty < T crit

y , then they have a unique interior resting point which is given by

(p, q) =

(
1

b2

[
b1 + Ty ln

(
a2
a1
− 1

)]
,
a1
a2

)
with p, q ∈ (0, 1).

2The case a2 = 2a1 is trivial since it implies that y = 1/2 and x = b1/b2 regardless of Ty .
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• otherwise, i.e., if Ty > T crit
y , then they have a resting point that lies in the interior only for the

exploring agent which is given by

(p, q) =
(
1, [1 + exp ((b2 − b1)/Ty)]

−1
)
, with q ∈ (0, 1).

In particular, as Ty →∞, it holds that q → 1/2.

If a2 < 2a1, then x is decreasing in Ty and hence, at T crit
y it becomes 0 (rather than 1). In this case,

solving equation (27) for T crit
y yields T crit

y = −b1 ·
[
ln
(

a2

a1
− 1
)]−1

. By renaming the strategies of
the x agent, this case is equivalent to the one presented in Proposition C.1.
Remark 1 (Intuition of Proposition C.1). The main takeaway of Proposition C.1 is the qualitative
description of the resting points of the Q-learning dynamics for any interior starting point. When
Ty = 0, the dynamics are the replicator dynamics, which are well-known to cycle around the unique
interior Nash equilibrium in this case [7]. If Ty > 0, then this suffices to ensure convergence to the
unique interior QRE (cf. Theorem 4.1). As long as Ty is small enough, i.e., smaller than a critical
value, T crit

y , the y component of the QRE corresponds precisely to the Nash equilibrium (mixed)
strategy for the y-agent (the exploring agent) and an interior value for the x-agent (different that
her Nash equilibrium mixture). This value is increasing (assuming that a2 > 2a1, otherwise it is
decreasing or constant if a2 = 2a1) in the exploration rate Ty of the y-agent. This implies, that the
QRE component for the x-agent approaches the boundary. After exploration by the y-agent exceeds
the critical threshold T crit

y , the x-agent starts playing a pure strategy. At that point onward (i.e., for
larger exploration rates), the utility of the y agent is dominated by her exploration term and her
mixture (at QRE) starts to approach the uniform distribution.

The result of Proposition C.1 is illustrated in the main part of the paper via Asymmetric Matching
Pennies (AMPs) game in Figure 2.

Exploration by one agent in games with more than 2 strategies. The general case of more than
2 strategies for each agent can be qualitatively different to the 2× 2 case presented above. To see
this, consider a variation of Rock-Paper-Scissors (RPS) in which the second agent has a copy of
strategy scissors with exactly the same utility as the original strategy scissors. The modified game has
infinite many Nash equilibria in which the first agent plays p∗ = (1/3, 1/3, 1/3) as in the original
game and the second agent plays q∗ = (1/3, 1/3, x, 1/3 − x) for any x ∈ [0, 1/3]. Now assume
that the first agent has a positive exploration rate and that the second agent has zero exploration
rate. As in the unmodified game, the uniform distribution is still optimal for the first agent since it
also maximizes the entropy but now any q∗ = (1/3, 1/3, x, 1/3 − x) for x ∈ [0, 1/3], remains an
equilibrium strategy for the second agent.

C.4 3D Visualization of the Lyapunov function in n-agent network games

To visualize the Lyapunov function in zero-sum network games with n-agents with strictly positive
exploration profiles, i.e., Tk > 0 for all k ∈ V , (KL-divergence from the current action profile to the
unique QRE for that exploration profile), we adapt the dimension reduction method of [35] (cf. [34]).
This yields panel 4 in Figure 4.

For an n-agent network game, with a fixed and strictly positive exploration profile, we start by
determining its unique QRE, q. By our main result, Theorem 4.1, this can be done by simulating the
Q-learning dynamics. Then, we select two vectors u, v with n random entries each in (0, 1). The
random entries of the vectors u, v correspond to the probability with which each agent selects their
first action (here H). Instead of forming convex combinations of these random vectors and plotting the
Lyapunov function across this (randomly selected) space, we perform the following transformation
that allows for a more comprehensive snapshot of the whole joint action space. Specifically, we
map each coordinate u(k) (and similarly for v) with k ∈ V to ũ(k) = lnu(k)/(1− u(k)). Then,
we form linear combinations of the transformed vectors ũ, ṽ using real-valued scalars,α, β ∈ R.
Note that the all-zero vector (in the transformed space) corresponds to the uniform distribution for
each agent (in the choice distribution space). Finally, we map the resulting point z := α · ũ+ β · ṽ
from the transformed space back to the product simplex via the (coordinate-wise) transformation
z(k) → exp (z(k))/(exp (z(k)) + 1) and plot the potential at the resulting point (KL-divergence
between that point and the unique QRE, q). We repeat the process for a range of both positive and
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Figure 9: Snapshots of the Lyapunov function (KL-divergence between each choice distribution
profile and the unique QRE) in four instances of the (MMG) game with fixed (and strictly positive)
exploration profiles and different numbers of agents. In all cases, the Lyapunov (potential) function is
convex with a unique minimizer at 0.

negative values for α’s and β’s. This yields the x− y coordinates in panel 4 and the evaluation yields
the depicted 3D surface. The process is summarized in Algorithm 1.

Algorithm 1 3D Visualization of the Lyapunov function (KL-divergence)

Input (network game): number of agents, payoff matrices, (strictly positive) exploration rates.
Output: Snapshot of the Lyapunov function (KL-divergence).

1: procedure COMPUTE QRE(Tk, k = 1, . . . , n)
2: q ← unique QRE (e.g., by running (QLD))
3: u, v generate random vectors with n entries in (0, 1).
4: procedure TRANSFORM VARIABLES(u, v, α, β)
5: for k ← V do
6: u(k)← ln (u(k)/(1− u(k)))
7: v(k)← ln (v(k)/(1− v(k)))

8: z ← α · u+ β · v
9: for k ← V do

10: z(k)← exp (z(k)/(z(k) + 1))

11: procedure EVALUATE LYAPUNOV FUNCTION(q, z)
12: DKL = 0
13: for k ∈ V do
14: DKL ← DKL + q(k) ln q(k)

z(k) + (1− q(k)) ln 1−q(k)
1−z(k)

15: return tuple (α, β,DKL)
16: plot← (α, β,DKL)

A restriction of this method in n-agent games is that, for each point that it generates, it uses the same
α, β to scale the transformed variables of all agents. Figure 9 shows snapshots of the Lyapunov
function in four instances of the (MMG) game with fixed (and strictly positive) exploration profiles
for different numbers of agents.

C.5 Equilibrium selection in the network game

One question that is hard to tackle theoretically concerns the equilibrium selection as exploration
rates converge to 0. As we saw in Theorem 4.1, when all agents have positive exploration rates, then
there is a unique QRE and the joint-learning dynamics converge to that QRE. However, as exploration
rates approach zero (for instance, after the exploration phase ends for all agents), it is not clear which
equilibrium will be selected in the original game (as the limit of the sequence of the unique QRE for
the different strictly positive exploration profiles).

In this part, we test this question experimentally in the (MMG) game of Section 5. We consider an
instance with 3 non-dummy agents and different exploration policies for the agents. Recall that in this
case, the original network game (with no exploration) has multiple Nash equilibria of the following
form: the odd agents (p1 and p3) select T with probability 1 and the even agent (p2) plays an arbitrary
strategy in (0, 1) (i.e., probabilities of playing H). In any equilibrium, the payoff of p2 is 0 whereas
the payoffs of p1 and p3 sum up to 2. However, the crucial point is that the split of 2 between p1 and
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Figure 10: Effects of exploration on equilibrium selection in the (MMG) of Section 5. The upper
panels show an individual run, and the bottom panels show averages (means and 1 standard deviation
as shaded region around the mean) over 50 runs. Panels 1 to 3 show the probability of playing H at
QRE, the utilities and the exploration rates of the agents, respectively. The effect of exploration is
shown via the ratio of utilities of p1 and p3 in the fourth panel of each row. Exploration by the even
agent (p2) leads that agent to select the 0.5 strategy at equilibrium (when exploration drops back to
0 by all agents) which results in a fair split (close to 1, dotted red line in panels 4) of the payoffs
between agents p1 and p3.

p3 critically depends on the strategy of p2. In particular, we saw in Figure 5 that without exploration,
the Q-learning dynamics can converge to any of these multiple equilibria, thus inducing arbitrary
asymmetries between the payoffs of p1 and p3.

The results of one representative exploration scenario (with linearly changing exploration rates) and
averages over 50 runs with randomly matched CLR-1 and ETE exploration policies are presented in
Figure 10.

The main takeaway of these experiments is captured by the last panel "Ratio of utilities" of each
row. Namely, sufficient exploration by the even agent (the agent with multiple equilibrium strategies)
leads that agent to select a strategy close to the uniform one (here 0.5 since there are two actions). In
turn, this leads to a fair split of the stake between the odd numbered agents (p1 and p3). This is in
sharp contrast to the case without exploration (cf. Figure 5 in the main part) in which any equilibrium
(i.e., any strategy between 0, 1) is a potential limit point of the dynamics for the even agent (thus,
leading to arbitrary splits of the share between the odd numbered agents).

While these results cannot lead to a formal argument about the effect of exploration in equilibrium
selection (when exploration goes back to zero for all agents), they highlight the importance of further
studying equilibrium selection in competitive environments both experimentally and theoretically. In
particular, the (potentially positive) effects of (individual) exploration to social welfare (here, fair
distribution of rewards) constitute a concrete and intriguing direction for future research in this area.
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