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Abstract001

Neural scaling laws have revolutionized the002
design and optimization of large-scale AI mod-003
els by revealing predictable relationships be-004
tween model size, dataset volume, and compu-005
tational resources. Early research established006
power-law relationships in model performance,007
leading to compute-optimal scaling strategies.008
However, recent studies highlighted their lim-009
itations across architectures, modalities, and010
deployment contexts. Sparse models, mixture-011
of-experts, retrieval-augmented learning, and012
multimodal models often deviate from tradi-013
tional scaling patterns. Moreover, scaling be-014
haviors vary across domains such as vision,015
reinforcement learning, and fine-tuning, under-016
scoring the need for more nuanced approaches.017
In this survey, we synthesize insights from over018
50 studies, examining the theoretical founda-019
tions, empirical findings, and practical impli-020
cations of scaling laws. We also explore key021
challenges, including data efficiency, inference022
scaling, and architecture-specific constraints,023
advocating for adaptive scaling strategies tai-024
lored to real-world applications. We suggest025
that while scaling laws provide a useful guide,026
they do not always generalize across all archi-027
tectures and training strategies.028

1 Introduction029

Scaling laws have become a fundamental aspect of030

modern AI development, especially for large lan-031

guage models (LLMs). In recent years, researchers032

have identified consistent relationships between033

model size, dataset volume, and computational re-034

sources, demonstrating that increasing these factors035

leads to systematic improvements in performance.036

These empirical patterns have been formalized into037

mathematical principles, known as scaling laws,038

which provide a framework for understanding how039

the capabilities of neural networks evolve as they040

grow. Mastering these laws is crucial for building041

more powerful AI models, optimizing efficiency,042

reducing costs, and improving generalization.043
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Figure 1: Papers surveyed under different categories.
The detailed paper list is provided in Table 9 of Ap-
pendix B.

The study of neural scaling laws gained promi- 044

nence with the foundational work of Kaplan et al. 045

(2020), who demonstrated that model performance 046

follows a power-law relationship with respect to 047

size, data, and compute. Their findings suggested 048

that larger language models (LMs) achieve lower 049

loss when trained on sufficiently large datasets with 050

increased computational resources. Later, Hoff- 051

mann et al. (2022) refined these ideas, introducing 052

the notion of compute-optimal scaling, which re- 053

vealed that training a moderate-sized model on a 054

larger dataset is often more effective than scaling 055

model size alone. However, recent studies (Muen- 056

nighoff et al., 2023; Caballero et al., 2023; Krajew- 057

ski et al., 2024) have challenged the universality of 058

these laws, highlighting cases where sparse mod- 059

els, mixture-of-experts architectures, and retrieval- 060

augmented methods introduce deviations from tra- 061

ditional scaling patterns. These findings suggested 062

that while scaling laws provide a useful guide, they 063

do not always generalize across all architectures 064

and training strategies. 065

Despite the growing importance of scaling laws, 066

existing research remains fragmented, with lim- 067

ited synthesis of theoretical foundations, empiri- 068
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Figure 2: A taxonomy of neural scaling laws.

Category Choshen et al. (2024) Li et al. (2024b) Ours
Covers neural scaling laws broadly Yes No Yes
Discusses fitting methodologies Yes Yes Yes
Analyzes architectural considerations No Limited Yes
Includes data scaling and pruning No Limited Yes
Explores inference scaling No Limited Yes
Considers domain-specific scaling No No Yes
Provides practical guidelines Yes Yes Yes
Critiques limitations of scaling laws Limited Yes Yes
Proposes future research directions Limited Yes Yes

Table 1: Key differences between our survey and ex-
isting surveys on neural scaling laws (Choshen et al.,
2024; Li et al., 2024b).

cal findings, and practical implications. Given the069

rapid evolution of this field, there is a need for a070

structured analysis that consolidates key insights,071

identifies limitations, and outlines future research072

directions. While theoretical studies have estab-073

lished the mathematical principles governing scal-074

ing, their real-world applications, such as efficient075

model training, optimized resource allocation, and076

improved inference strategies, are less explored. To077

address this gap, we reviewed over 50 research arti-078

cles (Figure 1 highlights papers on scaling laws on079

different topics) to comprehensively analyze scal-080

ing laws, examining their validity across different081

domains and architectures.082

While prior surveys have made valuable contri-083

butions to understanding scaling laws, they have084

primarily focused on specific aspects of the scaling085

phenomenon (See Table 1). Choshen et al. (2024)086

emphasized statistical best practices for estimating087

and interpreting scaling laws using training data,088

while Li et al. (2024b) emphasized on methodolog-089

ical inconsistencies and reproduction crisis in exist-090

ing scaling laws. Our survey distinguishes itself by091

offering comprehensive coverage of architectural092

considerations, data scaling implications, and in-093

ference scaling – areas that previous surveys either094

overlooked or addressed only partially.095

2 Taxonomy of neural scaling laws 096

Understanding the scaling laws of neural models is 097

crucial for optimizing performance across different 098

domains. We predominantly explore the scaling 099

principles for language models, extending to other 100

modalities such as vision and multimodal learning. 101

We also examine scaling behaviors in domain adap- 102

tation, inference, efficient model architectures, and 103

data utilization. We highlight the taxonomy tree of 104

scaling laws research in Figure 2. As highlighted in 105

Figure 1, neural scaling laws have been proposed 106

predominantly for pre-training and fine-tuning scal- 107

ing of large neural models. Among the models 108

studied, as highlighted in Figure 3a, decoder-only 109

Transformers dominate the subject, followed by 110

vision transformers (ViT) and Mixture-of-Experts 111

(MoE). 112

The most common neural scaling laws take 113

the form of power laws (Equation 1), where the 114

model’s loss (L) or performance metric assumes 115

to follow a predictable relationship with different 116

scaling variables, 117

L(Pi....n) =
n∑

i=1

αi · P−βi
i (1) 118

with appropriate scaling parameters βi and fitting 119

parameters αi for different scaling parameter Pi. 120

Figure 3b highlights that the number of model 121

parameters and data size are the most common 122

used scaling factors. The exact forms of all the 123

scaling laws are highlighted in Table 10 of Ap- 124

pendix B. Among all the tasks, Figure 3c sug- 125

gests that language generation is the most com- 126

mon task used for developing these scaling laws, 127

where the training cross-entropy loss is widely 128

used to fit the laws. Based on the values obtained 129
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Figure 3: Number of paper studied in this survey paper for different model architectures (a), scaling variables (b)
and scaling tasks (c). The detailed paper list is provided in Table 9 of Appendix B.

empirically, the scaling laws are fitted with non-130

linear optimization, most commonly by running131

algorithms like least square and BFGS (Broyden-132

Fletcher-Goldfarb-Shanno). Statistical methods133

like goodness-of-fit metrics are used to validate the134

correctness of the fitted curves. We elaborate on the135

evaluation of neural scaling laws in Appendix A.136

In the following sections, we review the existing137

literature on neural scaling across various domains.138

Model scaling includes both parameter and data139

scaling. Parameter scaling is often studied in140

decoder-only Transformers (Kaplan et al., 2020;141

Hoffmann et al., 2022), with newer works address-142

ing small and efficient models (Hu et al., 2024;143

Clark et al., 2022). These studies establish power-144

law relationships between loss and model size145

or compute (Equation 1). In parallel, data scal-146

ing research has proposed laws for optimizing147

mixtures (Ye et al., 2024), repeated training ex-148

posures (Muennighoff et al., 2023), vocabulary149

size (Tao et al., 2024), and knowledge capac-150

ity (Allen-Zhu and Li, 2024).151

Pre-training scaling laws extend beyond language152

to vision and multimodal settings. Vision mod-153

els exhibit power-law scaling that saturates at large154

compute (Zhai et al., 2022), while multimodal mod-155

els demonstrate competition-to-synergy transitions156

as scale increases (Aghajanyan et al., 2023).157

Post-training scaling captures fine-tuning and158

transfer learning behaviors. Transfer scaling shows159

larger pre-trained models yield better generaliza-160

tion with limited downstream data (Hernandez161

et al., 2021). Recent works propose scaling laws for162

PEFT (Zhang et al., 2024), downstream loss predic-163

tion (Chen et al., 2024c), and early stopping (Lin164

et al., 2024a).165

Inference scaling explores compute-efficient166

strategies during model deployment. Adaptive test-167

time compute (Chen et al., 2024a; Brown et al., 168

2024) and retrieval augmentation (Shao et al., 2024) 169

allow small models to rival larger ones. Inference- 170

specific scaling laws characterize the tradeoff be- 171

tween sampling cost and performance (Wu et al., 172

2024). 173

Efficient model scaling addresses sparsity, quan- 174

tization, and distillation. Sparse and MoE models 175

provide multiplicative efficiency gains (Krajewski 176

et al., 2024), while pruning and quantization laws 177

enable compute-aware compression (Chen et al., 178

2024b; Cao et al., 2024). 179

Scaling behavior in reinforcement learning (RL) 180

diverges from language or vision tasks. In single- 181

agent RL, performance scales sublinearly with 182

model size and environment interaction (Hilton 183

et al., 2023). Horizon length, rather than task diffi- 184

culty, determines scaling efficiency. In multi-agent 185

games, predictable scaling laws govern compute- 186

to-performance relationships, but generalization to 187

complex domains like Chess or Go remains lim- 188

ited (Neumann and Gros, 2023). Meanwhile, graph 189

neural networks (GNNs) lack stable scaling laws; 190

despite self-supervised loss improving with more 191

data, downstream performance often fluctuates un- 192

predictably (Ma et al., 2024). 193

Finally, the taxonomy captures two outer 194

branches: commendations, such as practical 195

data laws and compression-aware training (Liu 196

et al., 2024), and criticisms, which question 197

the generalizability and reproducibility of scal- 198

ing laws (Sorscher et al., 2023; Diaz and Madaio, 199

2024). Detailed discussion on these scaling law 200

studies are provided in Appendix B. 201

In the next section, we formulate key research 202

questions (mapping between the taxonomy and re- 203

search questions highlighted in Table 2) derived 204

from these studies and present practical guidelines 205
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Taxonomy Node Addressed RQs
Model scaling RQ1, RQ2, RQ8
Data scaling RQ3
Post-training scaling RQ5
Inference scaling RQ4
Efficient and compressed
model scaling

RQ6, RQ7

Table 2: Mapping taxonomy categories to relevant re-
search questions.

for leveraging scaling laws in real-world model206

development.207

3 Research questions and guidelines208

Grounded in the taxonomy of neural scaling laws209

(Figure 2), we identify key research questions span-210

ning six dimensions: model scaling, architectural211

bottlenecks, inference scaling, data scaling, post-212

training strategies, and efficient model design. For213

each, we synthesize multiple studies to extract over-214

arching patterns, identify conflicting evidence, and215

propose actionable guidelines for researchers and216

practitioners navigating large-scale model develop-217

ment.218

RQ1. Importance on model and pre-training219

data size on performance. [taxonomy: model220

scaling → pre-training]221

Kaplan et al. (2020) established a power-law rela-222

tionship:223

L(N,D) =

[(
Nc

N

)αN
αD

+
Dc

D

]αD

, D ∝ N0.74. (2)224

Hoffmann et al. (2022) refined this into a225

compute-optimal formulation:226

L(N,D) =
A

Nα
+

B

Dβ
+ E, D ∝ N. (3)227

Recent research has challenged linear extrapo-228

lations. Muennighoff et al. (2023) and Sardana229

et al. (2024) showed that training small models230

longer can outperform larger models, especially231

under constrained data. Caballero et al. (2023) pro-232

posed Broken Neural Scaling Laws (BNSL):233

L(N,D) =

{
aN−α + bD−β , N < Nc

cN−α′
+ dD−β′

, N ≥ Nc

(4)234

Synthesis and guidelines

• Model scaling success depends not only on size
but also on training strategy, data quality, and satu-
ration thresholds.

• Practitioners should allocate compute across pa-
rameters, data, and training duration based on ob-
served inflection points. Use Kaplan/Chinchilla
scaling when data is abundant; otherwise, extend
training epochs or adopt data-efficient curricula
(see Figure 4a).

235

RQ2. Scaling behaviors for different neural 236

architectures. [taxonomy: model scaling → 237

pre-training → architecture] 238

According to Tay et al. (2022), the vanilla Trans- 239

former consistently demonstrates superior scal- 240

ing properties (P ∝ Cα, where P is the perfor- 241

mance metric, C represents compute, and α are 242

fitting parameters) compared to other architectures, 243

even though alternative designs might perform 244

better at specific sizes. Architectural bottlenecks 245

manifest differently across these designs. For in- 246

stance, linear attention models like Performer and 247

Lightweight Convolutions show inconsistent scal- 248

ing behavior, while ALBERT demonstrates neg- 249

ative scaling trends. This finding helps explain 250

why most LLMs maintain relatively standard archi- 251

tectures rather than adopting more exotic variants. 252

Furthermore, Zhai et al. (2022) revealed that ViT 253

reveals that these models exhibit double saturation, 254

where performance plateaus at both very low and 255

very high compute levels, suggesting architectural 256

limitations specific to the vision domain (Equation 257

5). However, as shown by Li et al. (2024a), simply 258

scaling up vision encoders in multimodal models 259

does not consistently improve performance, indi- 260

cating that architectural scaling benefits are not 261

uniform across modalities. 262

E = a(C + d)−b + c, (5) 263

where E denotes downstream error, C represents 264

compute, and a, b, c, d are fitting parameters. 265

Synthesis and guidelines

• Architectural bottlenecks vary across domains and
compute scales. Transformer inductive biases gen-
eralize best under scale.

• Use architectures with proven scaling profiles (e.g.,
vanilla Transformer) unless task-specific bene-
fits outweigh risks. For multimodal or domain-
specialized setups, consult scaling behavior across
compute ranges (Figure 4a).

266
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RQ3. Data strategies for performance scaling.267

[taxonomy: data scaling]268

Ye et al. (2024) proposed an exponential model for269

data mixing:270

Li(r1...M ) = ci + ki exp

(
M∑
j=1

tijrj

)
, (6)271

while Liu et al. (2024) and Kang et al. (2024) de-272

veloped proxy models (REGMIX, AUTOSCALE)273

to pre-optimize mixtures. The Domain-Continual274

Pretraining (D-CPT) law (Que et al., 2024) pro-275

vides a theoretical grounding on optimal mixture276

ratio between general and domain-specific data :277

L(N,D, r) = E +
A

Nα
+

B · rη

Dβ
+

C

(r + ϵ)γ
, (7)278

where N represents the number of model param-279

eters, D is the dataset size, r is the mixture ratio,280

E,A,B,C, α, β, γ, η, ϵ are fitting parameters.281

Synthesis and guidelines

• Model performance is sensitive to data heterogene-
ity, mixture ratios, and interaction effects – espe-
cially in multi-domain or continual settings.

• Replace manual corpus aggregation with predictive
data mixing. Use D-CPT law when adapting to
specific domains. Figure 4a outlines strategy paths
based on data availability and domain constraints.

282

RQ4. Test-time scaling for better scaling283

efficiency. [taxonomy: model scaling →284

inference scaling]285

Recent research examining the relationship be-286

tween test-time computation and model size scal-287

ing has revealed key insights. Brown et al. (2024)288

proposed that repeated sampling during inference289

significantly enhances model performance, with290

coverage C (fraction of problems solved) fol-291

lowing an exponentiated power law relationship292

with the number of samples k, log(C) = ak−b,293

where a, b are fitting parameters. Further explo-294

ration by Wu et al. (2024) suggested that employ-295

ing sophisticated test-time computation strategies296

(such as iterative refinement or tree search) with297

smaller models may be more cost-effective than298

using larger models with simple inference methods.299

Their work establishes a relationship between in-300

ference computational budget and optimal model301

size for compute-efficient inference, expressed as302

log10(C) = 1.19 log10(N) + 2.03.303

Synthesis and guidelines

• Inference scaling offers a complementary path to
performance, particularly where model reuse is
desired but compute cost must remain low.

• Use adaptive compute, retrieval augmentation, or
tree search for high-value queries. Integrate test-
time scaling laws into deployment workflows (Fig-
ure 4b).

304

RQ5. Scaling behaviors of model fine-tuning. 305

[taxonomy: model scaling → post-training 306

scaling] 307

Fine-tuning scaling reflects how pre-trained models 308

adapt across tasks and domains. Hernandez et al. 309

(2021) introduced a transfer scaling law based on 310

effective data transferred Dt: 311

Dt(Df , N) = k(Df )
α(N)β , (8) 312

while Lin et al. (2024a) refined this with a rectified 313

law: 314

L(D) =
B

Dt +Dβ
+ E, (9) 315

modeling diminishing returns from fine-tuning be- 316

yond a pre-learned threshold. In vision, Abnar et al. 317

(2021) linked downstream error to upstream error: 318

eDS = k(eUS)
a + c, (10) 319

and Mikami et al. (2021) connected downstream 320

accuracy to synthetic pretraining data size: 321

eDS = aD−α + c. (11) 322

FLOPS to Loss to Performance (FLP) 323

method (Chen et al., 2024c) predicted downstream 324

performance from pretraining FLOPs, and Zhang 325

et al. (2024) showed LoRA scales nonlinearly 326

under PEFT: 327

L̂(X,Df ) = A× 1

Xα
× 1

Dβ
f

+ E. (12) 328

Synthesis and guidelines

• Transferability scales with both model size and
pretraining loss, but task difficulty, data availability,
and adaptation type mediate returns.

• Use FLP or rectified laws to estimate post-training
gains. Prefer PEFT for low-resource settings;
switch to full fine-tuning when compute permits.
For domain adaptation, apply D-CPT strategies
(Figure 4a).

329

RQ6. Scaling efficiency and performance for 330

sparse and efficient models. [taxonomy: model 331

scaling → model compression] 332

As the demand for resource-efficient models grows, 333

sparse architectures such as pruned networks and 334
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MoEs have emerged as promising alternatives to335

dense Transformers. These models aim to pre-336

serve the performance benefits of scale while re-337

ducing compute and memory overhead. Frantar338

et al. (2023) proposed a general sparse scaling law339

showing that sparsity acts as a multiplicative effi-340

ciency factor rather than changing the fundamental341

scaling behavior:342

L(S,N,D) = (aS(1−S)bS+cS)·
(

1

N

)bN

+
(aD

D

)bD
+c,

(13)343

where S is sparsity, N is the number of non-zero344

parameters, and D is dataset size. In MoE models,345

where only a subset of parameters is activated per346

input, Clark et al. (2022) proposed a loss scaling re-347

lationship incorporating both model size and expert348

count:349

logL = a logN + b logE + c logN · logE + d, (14)350

with E denoting the expansion factor. This formu-351

lation was extended by Yun et al. (2024) to include352

dataset size:353

logL(N,D,E) = log

(
a

Nα
+

b

Eβ
+

c

Dγ
+ f

)
354

+ d logN logE (15)355

These results emphasize that scaling MoEs effec-356

tively requires balancing expert granularity with357

sufficient training data. Toward this, Krajewski358

et al. (2024) introduced a granularity parameter G359

to refine the Chinchilla-style formulation:360

L(N,D,G) = c+
( g

Gγ
+ a
) 1

Nα
+

b

Dβ
. (16)361

In parallel, structured pruning approaches have362

been formalized through the P 2 law (Chen et al.,363

2024b), which relates post-pruning loss to pre-364

pruning model size N0, pruning ratio ρ, and post-365

training token count D:366

L(N0, D, ρ, L0) = L0+

(
1

ρ

)γ (
1

N0

)δ (
NC

Nα
0

+
DC

Dβ
+ E

)
,

(17)367

where L0 is the uncompressed model loss, ρ is the368

pruning rate, N0 is the pre-pruning model size, D369

represents the number of post-training tokens, and370

NC , DC , E, α, β, γ are fitting parameters.371

Synthesis and guidelines

• Sparse models are scaling-compliant but require
careful routing (MoE) and token-budget tuning
(pruning) to outperform dense counterparts.

• Use MoEs for general-purpose LLMs under com-
pute limits. Apply pruning for deployment con-
straints. For efficient inference, refer to Figure 4b.

372

RQ7. Model scaling with low-precision 373

quantization. [taxonomy: model scaling → 374

model compression → quantization ] 375

According to Dettmers and Zettlemoyer (2023), 4- 376

bit precision appears to be the optimal sweet spot 377

for maximizing model performance while minimiz- 378

ing model size. Additionally, research on scaling 379

with mixed quantization (Cao et al., 2024), demon- 380

strated that larger models can handle higher quan- 381

tization ratios while maintaining performance, fol- 382

lowing an exponential relationship where larger 383

models require exponentially fewer high-precision 384

components to maintain a given performance level. 385

Kumar et al. (2024) developed a unified scaling 386

law (Equation 18) that predicts both training and 387

post-training quantization effects. It further sug- 388

gests that effects of quantizing weights, activations, 389

and attention during training are independent and 390

multiplicative. 391

L(N,D,Pw, Pa, Pkv, Ppost) = AN−α

eff +BD−β+E+δPTQ,
(18) 392

where Pw, Pa, Pkv denote training precision of 393

weights, activations and attentions, respectively, 394

Ppost denote end-time weight-precision, δPTQ de- 395

notes loss due to post training quantization, and 396

α, β are fitting parameters. 397

Synthesis and guidelines

• Scaling-aware quantization reduces memory while
preserving performance. Larger models generalize
better to low precision.

• Apply mixed-precision for inference. Use
quantization-aware training for smaller models.
Refer to post-training strategies (Figure 4b) to
guide compression.

398

RQ8. Beyond modalities: scaling for 399

multimodal models. [taxonomy: model scaling 400

→ multimodal models] 401

Multimodal scaling behavior builds upon, but does 402

not replicate, unimodal trends. Henighan et al. 403

(2020) first proposed multimodal scaling using 404

L(x) = Ax−α + B, where x represents model 405

size, data, or compute. Alabdulmohsin et al. (2022) 406

refined this into a more flexible sigmoid-like form: 407

Lx − L∞

(L0 − Lx)α
= βxc, (19) 408

allowing transitions across saturation regimes. 409

Aghajanyan et al. (2023) observed that smaller 410

multimodal models exhibit competition between 411
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Figure 4: Practical roadmap summarizing training and inference strategies grounded in our eight research questions
and taxonomy branches. (a) Training scaling strategies can be utilized for pre-training or fine-tuning unimodal and
multimodal foundational and domain-adapted models. (b) Post-training inference strategies can be followed to
ensure that the model is utilized efficiently for the downstream applications.

modalities, while larger models cross a “compe-412

tition barrier” and become synergistic. They pro-413

posed a bimodal generalization of the Chinchilla414

law:415

L(N,Di, Dj) =

[
L(N,Di) + L(N,Dj)

2

]
−Ci,j +

Ai,j

Nαi,j
+

Bi,j

|Di|+ |Dj |βi,j
,

(20)416

where Ci,j captures the degree of positive interac-417

tion between modalities i and j.418

Synthesis and guidelines

• Multimodal scaling is governed by modality align-
ment and architectural balance more than raw
model size.

• Ensure models are sufficiently large to benefit from
synergy across modalities. Prioritize modality
balance in architecture and high-quality aligned
datasets over isolated scaling. Refer to Figure 4a
when designing multimodal pretraining pipelines.

419

Cross-RQ synthesis

• Data-efficient scaling (RQ1, RQ3, RQ5) consis-
tently beats brute-force model expansion, as shown
in Hu et al. (2024); Sardana et al. (2024).

• Architectural innovations (RQ2, RQ6) tend to scale
poorly unless paired with precise training heuris-
tics (e.g., expert routing in MoEs).

• Inference-aware scaling (RQ4, RQ7) enables small
models to rival larger ones but is rarely included in
current scaling laws - a key research gap.

420

While the research questions synthesized above421

highlight the strengths and practical applications of422

neural scaling laws, they also expose several limi-423

tations, especially in their generalizability, reliabil-424

ity under constraints and applicability to modern425

model designs. In the next section, we critically426

examine these limitations and discuss the foun- 427

dational assumptions that may no longer hold as 428

models evolve. 429

4 Criticisms of scaling laws 430

Diaz and Madaio (2024) challenged the generaliz- 431

ability of neural scaling laws, arguing that they fail 432

in diverse real-world AI applications. They argued 433

that scaling laws do not always hold when AI mod- 434

els serve heterogeneous populations with conflict- 435

ing criteria for model performance. Larger datasets 436

inherently reflect diverse communities, making it 437

difficult to optimize a single model for all users. 438

Similar to issues in multilingual AI, increasing data 439

diversity often leads to performance degradation 440

rather than improvement. Universal evaluation met- 441

rics are inadequate for capturing these complexi- 442

ties, potentially reinforcing biases against under- 443

represented groups. The authors further argued that 444

smaller, localized AI models may be more effective 445

for specific communities, highlighting the need to 446

move beyond one-size-fits-all scaling assumptions. 447

Beyond dataset expansion, data pruning con- 448

tradicts traditional scaling laws by demonstrating 449

that performance improvements do not always re- 450

quire exponentially more data. Strategic pruning 451

achieves comparable or superior results with sig- 452

nificantly fewer training samples (Sorscher et al., 453

2023). Not all data contributes equally, and se- 454

lecting the most informative examples enables 455

more efficient learning. Experimental validation on 456

CIFAR-10, SVHN, and ImageNet shows that care- 457

ful dataset curation can surpass traditional power- 458

law improvements, questioning the necessity of 459

brute-force scaling. 460
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Despite their significant impact, many studies461

on scaling laws suffer from limited reproducibil-462

ity (see Table 11 in Appendix C) due to propri-463

etary datasets, undisclosed hyperparameters, and464

undocumented training methodologies. The inabil-465

ity to replicate results across different computing466

environments raises concerns about their robust-467

ness. Large-scale experiments conducted by in-468

dustry labs often depend on private infrastructure,469

making independent verification challenging. This470

lack of transparency undermines the reliability of471

scaling law claims and highlights the urgent need472

for open benchmarks and standardized evaluation473

frameworks to ensure reproducibility. Furthermore,474

the field’s avoidance of rigorous scaling exponent475

analysis constitutes a critical oversight. While ex-476

ponents indeed vary across models, datasets, and477

hyperparameters, this variability demands investi-478

gation rather than dismissal. This deliberate ana-479

lytical gap undermines confidence in extrapolation480

claims and raises questions about whether observed481

scaling behaviors represent genuine properties or482

experimental artifacts.483

5 Beyond Scale: Future Directions for484

Practical and Sustainable AI485

While neural scaling laws have provided valuable486

insights into model performance, their current for-487

mulations often fail to account for recent advance-488

ments in architecture, data efficiency, and inference489

strategies. The following directions highlight key490

areas where scaling laws should be adapted to im-491

prove their predictive power and practical utility.492

Reframing scaling laws for real-world con-493

straints. Future scaling laws must account for494

compute budgets, hardware latency, and energy495

consumption. This includes integrating train-496

ing–inference trade-offs, evaluating real-world per-497

formance under quantization or pruning, and pre-498

dicting effectiveness across resource-constrained499

environments.500

Designing for downscaling. Rather than building501

ever-larger models, the field should invest in scal-502

ing laws for small language models trained with503

optimal data, sparsity, and inference strategies. The504

emergence of 1–3B parameter models that rival505

13B+ models (Hu et al., 2024) highlights the via-506

bility of compact yet performant systems.507

Multi-objective scaling optimization. Current508

scaling laws often predict accuracy at scale but ig-509

nore trade-offs between accuracy, compute, and 510

robustness. Future work should develop multi- 511

objective scaling frameworks that balance these 512

factors to guide architecture and dataset design 513

more holistically. 514

Inference-aware and modular scaling laws. 515

Traditional scaling laws assume fixed inference 516

procedures. However, our synthesis in RQ4 and 517

RQ7 shows that test-time compute allocation via 518

sampling, retrieval, or routing can drastically affect 519

performance. Future scaling formulations should 520

modularize inference and allow flexible compute 521

allocation per task or query. 522

Data quality over quantity. Instead of expand- 523

ing datasets indiscriminately, laws like REG- 524

MIX (Liu et al., 2024) and D-CPT (Que et al., 525

2024) emphasize optimized data composition. Fu- 526

ture models should prioritize informative examples 527

and track dataset efficiency across tasks. 528

Towards accessible and sustainable AI. Large 529

models are inaccessible to many research groups. 530

Downscaling informed by scaling laws ensures that 531

smaller labs and edge deployments can still benefit 532

from state-of-the-art performance. Ultimately, the 533

future of neural scaling is not just bigger models, 534

but better modeling choices at every scale. 535

6 Conclusion 536

This survey provided a comprehensive analysis 537

of neural scaling laws, exploring their theoreti- 538

cal foundations, empirical findings, and practical 539

implications. It synthesized insights across vari- 540

ous modalities, including language, vision, multi- 541

modal, and reinforcement learning, to uncover com- 542

mon trends and deviations from traditional power- 543

law scaling. While early research established pre- 544

dictable relationships between model size, dataset 545

volume, and computational resources, more recent 546

studies have shown that these relationships are 547

not universally applicable. Sparse architectures, 548

retrieval-augmented models, and domain-specific 549

adaptations often exhibit distinct scaling behaviors, 550

challenging the notion of uniform scalability. Fur- 551

thermore, advancements in fine-tuning, data prun- 552

ing, and efficient inference strategies have intro- 553

duced new perspectives on compute-optimal scal- 554

ing. Despite their significance, scaling laws remain 555

an evolving area of research, requiring further re- 556

finement to address real-world deployment chal- 557

lenges and architectural innovations. 558
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Limitations559

While this survey provides a broad synthesis of560

neural scaling laws, it primarily focuses on model561

size, data scaling, and compute efficiency. Other562

important aspects, such as hardware constraints,563

energy consumption, and the environmental impact564

of large-scale AI training, are not deeply explored.565

Another limitation is the reliance on prior empirical566

findings, which may introduce variability due to dif-567

fering experimental setups and proprietary datasets.568

Without access to fully reproducible scaling law569

experiments, some conclusions remain dependent570

on the methodologies employed in original studies.571

Ethical Considerations572

Scaling laws, while effective in optimizing AI per-573

formance, can also raise issues of accessibility and574

fairness. The development of increasingly large575

models favors institutions with substantial compu-576

tational resources, creating a divide between well-577

funded research groups and smaller organizations.578

Furthermore, as scaling laws often assume uniform579

data utility, they may amplify biases present in580

large-scale datasets, potentially leading to skewed581

outcomes in real-world applications. Ethical con-582

cerns also arise from the energy-intensive nature583

of training large models, contributing to environ-584

mental concerns. Addressing these issues requires585

more inclusive AI development strategies, ensuring586

that scaling laws consider broader societal impacts587

rather than focusing solely on performance opti-588

mization.589
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A Fitting and validating scaling laws881

Fitting scaling laws involves several key method-882

ological choices that can significantly impact the fi-883

nal results and conclusions. The choice of optimiza-884

tion approach, loss function, initialization strategy,885

and validation method all play crucial roles in deter-886

mining the reliability and reproducibility of scaling887

law studies.888

A.1 Optimization methods889

The most common approaches for fitting scaling890

laws involve non-linear optimization algorithms891

like BFGS (Broyden-Fletcher-Goldfarb-Shanno)892

(used by Frantar et al. (2023)), L-BFGS (used893

by Tao et al. (2024)) and least squares (used by894

Caballero et al. (2023)). Some studies (Covert895

et al., 2024; Hashimoto, 2021) also use optimizers896

like Adam or Adagrad, though these may be less897

suitable for scaling law optimization due to their898

data-hungry nature and assumptions about gradient899

distributions.900

A.2 Loss functions and objectives901

Several loss functions are commonly used for fit-902

ting scaling laws:903

• Mean squared error (MSE): Emphasizes larger904

errors due to quadratic scaling (used by Ghor-905

bani et al. (2021)).906

• Mean absolute error (MAE): Provides more 907

robust fitting less sensitive to outliers (used by 908

Hilton et al. (2023)). 909

• Huber loss: Combines MSE’s sensitivity to 910

small errors with MAE’s robustness to outliers 911

(used by Hoffmann et al. (2022)). 912

A.3 Initialization strategies 913

The initialization of scaling law parameters proves 914

to be critically important for achieving good fits. 915

Common approaches include grid search over pa- 916

rameter spaces (Aghajanyan et al., 2023), random 917

sampling from parameter ranges (Frantar et al., 918

2023), and multiple random restarts to avoid lo- 919

cal optima (Caballero et al., 2023). 920

A.4 Validation methods 921

It is hugely important to understand if the scaling 922

law fit achieved is accurate and valid. Most of the 923

papers surveyed lack in validating their fits. Several 924

approaches can help validating the effectiveness 925

of scaling law fits. Statistical methods like com- 926

puting confidence intervals can act as a goodness- 927

of-fit metric (Alabdulmohsin et al., 2022). Fur- 928

thermore, researchers can perform out-of-sample 929

testing by extrapolation to larger scales (Hoffmann 930

et al., 2022). 931

A.5 Limitations of fitting techniques 932

Li et al. (2024b) revealed several critical method- 933

ological considerations in fitting scaling laws. Dif- 934

ferent optimizers can converge to notably different 935

solutions even with similar initializations, under- 936

scoring the need for careful justification of opti- 937

mizer choice. Similarly, the analysis showed that 938

different loss functions can produce substantially 939

different fits when working with real-world data 940

containing noise or outliers, suggesting that loss 941

function selection should be guided by specific data 942

characteristics and desired fit properties. Perhaps 943

most importantly, the paper demonstrated that ini- 944

tialization can dramatically impact the final fit, with 945

some methods exhibiting high sensitivity to initial 946

conditions. Together, these findings emphasize the 947

importance of thorough methodology documenta- 948

tion across all aspects of the fitting process - from 949

optimizer selection and loss function choice to ini- 950

tialization strategy - to ensure reproducibility and 951

reliability in scaling law studies. 952
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B Detailed scaling laws953

B.1 Scaling laws of language models954

Kaplan et al. (2020) suggested that larger LMs955

improve performance by reducing loss through956

power-law scaling. However, this view evolved957

when studies showed that many large models were958

undertrained, and data scaling plays an equally cru-959

cial role in compute efficiency (Hoffmann et al.,960

2022). More recent breakthroughs challenged tra-961

ditional scaling assumptions. Broken Neural Scal-962

ing Law (BNSL) introduced non-monotonic trends,963

meaning that model performance can sometimes964

worsen before improving, depending on dataset965

thresholds and architectural bottlenecks (Caballero966

et al., 2023). Another exciting development came967

from small LMs, where optimized training strate-968

gies, such as a higher data-to-parameter ratio and969

adaptive learning schedules, enable models ranging970

from 1.2B to 2.4B parameters to rival significantly971

larger 7B-13B models (Hu et al., 2024). These972

findings reshape the fundamental assumptions of973

scaling laws, proving that strategic training can974

outperform brute-force model expansion.975

B.2 Scaling laws in other modalities976

In computer vision, ViTs exhibit power-law scaling977

when model size, compute, and data grow together,978

but their performance plateaus at extreme compute979

levels, with noticeable gains only when trained on980

datasets exceeding 1B images (Zhai et al., 2022).981

Meanwhile, studies on scaling law extrapolation982

revealed that while larger models generally scale983

better, their efficiency declines at extreme sizes,984

requiring new training strategies to maintain per-985

formance (Alabdulmohsin et al., 2022). In multi-986

modal learning, an interesting phenomenon called987

the “competition barrier” has been observed where988

at smaller scales different input modalities compete989

for model capacity, but as models grow, they shift990

into a synergistic state, enabling accurate perfor-991

mance predictions based on model size and token992

count (Aghajanyan et al., 2023).993

However, not all scaling trends align with ex-994

pectations. Contrary to the assumption that larger995

is always better, scaling vision encoders in vision-996

language models can sometimes degrade perfor-997

mance, highlighting the fact that data quality and998

modality alignment are more critical than brute-999

force scaling (Li et al., 2024a). These find-1000

ings collectively emphasize that scaling laws are1001

domain-dependent – optimal scaling strategies re-1002

quire a careful balance between compute efficiency, 1003

dataset quality, and architecture rather than simply 1004

increasing model size. Table 3 summarizes the scal- 1005

ing laws of pre-trained models for language and 1006

other modalities. 1007

B.3 Scaling laws for domain adaptation 1008

Pre-training and fine-tuning techniques have ac- 1009

celerated the adoption of large-scale neural mod- 1010

els, yet the extent to which these models trans- 1011

fer across tasks and domains remains a key re- 1012

search question tied to scaling principles. Stud- 1013

ies show that transfer learning follows a power- 1014

law where pre-training amplifies fine-tuning effec- 1015

tiveness, especially in small data regimes. Even 1016

with limited downstream data, larger models bene- 1017

fit significantly from pre-training, improving gen- 1018

eralization (Hernandez et al., 2021). In vision, 1019

pre-training saturation occurs due to upstream- 1020

downstream interactions, rather than just task com- 1021

plexity. Lower network layers quickly specialize in 1022

simple tasks, while higher layers adapt to complex 1023

downstream objectives (Abnar et al., 2021). Sim- 1024

ilarly, in synthetic-to-real transfer, larger models 1025

consistently reduce transfer gaps, enhancing gener- 1026

alization across domains (Mikami et al., 2021). 1027

Fine-tuning strategies scale differently depend- 1028

ing on dataset size. Parameter-efficient fine- 1029

tuning (PEFT) techniques like low-rank adapta- 1030

tion (LoRA) (Hu et al., 2021) and Prompt-tuning, 1031

both are well-suited for small datasets, but LoRA 1032

performs best for mid-sized datasets, and full fine- 1033

tuning is most effective for large datasets. How- 1034

ever, PEFT methods provide better generalization 1035

in large models, making them attractive alternatives 1036

to full-scale fine-tuning (Zhang et al., 2024). 1037

Scaling laws are also being utilized to accu- 1038

rately predict the fine-tuning performance of mod- 1039

els. The FLP method (Chen et al., 2024c) estimates 1040

pre-training loss from FLOPs, enabling accurate 1041

forecasts of downstream performance, particularly 1042

in models up to 13B parameters. Further refine- 1043

ments like FLP-M improve mixed-dataset predic- 1044

tions and better capture emergent abilities in large 1045

models. Finally, the Rectified scaling law (Lin 1046

et al., 2024a) introduces a two-phase fine-tuning 1047

transition, where early-stage adaptation is slow be- 1048

fore shifting into a power-law improvement phase. 1049

This discovery enables compute-efficient model 1050

selection using the “Accept then Stop” (AtS) algo- 1051

rithm to terminate training at optimal points. 1052

We summarize these findings in Table 5, sug- 1053
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Modality Paper Key insights Applicability

Language

Kaplan et al. (2020)

Larger models are more sample-
efficient, needing fewer training ex-
amples to generalize well.

Predicts model loss decreases
with increasing parameters, used
in early LMs like GPT-3.

Hoffmann et al. (2022)
The best performance comes from
balancing model size and data, rather
than just increasing parameters.

Balances compute, model size,
and dataset size for optimal ef-
ficiency, as seen in Chinchilla.

Caballero et al. (2023)
Performance does not always im-
prove smoothly; there are inflection
points where scaling stops working.

Identifies phase transitions, mini-
mum data thresholds, and unpre-
dictability in scaling behavior.

Hu et al. (2024)

Smaller models with better training
can rival much larger models.

Demonstrates that smaller mod-
els with optimized training can
outperform larger undertrained
models.

Vision Zhai et al. (2022)

ViTs follow power-law scaling but
plateau at extreme compute lev-
els, with benefits primarily seen in
datasets >1B images.

Image classification, object
detection, large-scale vision
datasets.

Multimodal

Aghajanyan et al. (2023)

Multimodal models experience com-
petition at smaller scales but transi-
tion into synergy as model and token
count grow.

Multimodal learning, mixed-
modal generative models, cross-
domain AI.

Li et al. (2024a)

Scaling vision encoders in vision-
language models does not always im-
prove performance, reinforcing the
importance of data quality over raw
scaling.

Vision-language models, image-
text alignment, multimodal scal-
ing challenges.

Table 3: Critical neural scaling laws for language, vision and multimodal models.

Paper Key insights Applicability
Zhai et al. (2022) ViTs follow power-law scaling but

plateau at extreme compute lev-
els, with benefits primarily seen
in datasets >1B images.

Image classification, object detec-
tion, large-scale vision datasets.

Aghajanyan et al.
(2023)

Multimodal models experience
competition at smaller scales but
transition into synergy as model
and token count grow, following a
"competition barrier."

Multimodal learning, mixed-
modal generative models,
cross-domain AI.

Li et al. (2024a) Scaling vision encoders in vision-
language models (VLMs) does not
always improve performance, re-
inforcing the importance of data
quality over raw scaling.

Vision-language models, image-
text alignment, multimodal scaling
challenges.

Table 4: Summary of key insights found in scaling laws paper for computer vision and multimodal domains.

gesting that transfer learning is highly scalable, but1054

effective scaling requires precise tuning strategies1055

rather than just increasing model size.1056

B.4 Scaling laws for model inference1057

Simply scaling up models is not always the best1058

way to improve model performance. Chen et al.1059

(2024a) suggested that more efficient test-time 1060

compute strategies can dramatically reduce infer- 1061

ence costs while maintaining or even exceeding 1062

performance. Instead of blindly increasing 1063

LLM calls, they further suggested for allocating 1064

resources based on query complexity, ensuring 1065

that harder queries receive more compute while 1066
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Paper Key insights Applicability

Hernandez et al. (2021)

Pre-training amplifies fine-tuning, par-
ticularly for small datasets, and bene-
fits larger models even under data con-
straints.

Transfer learning, pre-training op-
timization, few-shot learning.

Abnar et al. (2021)

Large-scale pre-training improves
downstream performance, but effective-
ness depends on upstream-downstream
interactions, not task complexity.

Vision transfer learning, upstream-
downstream performance interac-
tions.

Zhang et al. (2024)

Optimal fine-tuning strategy depends on
dataset size: PEFT for small, LoRA for
mid-scale, and full fine-tuning for large-
scale datasets.

Fine-tuning strategies, parameter-
efficient tuning, LoRA, full fine-
tuning.

Lin et al. (2024a)

Fine-tuning follows a two-phase tran-
sition: slow early adaptation followed
by power-law improvements, guiding
compute-efficient model selection.

Compute-efficient fine-tuning,
early stopping, model selection
strategies.

Table 5: Key highlights from scaling of fine-tuned and domain-adapted models.

simpler ones use fewer resources. The importance1067

of test-time compute strategies becomes even1068

clearer when dealing with complex reasoning1069

tasks. While sequential modifications work well1070

for simple queries, parallel sampling and tree1071

search dramatically improve results on harder1072

tasks. Adaptive compute-optimal techniques1073

have been shown to reduce computational costs1074

by 4× without degrading performance, allowing1075

smaller models with optimized inference strategies1076

to surpass much larger models (Snell et al.,1077

2024; Brown et al., 2024). Advanced inference1078

approaches, such as REBASE tree search (Wu1079

et al., 2024), further push the boundaries of1080

efficiency, enabling small models to perform on1081

par with significantly larger ones.1082

1083

Another breakthrough came from retrieval aug-1084

mented models, where increasing the datastore1085

size consistently improves performance without1086

hitting saturation (Shao et al., 2024). This allows1087

smaller models to outperform much larger ones on1088

knowledge-intensive tasks, reinforcing that exter-1089

nal datastores provide a more efficient alternative1090

to memorizing information in model parameters.1091

B.5 Scaling laws for efficient models1092

Scaling laws have expanded beyond simple param-1093

eter growth, introducing new methods to optimize1094

routing, sparsity, pruning, and quantization for effi-1095

cient LLM scaling. Routing-based models benefit1096

from optimized expert selection, but their returns1097

diminish at extreme scales, requiring careful ex- 1098

pert configuration (Clark et al., 2022). In contrast, 1099

fine-grained MoE models consistently outperform 1100

dense transformers, achieving up to 40× compute 1101

efficiency gains when expert granularity is properly 1102

tuned (Krajewski et al., 2024). However, balancing 1103

the number of experts (E) is crucial, where models 1104

with 4-8 experts offer superior inference efficiency, 1105

but require 2.5 − 3.5× more training resources, 1106

making 16-32 expert models more practical when 1107

combined with extensive training data (Yun et al., 1108

2024). Sparse model scaling offers another ef- 1109

ficiency boost. Research has demonstrated that 1110

higher sparsity enables effective model scaling, al- 1111

lowing 2.15× more parameters at 75% sparsity, 1112

improving training efficiency while maintaining 1113

performance (Frantar et al., 2023). Additionally, 1114

pruning laws (P2 scaling laws) predict that exces- 1115

sive post-training data does not always improve 1116

performance, helping optimize resource allocation 1117

in pruned models (Chen et al., 2024b). Dettmers 1118

and Zettlemoyer (2023) showed that 4-bit quantiza- 1119

tion provides the best trade-off between accuracy 1120

and model size, optimizing zero-shot performance 1121

while reducing storage costs. Larger models toler- 1122

ate lower precision better, following an exponen- 1123

tial scaling law where fewer high-precision compo- 1124

nents are needed to retain performance (Cao et al., 1125

2024). Meanwhile, training precision scales log- 1126

arithmically with compute budgets, with 7-8 bits 1127

being optimal for balancing size, accuracy, and 1128

efficiency (Kumar et al., 2024). Recent reserach 1129
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Paper Key insights Applicability

Brown et al. (2024)

Adaptive test-time compute strategies
reduce computational costs by 4×
while maintaining performance, enabling
smaller models to compete with much
larger ones.

Test-time compute efficiency, inference
cost reduction, compute-limited envi-
ronments.

Wu et al. (2024)

Advanced inference methods like RE-
BASE tree search allow smaller models
to match the performance of significantly
larger ones.

High-efficiency inference, perfor-
mance optimization for small models.

Shao et al. (2024)

Increasing datastore size in retrieval-
augmented models consistently improves
performance under the same compute bud-
get, without evident saturation.

Retrieval-augmented language models,
knowledge-intensive tasks, compute-
efficient architectures.

Clark et al. (2022)
Routing-based models show diminishing
returns at larger scales, requiring optimal
routing strategies for efficiency.

Routing-based models, MoEs, trans-
former scaling.

Krajewski et al. (2024)
Fine-grained MoEs achieve up to 40×
compute efficiency gains when expert
granularity is optimized.

Mixture of Experts models, large-scale
compute efficiency.

Frantar et al. (2023)
Sparse model scaling enables predicting
optimal sparsity levels for given compute
budgets.

Sparse models, structured sparsity opti-
mization, parameter reduction.

Table 6: Scaling laws of efficient models.

Paper Key insights Applicability
Clark et al. (2022) Routing-based models show di-

minishing returns at larger scales,
requiring optimal routing strate-
gies for efficiency.

Routing-based models, MoEs,
transformer scaling.

Krajewski et al. (2024) Fine-grained MoEs achieve up
to 40× compute efficiency gains
when expert granularity is opti-
mized.

Mixture of Experts models, large-
scale compute efficiency.

Frantar et al. (2023) Sparse model scaling enables pre-
dicting optimal sparsity levels for
given compute budgets.

Sparse models, structured sparsity
optimization, parameter reduction.

Table 7: Scaling laws for routing, sparsity, pruning, and quantization.

has expanded into distillation as well, developing1130

a mathematical framework that predicts how well1131

a student model will perform based on the student1132

model’s size, the teacher model’s performance and1133

the compute budget allocation between the teacher1134

and the student (Busbridge et al., 2025). We sum-1135

marize these practical insights in Table 6 for better1136

readability.1137

B.6 Data scaling laws1138

Scaling models involves more than just increas-1139

ing parameters; optimizing data mixtures, training1140

duration, and vocabulary size also plays a crucial1141

role in enhancing performance and efficiency. Data 1142

mixing laws allow AI practitioners to accurately 1143

predict optimal data compositions before training, 1144

leading to 27% fewer training steps without com- 1145

promising accuracy (Ye et al., 2024). Techniques 1146

like REGMIX optimize data selection using proxy 1147

models and regression, reducing compute costs by 1148

90% compared to manual data selection (Liu et al., 1149

2024). Meanwhile, AUTOSCALE revealed that 1150

data efficiency depends on model scale, where high- 1151

quality data like Wikipedia helps small models but 1152

loses effectiveness for larger models, which benefit 1153

from diverse datasets like CommonCrawl (Kang 1154
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Paper Key insights Applicability

Ye et al. (2024)

Predicts optimal data composi-
tions before training, reducing
compute costs by up to 27% while
maintaining performance.

Pre-training optimization, data effi-
ciency improvements.

Liu et al. (2024)
REGMIX optimizes data mixtures
using proxy models, achieving
90% compute savings.

Compute-efficient training, automated
data selection, large-scale models.

Allen-Zhu and Li (2024)

Language models can store 2 bits
of knowledge per parameter, with
knowledge retention dependent on
training exposure.

Knowledge encoding, model compres-
sion, retrieval-augmented models.

Table 8: Critical scaling laws for data mixing and knowledge capacity.

et al., 2024). For continual learning, the D-CPT1155

Law provided a theoretical framework for balanc-1156

ing general and domain-specific data, guiding effi-1157

cient domain adaptation and long-term model up-1158

dates (Que et al., 2024). Additionally, Chinchilla1159

scaling assumptions were challenged by evidence1160

showing that training models for more epochs1161

on limited data can outperform simply increasing1162

model size (Muennighoff et al., 2023). Repeated1163

data exposure remains stable up to 4 epochs, but1164

returns diminish to zero after around 16 epochs,1165

making longer training a more effective allocation1166

of compute resources. Furthermore, the vocabu-1167

lary scaling law suggested that as language models1168

grow larger, their optimal vocabulary size should1169

increase according to a power law relationship (Tao1170

et al., 2024). Finally, knowledge capacity scaling1171

laws established that language models store 2 bits1172

of knowledge per parameter, meaning a 7B model1173

can encode 14B bits of knowledge – surpassing1174

English Wikipedia and textbooks combined (Allen-1175

Zhu and Li, 2024). Table 8 summarizes the data1176

scaling laws for developing neural models when1177

data is not available in abundance.1178

B.7 Scaling laws for reinforcement learning1179

Scaling laws in reinforcement learning (RL) and1180

reward model optimization reveal both similarities1181

and differences with generative modeling. Single-1182

agent RL follows power-law scaling with model1183

size and environment interactions, with optimal1184

scaling exponents between 0.4-0.8 across tasks1185

lower than the 0.5 exponent observed in language1186

models (Hilton et al., 2023). RL tasks require or-1187

ders of magnitude smaller models than generative1188

tasks, correlating with task horizon length, which1189

dictates environment interaction scaling. Task diffi-1190

culty increases compute needs but does not affect 1191

scaling exponents, highlighting horizon length as a 1192

key factor in RL scaling efficiency. 1193

In board games like Hex which involves multi- 1194

agent RL, Jones (2021) showed that AlphaZero per- 1195

formance follows predictable scaling trends, with 1196

compute requirements increasing 7× per board 1197

size increment for perfect play and 4× for sur- 1198

passing random play (Jones, 2021). Neumann 1199

and Gros (2023) extended this study to Pentago 1200

and ConnectFour, proposing scaling laws which 1201

show that player strength scales with network size 1202

as αN ≈ 0.88, performance with compute as 1203

αC ≈ 0.55, and optimal network size with com- 1204

pute budget as αopt ≈ 0.63 (Neumann and Gros, 1205

2023). Larger multi-agent models exhibit higher 1206

sample efficiency, though these trends may not gen- 1207

eralize to highly complex games like Chess and 1208

Go. 1209

Reward model overoptimization in RLHF fol- 1210

lows distinct functional forms: Best-of-n (BoN) re- 1211

ward optimization is governed by d(αbon − βbond), 1212

whereas RL reward optimization follows d(αRL − 1213

βRL log d), where d represents KL divergence from 1214

the initial policy (Gao et al., 2022). RL requires 1215

higher KL divergence than BoN for optimization, 1216

and reward model overoptimization scales loga- 1217

rithmically with model size, while policy size has 1218

minimal impact. These findings reinforce the im- 1219

portance of balancing compute allocation, environ- 1220

ment complexity, and optimization techniques to 1221

achieve scalable and efficient RL models. 1222

B.8 Scaling laws for sparse autoencoders 1223

Recent research has established scaling laws for 1224

dictionary learning, providing insights into how la- 1225

tent representations and sparsity impact reconstruc- 1226
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Paper Category Task Architecture Datasets Used Model Range Data Range
Kaplan et al. (2020) Pre-Training Language Generation Decoder-only Transformer WebText2 0M - 1B 22M - 23B
Hoffmann et al.
(2022)

Pre-Training Language Generation Decoder-only Transformer MassiveText,Github, C4 70M - 16B 5B - 500B

Tay et al. (2022) Pre-Training ,
Transfer Learning

Language Generation Switch, T5 Encoder-Decoder,
Funnel, MoS, MLP-mixer, GLU,
Lconv, Evolved, Dconv, Per-
former,Universal, ALBERT

Pretraining: C4, Fine-Tuning: GLUE, SuperGLUE,
SQuAD

173M - 30B

Hu et al. (2024) Pre-Training Language Generation Decoder-only Transformer Large mixture 40M - 2B
Caballero et al.
(2023)

Pre-Training Downstream Image Recognition
and Language Generation

ViT, Transformers, LSTM Vision pretrained: JFT-300M, downstream :
Birds200, Caltech101, CIFAR-100; Language : Big-
Bench

Hernandez et al.
(2021)

Transfer Learning Code Generation Decoder-only Transformer Pre-train: WebText2, CommonCrawl, English
Wikipedia, Books; FineTune: Github repos

Abnar et al. (2021) Transfer Learning Image Recognition ViT, MLP-Mixers, ConvNets Pre-train: JFT, ImageNet21K 10M - 10B
Mikami et al.
(2021)

Transfer learning Image Recognition ConvNets Syntheic Data

Zhang et al. (2024) Transfer Learning Machine Translation and Lan-
guage Generation

Decoder-only Transformer WMT14 English-German (En-De) and WMT19
English-Chinese (En-Zh), CNN/Daily-Mail, ML-
SUM

1B - 16B 84B - 283B

Chen et al. (2024c) Transfer learning Language Generation Decoder-only Transformer Pre-Train: RedPajama v1, Validation:
GitHub,ArXiv,Wikipedia, C4, RedPajama val-
idation sets, ProofPile

43M - 3B

Lin et al. (2024a) Transfer learning Language Generation Decoder-only Transformer,
Encoder-Decoder Transformer,
Multilingual, MoE

Fine Tune: WMT19 English-Chinese (En-Zh), Giga-
word, FLAN

100M - 7B

Dettmers and
Zettlemoyer (2023)

Quantization Infer-
ence

Language Generation Decoder-only Transformer The Pile, Lambada, PiQA, HellaSwag, Windogrande 19M - 176B

Cao et al. (2024) Quantization Infer-
ence

Language Generation Decoder-only Transformer WikiText2, SlimPajama, MMLU, Alpaca 500M - 70B

Kumar et al. (2024) Quantization
Pre-Training, Quan-
tization Inference

Language Generation Decoder-only Transformer Dolma V1.7 30M - 220M 1B - 26B

Chen et al. (2024a) Inference Language Generation Decoder-only Transformer MMLU Physics, TruthfulQA, GPQA, Averitec
Snell et al. (2024) Inference Language Generation Decoder-only Transformer MATH
Brown et al. (2024) Inference Language Generation Decoder-only Transformer GSM8K, MATH, MiniF2F-MATH, CodeContests,

SWE-bench lite
70M - 70B

Wu et al. (2024) Inference Language Generation Decoder-only Transformer MATH500, GSM8K 410M - 34B
Sardana et al.
(2024)

Inference Language Generation Decoder-only Transformer Jeopardy, MMLU, BIG bench, WikiData, ARC,
COPA, PIQA, OpenBook QA, AGI Eval, GSM8k,
etc

150M-6B 1.5B - 1.2T

Clark et al. (2022) Sparsity Language Generation Decoder-only Transformer, MoE MassiveText 0 - 200B 0-130B
Frantar et al. (2023) Sparsity Language Generation, Image

Recognition
Encoder-decoder, ViT JFT-4B, C4 1M - 85M 0 - 1B

Krajewski et al.
(2024)

Sparsity Language generation Decoder-only Transformer, MoE C4 129M - 3B 16B - 130B

Yun et al. (2024) Sparsity Language generation Decoder-only Transformer, MoE Slim Pajama 100M - 730M 2B - 20B
Chen et al. (2024b) Sparsity Language Generation Decoder-only Transformer SlimPajama 500M - 8B 0.5B
Busbridge et al.
(2025)

Distillation Language generation Teacher-Student Decoder-only
Transformer

C4 100M - 12B 0 - 500B

Henighan et al.
(2020)

Multimodality Generative Image Modeling,
Video Modeling, Language
Generation

Decoder-only Transformer FCC100M, and various modal datasets 0.1M-100B 100M

Zhai et al. (2022) Multimodality Image Recognition ViT ImageNet-21K 5M - 2B 1M - 3B
Alabdulmohsin
et al. (2022)

Multimodality Image Recognition, Machine
Translation

ViT, MLP Mixers, Encoder-
decoder, Decoder-only Trans-
former, Transformer encoder-
LSTM decoder

JFT-300M, ImageNet, Birds200, CIFAR100, Cal-
tech101, Big-Bench

10M-1B 32M-494M

Aghajanyan et al.
(2023)

Multimodality Multimodal Tasks Decoder-only Transformers OPT, Common Crawl, LibriSpeech , CommonVoice,
VoxPopuli, Spotify Podcast, InCoder, SMILES from
Zincand People’s Speech

8M - 30B 5B - 100B

Li et al. (2024a) Multimodality Multimodal tasks ViT, Decoder-only Transformer CC12M, LAION-400M 7B - 13B 1M - 10M
Jones (2021) Multi-agent RL Hex AlphaZero with neural networks
Neumann and Gros
(2023)

Multi-agent RL Pentago, ConnectFour AlphaZero with neural networks

Gao et al. (2022) RL Reward Model training with Best
of n or RL

Decoder-only Transformers

Hilton et al. (2023) Single-agent RL ProcGen Benchmark, 1v1 ver-
sion of Dota2, toy MNIST

ConvNets, LSTM 0M - 10M

Ye et al. (2024) Data Mixture Language Generation Decoder-only Transformer RedPajama 70M - 410M
Liu et al. (2024) Data Mixture Language Generation Decoder-only Transformer Pile
Kang et al. (2024) Data Mixture Language Generation Decoder-only Transformer ,

Encoder-only Transformer
RedPajama

Que et al. (2024) Data Mixture Language Generation, Continual
Pre-training

Decoder-only Transformer various mixture of Code, Math, Law, Chemistry, Mu-
sic, Medical

0.5B-4B 0.1B-26B

Tao et al. (2024) Vocabulary Language Generation Decoder-only Transformer SlimPajama 33M - 3B 0 - 500B
Lindsey et al.
(2024)

Sparse Autoen-
coder

Training Autoencoder Decoder-only Transformer

Gao et al. (2024) Sparse Autoen-
coder

Find Interpretable Latents Decoder-only Transformer

Shao et al. (2024) Retrieval Language Generation Decoder-only Transformer language modelling:RedPajama, S2ORC, Down-
stream : TriviaQA, NQ, MMLU, MedQA

Muennighoff et al.
(2023)

Pre-Training Language Generation Decoder-only transformer C4 10M - 9B 0 - 900B

Allen-Zhu and Li
(2024)

Knowledge Capac-
ity

Language Generation Decoder-only transformer bioD

Ma et al. (2024) Graph Supervised
learning

Graph Classification Task InfoGraph, GraphCL, JOAO,
GraphMAE

reddit-threads , ogbg-molhiv,ogbg-molpcba

Diaz and Madaio
(2024)

Criticize

Sorscher et al.
(2023)

Criticize Image Recognition ConvNets, ViT SVHN, CIFAR-10, and ImageNet

Bahri et al. (2021) Theoretical
Bordelon et al.
(2024)

Theoretical

Hutter (2021) Theoretical
Lin et al. (2024b) Theoretical
Sharma and Kaplan
(2020)

Theoretical

Jin et al. (2023) Downscaling

Table 9: Details on task, architecture of models and training setup for each paper surveyed.
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Paper Dependent variable Scaling variable Functional form

Kaplan et al. (2020) Pre-Training Loss Model Parameters, Compute,
Data, Training Steps

L(N,D) =

[(
Nc
N

)αN
αD + Dc

D

]αD

Hoffmann et al. (2022) Pre-Training Loss Model Parameters, Data L(N,D) = A
Nα + B

Dβ + E

Tay et al. (2022) Performance metric Compute P ∝ Cα

Hu et al. (2024) Pre-Training Loss Model Parameters, Data L(P,D) = A
Nα + B

Dβ + E

Caballero et al. (2023) Performance metric Model Parameters, Compute,
Data, Input Size, Training
Steps

y = a+ (bx−c0)
∏n

i=1

(
1 +

(
x
di

)1/fi
)−ci∗fi

Hernandez et al. (2021) Data Transferred Model Parameters, Fine-
tuning Data

Dt(Df , N) = k(Df )
α(N)β

Abnar et al. (2021) Downstream Error Upstream Error eDS = k(eUS)
a + c

Mikami et al. (2021) Downstream Error Pre-training Data eDS = aD−α + c

Zhang et al. (2024) Downstream Loss Fine-tuning Data, Data,
Model Parameters, PET
parameter

L̂(X,Df ) = A ∗ 1
Xα ∗ 1

Dβ
f

+ E

Chen et al. (2024c) Downstream perfor-
mance

Pre-training Loss, Compute L(C) = ( C
CN

)α; P (L) = w0 + w1 · L

Lin et al. (2024a) Downstream Loss Data, Fine-tuning Data L(D) = B
Dt+Dβ + E

Dettmers and Zettle-
moyer (2023)

Accurancy Total Model Bits After Quan-
tization

Cao et al. (2024) Total parameters Quantization Ratio
Kumar et al. (2024) Loss Data, Model Parameters,

Training Precision, Post-train
Precision

L(N,D,Pw, Pa, Pkv, Ppost) = AN−α
eff +BD−β + E + δPTQ

Chen et al. (2024a) Optimal LLM Calls Fraction Of Easy And Diffi-
cult Queries

Brown et al. (2024) Coverage Number Of Samples log(C) = ak−b

Wu et al. (2024) Optimal Compute Model Parameters log10(C) = 1.19 log10(N) + 2.03

Sardana et al. (2024) Pre-Training Loss Model Parameters, Data L(N,D) = A
Nα + B

Dβ + E

Clark et al. (2022) Loss Model Parameters, Number
Of Experts , Data

log(L(N,E)) = a logN + b logE + c logN · logE + d

Frantar et al. (2023) Loss Sparsity, Model Parameters,
Data

L = (aS(1− S)bS + cS) ·
(
1
N

)bN +
(
aD
D

)bD + c

Krajewski et al. (2024) Loss Granularity, Model Parame-
ters, Data

L(N,D,G) = c+
( g
Gγ + a

)
1

Nα + b
Dβ

Yun et al. (2024) Loss Model Parameters, Number
Of Experts , Data

logL(N,D,E) ≜ log
(

A
Nα + B

Eβ + C
Dγ + F

)
+ d logN logE

Chen et al. (2024b) Post-Training Loss Uncompressed Model Loss,
pruned ratio, Model param-
eters before pruning, Post-
training Data

L(N0, D, ρ, L0) = L0 +
(
1
ρ

)γ (
1
N0

)δ (
NC
Nα

0
+ DC

Dβ + E
)

Henighan et al. (2020) Loss Model Parameters, Compute,
Data

L(x) = Ax−α +B

Zhai et al. (2022) Downstream Error Compute E = aCb + c

Alabdulmohsin et al.
(2022)

Loss Compute, Model Parameters,
Data

Lx−L∞
(L0−Lx)α

= βxc

Aghajanyan et al.
(2023)

Loss Model Parameters, Data L(N,Di, Dj) =
[
L(N,Di)+L(N,Dj)

2

]
− Ci,j +

Ai,j

Nαi,j +
Bi,j

|Di|+|Dj |βi,j

Li et al. (2024a) Loss Model Parameters, Data

Jones (2021) Elo Compute, Board Size Elo =
(
m

plateau
boardsize · boardsize + cplateau

)
· clamp(mincline

boardsize · boardsize+mincline
flops ·

log flop + cincline, 0)
Neumann and Gros
(2023)

Game Score Model Parameters, Compute Ei =
1

1+(Xj/Xi)
αX

Gao et al. (2022) Gold Reward model
scores

Root Of KL Between Initial
Policy And Optimized Policy
(d)

R(d) = d(α− β log d)

Hilton et al. (2023) Intrinsic performance Model Parameters, Environ-
ment Interactions

I−β =
(
Nc
N

)αN +
(
Ec
E

)αE

Ye et al. (2024) Loss on domain i Proportion Of Training Do-
mains

Li(r1...M ) = ci + ki exp
(∑M

j=1 tijrj

)
Que et al. (2024) Validation loss Model Parameters, Data, Mix-

ture Ratio
L(N,D, r) = E + A

Nα + B·rη
Dβ + C

(r+ϵ)γ

Tao et al. (2024) Unigram-Normalised
loss

Non-vocabulary Parameter,
Vocabulary Parameters, Data

Lu = −E + A1

N
α1
nv

+ A2

N
α2
v

+ B
Dβ

Lindsey et al. (2024) Reconstruction error Compute, Number Of Latents
Gao et al. (2024) Reconstruction loss Number Of Latents, Sparsity

Level
L(n, k) = exp(α+βk log(k)+βn log(n)+γ log(k) log(n))+exp(ζ+η log(k))

Shao et al. (2024) Downstream Accuracy Datastore , Model Parameters,
Data, Compute

Muennighoff et al.
(2023)

Loss Data, Model Parameters,
Epochs

L(N,D) = A
N ′α + B

D′β + E

Busbridge et al. (2025) Student Loss Teacher Loss, Student Param-
eters, Distillation Tokens

LS(NS , DS , LT ) = LT + 1
L
c0
T

(
1 +

(
LT

LS,d1

)1/f1
)−c1/f1 (

A

Nα′
S

+ B

Dβ′
S

)γ′

Table 10: Scaling law forms proposed in different papers we surveyed.
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Paper Training code Analysis code Github link
Kaplan et al. (2020) N N
Hoffmann et al. (2022) N N
Hoffmann et al. (2022) N N
Hu et al. (2024) Y N Link
Caballero et al. (2023) N Y Link
Hernandez et al. (2021) N N
Abnar et al. (2021) N N
Mikami et al. (2021) N Y Link
Zhang et al. (2024) N N
Chen et al. (2024c) N N
Lin et al. (2024a) N Y Link
Dettmers and Zettlemoyer (2023) N N
Cao et al. (2024) N N
Kumar et al. (2024) N N
Chen et al. (2024a) Y Y Link
Snell et al. (2024) N N
Brown et al. (2024) Y Y Link
Wu et al. (2024) Y N Link
Sardana et al. (2024) N N
Clark et al. (2022) N Y Link
Frantar et al. (2023) N N
Krajewski et al. (2024) Y Y Link
Yun et al. (2024) N N
Chen et al. (2024b) N N
Henighan et al. (2020) N N
Zhai et al. (2022) Y N Link
Alabdulmohsin et al. (2022) N Y Link
Aghajanyan et al. (2023) N N
Li et al. (2024a) N N
Jones (2021) Y Y Link
Neumann and Gros (2023) Y Y Link
Gao et al. (2022) N N
Hilton et al. (2023) N N
Ye et al. (2024) Y Y Link
Liu et al. (2024) Y Y Link
Kang et al. (2024) Y Y Link
Que et al. (2024) N N
Tao et al. (2024) Y Y Link
Lindsey et al. (2024) N N
Gao et al. (2024) Y Y Link
Shao et al. (2024) Y Y Link
Muennighoff et al. (2023) Y Y Link
Allen-Zhu and Li (2024) N N
Ma et al. (2024) Y N Link
Sorscher et al. (2023) N Y Link

Table 11: Reproducibility of different neural scaling law papers. Reproducibility status of 45 papers surveyed: 22
(48.9%) provided repositories; 29 (64.4%) did not share training code.
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https://github.com/OpenBMB/MiniCPM
https://github.com/ethancaballero/broken_neural_scaling_laws
https://github.com/pfnet-research/cg-transfer
https://github.com/linhaowei1/Fine-tuning-Scaling-Law/blob/main/benchmark/flan.csv
https://github.com/lchen001/CompoundAIScalingLaws
https://github.com/ScalingIntelligence/large_language_monkeys/tree/main
https://github.com/thu-wyz/inference_scaling
https://github.com/google-deepmind/scaling_laws_for_routing
https://github.com/llm-random/llm-random
https://github.com/google-research/vision_transformer
https://github.com/google-research/google-research/tree/master/revisiting_neural_scaling_laws
https://github.com/andyljones/boardlaw
https://github.com/OrenNeumann/AlphaZero-scaling-laws
https://github.com/yegcjs/mixinglaws
https://github.com/sail-sg/regmix
https://github.com/feiyang-k/AutoScale 
https://github.com/sail-sg/scaling-with-vocab
https://github.com/openai/sparse_autoencoder
https://github.com/RulinShao/retrieval-scaling
https://github.com/huggingface/datablations
https://github.com/HaitaoMao/Graph-Neural-Scaling-Law
https://github.com/rgeirhos/dataset-pruning-metrics


tion error and computational efficiency. Sparse1227

autoencoders with top-K selection follow power-1228

law scaling for reconstruction error (MSE) in terms1229

of the number of latents n and sparsity k, though1230

this relationship only holds for small k relative to1231

model dimension (Gao et al., 2024). Larger lan-1232

guage models require more latents to maintain the1233

same MSE at a fixed sparsity, reinforcing that la-1234

tent dimensionality must scale with model size for1235

effective reconstruction. Additionally, MSE fol-1236

lows a power-law relationship with the compute1237

used during training, suggesting that efficient scal-1238

ing strategies must balance sparsity, latent size,1239

and training compute to minimize error effectively.1240

This is reinforced by Lindsey et al. (2024), show-1241

ing that feature representations follow predictable1242

scaling trends, where larger models develop richer,1243

more interpretable dictionaries as the number of1244

learned features increases.1245

B.9 Scaling laws for graph neural networks1246

Unlike in computer vision and natural language1247

processing, where larger datasets typically im-1248

prove generalization, graph self-supervised learn-1249

ing methods fail to exhibit expected scaling behav-1250

ior and performance fluctuates unpredictably across1251

different data scales (Ma et al., 2024). However,1252

self-supervised learning pretraining loss does scale1253

with more training data, but this improvement does1254

not translate to better downstream performance.1255

The scaling behavior is method-specific, with some1256

approaches like InfoGraph showing more stable1257

scaling than others like GraphCL.1258

C Reproducibility of scaling laws papers1259

The reproducibility status of neural scaling law1260

papers presents a mixed landscape in terms of re-1261

search transparency. We consolidate and provide1262

the links to github code repositories in the Table 11.1263

Among the 45 surveyed papers proposing scaling1264

laws, 22 papers (48.9%) provided repository links,1265

indicating some level of commitment to open sci-1266

ence practices. However, more than half of the pa-1267

pers still lack basic reproducibility elements, with1268

29 papers (64.4%) not sharing training code and1269

27 papers (60%) withholding analysis code. This1270

comprehensive survey suggests that while there is a1271

growing trend toward reproducibility in neural scal-1272

ing law research, there remains substantial room1273

for improvement in establishing standard practices1274

for code sharing and result verification.1275
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