
FLStore: Efficient Federated Learning Storage for non-training workloads

A SUPPLEMENTARY FEATURES OF
FLSTORE

Modular design FLStore’s modular design enables seam-
less integration with existing FL frameworks without mod-
ifying clients or aggregators. Training can proceed un-
changed, while client updates and metadata received by the
aggregator are asynchronously relayed to FLStore’s cache.
FLStore then serves as a scalable and efficient storage solu-
tion, handling non-training tasks.

Multi-tenancy The serverless computing paradigm in-
herently provides isolation (Amazon Web Services, Inc.,
2024a; Ellis & Contributors, 2024), allowing each user to
create an isolated cache on the same FLStore instance. This
enables customized caching policies per non-training work-
load/application, allowing FLStore to handle requests from
multiple users simultaneously.

A.1 Scalability of FLStore

To demonstrate FLStore’s scalability, we simulated increas-
ing concurrent non-training requests, with FLStore main-
taining 5 cached function instances (red line, Figure 11). We
varied the number of concurrent client requests from 1 to 10
across six representative non-training workloads using the
EfficientNet model. As shown in Figure 11, latency and cost
remain nearly constant when concurrent requests are equal
to or fewer than the cached functions. For 1 to 5 requests,
the average latencies were 1.05 seconds for Malicious Fil-
tering, 0.031 seconds for Cosine Similarities, 1.039 seconds
for Scheduling (clustered), and 6.067 seconds for Cluster-
ing. Even with 6 and 7 requests, there was minimal increase
in latency or cost. For 8 to 10 requests, latencies start in-
creasing. However, this can be easily mitigated by scaling
cached functions (creating copies of already cached func-
tions) linearly with the number of requests, which incurs
minimal additional cost, as discussed next.

A.2 Fault Tolerance

We evaluated FLStore’s fault tolerance by testing ten dif-
ferent workloads using the EfficientNet model and sending
3000 requests over 50 hours. Faults (function reclamations)
were generated based on the Zipfian distribution, observed in
measurement studies on AWS Lambda (Wang et al., 2020).
Figure 12 shows that with only 1 function instance, latency
and cost are highest, with improvement as the number of
replicas increases. With 3 to 5 function instances, latency
and cost remain nearly constant, despite faults. In particular,
3 instances reduce latency by 50-150 seconds per request
compared to a single instance in the face of faults.

Interestingly the cost of maintaining function replicas is neg-
ligible compared to the overhead and cost of re-computation
and communication due to faults. For 50 hours and

3000 requests, maintaining 5 replicas costs just $0.003, or
$0.000001 per non-training request served (Figure 13). In
contrast, fewer instances lead to higher overhead and costs
while maintaining more replicas reduces these costs by up
to 3000×. Notably, we did not evaluate the impact of reg-
ular pinging, as this has already been explored in prior
works (Zhang et al., 2023a; Wang et al., 2020).

B LATENCY AND COST PERFORMANCE
BREAKUP

To identify the bottleneck, we broke up the accumulated
latency between communication and computation time over
50 hours of experiments for the 10 different workloads.

B.1 FLStore vs ObjStore-Agg

Figure 14 shows the results with both communication and
computation time for the ObjStore-Agg and only compu-
tation time for FLStore because communication time for
FLStore is negligible in comparison due to co-located data
and compute planes. The major bottleneck in ObjStore-
Agg is Communication, in comparison the I/O time from
memory to CPU is negligible (NinjaOne, 2024). For some
workloads such as Inference, Debugging, and Scheduling,
the difference between computation and communication
times is significant. During inference communication con-
sumes an average of 98.9% of time. This shows that current
methodologies for computing non-training workloads for
distributed learning techniques such as FL are significantly
communication-bound. Thus, the reduction in communi-
cation times as brought by FLStore significantly improves
the efficiency performance, which can be observed in Fig-
ure 14. We can also observe that FLStore provides sig-
nificant improvements for smaller models, which is why
FLStore is suitable in cross-device FL settings (Kairouz
et al., 2019; Abdelmoniem et al., 2023). Across 50 hours
and 3000 total requests we see Resnet18 with an average
82.04% (35.50 second) decrease in latency, MobileNet has
an average 47.33% ( 75.99 second) decrease in latency, Ef-
ficientNet has an average 50.44% (100.18 second) decrease
in latency, and Swin has an average 20.45% (4.42 second)
decrease in latency. Thus, FLStore can significantly im-
prove non-training tasks in FL with reduced latency. We
next observe the reduction in total cost with FLStore.

We perform the same breakup analysis on the costs in Fig-
ure 15, showing both the communication and computation
costs for ObjStore-Agg and computation costs for FLStore
where communication costs are negligible. We can observe
that the majority of the cost stems from the I/O (includ-
ing communication) of data relevant to the non-training
workloads. Resnet18, EfficientNet, and MobileNet spend
87.46%, 76.96%, and 85.80% of their total time respec-
tively in I/O, and SwinTransformer spends 53.32% percent
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Figure 11. FLStore scalability for iteratively increasing parallel requests and 5 parallel cached functions.
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Figure 12. FLStore latency and cost per request over 50 hours with varying function instances (FI) for fault tolerance.

of its total time in I/O. Thus, by reducing the I/O time and
data transfer costs FLStore provides a cost-effective solu-
tion for offloading the non-training workloads in FL. Across
50 hours and 3000 total requests we see that Resnet18,
MobileNet, and EfficientNet show a 94.73%, 92.72%, and
86.81% average decrease in cost respectively, and Swin-
Transformer has an average 77.83% reduction in cost.

B.2 FLStore vs In-Memory Cache

We also perform the total cost breakup analysis over 50
hours, 3000 total non-training requests, and 10 workloads,
calculating both the communication and computation costs
for Cache-Agg and FLStore. Results for this analysis are
shown in Figure 16 FLStore decreases the total time by
37.77%− 84.45% amounting to 191.65 accumulated hours
reduced for all requests and a 98.12%− 99.89% decrease
in total cost resulting in a reduction of $7047.16 accumu-
lated dollar costs for all 3000 requests across 50 hours. To
compare both (Cache-Agg and ObjStore-Agg) on the same
workloads tested with Cache-Agg, FLStore shows an av-
erage decrease in latency of 71% with ObjStore-Agg and
64% with Cache-Agg, the decreases with ObjStore-Agg is
larger as cloud object stores are slower than cloud caches.
However, in terms of costs cloud caches are more expensive
than cloud object stores, which is why for the workloads

tested with Cache-Agg, FLStore shows an average decrease
in costs of 98.83% compared to Cache-Agg and 92.45%
decrease compared to ObjStore-Agg.

B.3 Overall cost reduction with FLStore

We also evaluated the overall reduction in FL costs brought
by optimizing non-training workloads through FLStore. Fig-
ure 17 shows that although FLStore does not directly reduce
training costs, it significantly lowers the overall per-round
cost by minimizing the communication overhead associ-
ated with non-training tasks. For example, debugging costs
are reduced from $0.099 to $0.004 (a reduction of 96.4%),
and inference costs drop from $0.097 to $0.004 (a 96% re-
duction). Other tasks, such as reputation calculation and
cosine similarity, also see substantial cost savings. These
findings show that FLStore eliminates the need for frequent
data transfers that typically inflate non-training costs also
reducing the overall cost of FL jobs.

C FLSTORE STATIC: ABLATION STUDY

For comparison with FLStore-Static, we consider a scenario
where the workload changes from model inference to mali-
cious filtering. Caching policy of FLStore-Static remains
static (Individual Client Updates) which was for model in-
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Figure 13. Overall latency and cost comparison of replication vs. re-fetching (first and second from left), and communication cost
comparison (rightmost).

ObjStore-Agg (Communication) ObjStore-Agg (Computation) FLStore

Per
son

aliz
ed

Clus
ter

ing

Deb
ug

gin
g

Malic
iou

s F
ilte

rin
g

Inc
en

tiv
es

Sch
ed

. (C
lus

ter
)

Re
pu

tat
ion

 ca
lc.

Sch
ed

. (P
erf

.)

Cosi
ne

 sim
ilar

ity

Inf
ere

nce

Applications

100

101

102

To
ta

l T
im

e 
(h

rs
) Resnet18

Per
son

aliz
ed

Clus
ter

ing

Deb
ug

gin
g

Malic
iou

s F
ilte

rin
g

Inc
en

tiv
es

Sch
ed

. (C
lus

ter
)

Re
pu

tat
ion

 ca
lc.

Sch
ed

. (P
erf

.)

Cosi
ne

 sim
ilar

ity

Inf
ere

nce

Applications

10 1
100
101
102

To
ta

l T
im

e 
(h

rs
) MobileNetV2

Per
son

aliz
ed

Clus
ter

ing

Deb
ug

gin
g

Malic
iou

s F
ilte

rin
g

Inc
en

tiv
es

Sch
ed

. (C
lus

ter
)

Re
pu

tat
ion

 ca
lc.

Sch
ed

. (P
erf

.)

Cosi
ne

 sim
ilar

ity

Inf
ere

nce

Applications

100
101
102

To
ta

l T
im

e 
(h

rs
) EfficientNet

Per
son

aliz
ed

Clus
ter

ing

Malic
iou

s F
ilte

rin
g

Inc
en

tiv
es

Sch
ed

. (C
lus

ter
)

Re
pu

tat
ion

 ca
lc.

Sch
ed

. (P
erf

.)

Cosi
ne

 sim
ilar

ity

Inf
ere

nce

Applications

100

101

102

To
ta

l T
im

e 
(h

rs
) SwinTransformer

Figure 14. FLStore vs. ObjStore-Agg total time breakup comparison over 50 hours.
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Figure 15. FLStore vs. ObjStore-Agg total cost breakup comparison over 50 hours.
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Figure 16. Total time (top) and total cost (bottom) comparison
of Cache-Agg baseline vs. FLStore over 50 hours and 3000 total
requests.
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Figure 17. Overall cost of FL process per round with and without
FLStore, with 200 clients, EfficientNet model (Tan & Le, 2021),
1000 training rounds, and CIFAR10 Dataset (Krizhevsky, 2009).

ference workload while FLStore changes its caching policy
to All Client Updates based on the new workload (malicious
filtering). Results in Figure 18 show that FLStore reduces
per-request average latency by 99% (8 seconds) and costs by
approximately 3×. This analysis highlights the importance
of designing caching policies tailored for non-training FL
workloads.

D DISCUSSION: LIMITATIONS AND
FUTURE WORK

Support for Foundation Models Foundation Models are
a class of models that have undergone training with a broad
and general data set. Users can then fine-tune foundational
models for specific use cases without training a model from
scratch. We have added and evaluated several foundation
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Figure 18. FLStore vs. FLStore-Static: Per request latency (left)
and cost (right) while filtering malicious clients.

models from Figure 19 in FLStore and continue to add
more such models. We also add model inference as an
application for FLStore with the aim of providing a cost-
effective alternative for serving models efficiently compared
to other cloud solutions such as AWS SageMaker (Amazon
Web Services, Inc., 2024b) which incurs high latency and
costs as shown by our analysis in Figures 14 and 15.

FLStore Integration FLStore is built with a modular
architecture that makes integration into any FL frame-
work straightforward. We have integrated FLStore with
IBMFL (IBM, 2020) and FLOWER (Beutel et al., 2020),
both widely used in industry and research. FLStore includes
key modules such as the Cache, Cache Engine, and Request
Tracker. These modules are designed for portability and
can be deployed using serverless platforms such as AWS
Lambda. For closed-source platforms, networking between
modules can be established using techniques such as reverse
proxies similar to those used in InfiniCache (Wang et al.,
2020). In simpler setups, the Cache Engine and Request
Tracker can be deployed locally while caching is managed
by serverless services like AWS Lambda. Alternatively,
open-source platforms like OpenFaaS (Ellis & Contributors,
2024), which are natively supported by FLStore, provide
even easier deployment options.

Adaptive Caching Policies Our ongoing efforts include
designing agents based on Reinforcement Learning with
Human Feedback (RLHF) that can understand the charac-
teristics of non-training workloads and create new caching
policies for those workloads using our existing caching poli-
cies as a base. RLHF has successfully been deployed for
hyperparameter and optimization configuration in FL (Khan
et al., 2024b) and the configuration of caching policies is a
similar challenge that we hope to resolve by employing this
technique.

Function Memory Limitations Serverless functions are
limited in memory resources having a maximum of 10
GB memory (Amazon Web Services, Inc., 2024a). This
is more than sufficient for handling non-training workloads
for cross-device FL even for small transformer models such
as (Face, 2024) and Llama 3.2:1B (AI, 2024). As shown
in Figure 19, the average size of popular models used in
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Figure 19. Memory footprint of commonly used models in FL.

cross-device FL is just 161 MB approximately. However,
for even larger foundational models such as Large Language
Models (LLMs) with greater than 1B parameters (Brown
et al., 2020), we are working on utilizing pipeline parallel
processing where function groups can be assigned for each
workload and each function in that group can perform com-
putations in a pipeline parallel manner (Jiang et al., 2021;
Yang et al., 2022b).

Cached data types FLStore’s data plane supports a flexi-
ble set of data types central to FL. Typically, it caches model
weights, metadata (including versioning and training con-
figurations), and the training/validation data itself. In some
cases, additional data such as intermediate activations are
stored to facilitate operations like recomputation or debug-
ging in applications like FedNLR (Wang et al., 2024a) or
FedDebug (Gill et al., 2023). FLStore can be used to store
any type of data as singular objects less than 10 GB and as
partitioned objects greater than 10 GB, offering flexibility
for diverse FL workloads without the limitation of a fixed
schema.

Training and Total FL Process Calculation Our paper
provides a detailed analysis of the latency and cost compo-
nents for non-training workloads. It is important to note
that training latency and costs depend on the heterogeneous
resources available on client devices. In many scenarios
with hundreds of clients, only a few actively participate in
training while non-training tasks can account for up to 97%
of the overall FL latency. For controlled evaluation and
meaningful comparison between training and non-training
workloads, we assume that training is executed on a uniform
compute environment. In this work, training is performed
on the AWS SageMaker ml.m5.4xlarge instance described
in §5.1. AWS SageMaker is widely used for edge training
and inference tasks due to its scalable and flexible infras-
tructure, making it a realistic choice for federated learning
evaluations (Amazon Web Services, 2023; Liberty et al.,

2020; Das et al., 2020).

A ARTIFACT APPENDIX

A.1 Abstract

FLStore is a serverless framework for efficient FL non-
training workloads and storage. It unifies the data and com-
pute planes on a serverless cache, enabling locality-aware
execution via tailored caching policies to reduce latency
and costs. FLStore integrates seamlessly with existing FL
frameworks with minimal modifications, while also being
fault-tolerant and highly scalable. For efficient portability,
we have implemented FLStore on top of OpenFaaS, which
is an open-source serverless solution. In addition, we also
provide containerized simulators that are easy to set up and
can be used to evaluate the efficacy of FLStore in compari-
son to cloud-based solutions with disjoint compute and data
planes. The code is available at https://github.com
/SamuelFountain/FLStore.git.

A.2 Artifact check-list (meta-information)
• Algorithm: Tailored caching policies for non-training FL

workloads based on a workload taxonomy (P1–P4).

• Program: FLStore framework implemented as serverless
functions using OpenFaaS, along with Kubernetes-based con-
tainerized simulators.

• Compilation: Docker-based container images built via
provided Dockerfiles.

• Transformations: Caching transformations including
prefetching and eviction strategies tuned to iterative FL ac-
cess patterns.

• Binary: Pre-built container images available in the reposi-
tory.

• Data set: Simulated FL non-training workload traces and
public datasets (e.g., CIFAR10) used in evaluation experi-
ments.

• Run-time environment: OpenFaaS, Serverless functions,
cloud storage (MinIO/AWS S3), Docker.

• Hardware: Cloud-based serverless environment (e.g., AWS
Lambda or equivalent) with typical function memory limits
(up to 10 GB).

• Run-time state: Ephemeral state in serverless functions
with persistent backup in MinIO.

• Execution: Containerized deployment on OpenFaaS orches-
trated by provided scripts.

• Metrics: Per-request latency (communication and computa-
tion), cost per request, cache hit rate.

• Output: Logs, performance metrics, comparing FLStore
against baseline cloud aggregators.
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• Experiments: Latency and cost evaluations, scalability
tests, and fault-tolerance experiments across multiple non-
training workloads.

• How much disk space required (approximately)?: Ap-
proximately 10–15 GB (for container images and experimen-
tal data).

• How much time is needed to prepare workflow (approxi-
mately)?: 30–60 minutes for setup and configuration.

• How much time is needed to complete experiments (ap-
proximately)?: Reduced experiments can complete within
1–2 hours; full-scale evaluations may run over extended peri-
ods (up to 50 hours).

• Publicly available?: Yes.

• Code licenses (if publicly available)?: MIT License.

• Data licenses (if publicly available)?: Public domain for
benchmark datasets (e.g., CIFAR10); simulated data pro-
vided under the same license as the code.

• Workflow framework used?: OpenFaaS, Kubernetes.

• Archived (provide DOI)?: Archived on Zenodo
(https://doi.org/10.5281/zenodo.14986611).

A.3 Description

A.3.1 How delivered

The artifact is delivered as a GitHub repository available at
https://github.com/SamuelFountain/FLSt
ore.git. The repository contains the full source code,
Dockerfiles, deployment scripts for OpenFaaS, container-
ized simulators, and comprehensive documentation to repro-
duce the experiments.

A.3.2 Hardware dependencies

No specialized hardware is required. A machine capable of
running Docker and accessing a cloud provider’s serverless
platform (or a Kubernetes cluster running OpenFaaS) is
sufficient. We also have scripts that will help getting started
quickly by deploying OpenFaas and MinIO on Kubernetes.

A.3.3 Software dependencies

• Docker and Docker Compose.

• Kubernetes (K3s).

• OpenFaaS (or an equivalent serverless function frame-
work).

• Python 3.7 or later.

• MinIO (or an S3-compatible object store) for persistent
storage.

• Standard command line tools (Git, Bash).

• Operating System: Ubuntu is preferred.

A.3.4 Data sets

The artifact includes simulated traces representing FL non-
training workload patterns and uses public datasets (e.g.,
CIFAR10) for evaluation purposes. All simulated data is
provided within the repository.

A.4 Installation

Steps to install and deploy FLStore:

1. Clone the repository from https://github.com
/SamuelFountain/FLStore.git.

2. Install Docker and Docker Compose on your system.

3. Run the scripts according to the Getting Started in-
structions (in documentation) provided in the GitHub
repository to install all dependencies and datasets.

4. Deploy the FLStore functions on OpenFaaS using the
supplied deployment scripts.

5. Configure the persistent storage by setting up MinIO
or linking to an S3-compatible service.

Detailed instructions are provided in the repository’s
README file.

A.5 Experiment workflow

Overview of the experimental workflow:

1. Deployment: Deploy FLStore on the OpenFaaS plat-
form using the provided scripts.

2. Simulation: Launch containerized simulators to gen-
erate non-training FL workload requests. Parameters
such as client count, training rounds, and workload
types can be adjusted.

3. Execution: FLStore processes incoming requests with
its tailored caching policies. In parallel, baseline
systems (e.g., cloud object store aggregators and in-
memory cache aggregators) are deployed for compari-
son.

4. Data Collection: System logs and performance met-
rics (latency, cost, cache hit rates) are collected and
aggregated.

5. Analysis: Use the provided analysis scripts to generate
graphs and tables comparing FLStore’s performance
with baseline setups.
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A.6 Evaluation and expected result

The evaluation aims to demonstrate that FLStore:

• Reduces per-request latency by up to 50–70% com-
pared to traditional cloud aggregators.

• Achieves substantial cost savings (up to 88–99% cost
reduction) by minimizing communication overhead.

• Attains high cache hit rates (approximately 98–99%)
due to its workload-specific caching policies.

• Scales effectively and maintains fault tolerance with
minimal overhead.

Detailed performance graphs, numerical comparisons, and
logs are included in the repository.

A.7 Experiment customization

Users can customize the experiments as follows:

• Adjust the number of simulated clients, training rounds,
and non-training request patterns via configuration
files.

• Switch between baseline configurations (cloud object
store vs. FSLtore) to perform comparative studies.

• Extend the simulator to incorporate additional FL mod-
els or workload types.

A.8 Notes

• The artifact is provided as-is for research reproducibil-
ity purposes.

• Ensure that your serverless environment is properly
configured to reflect realistic network conditions.

• Users are encouraged to report any issues via the
GitHub repository’s issue tracker.

• Results may vary depending on the underlying hard-
ware and network conditions.

A.9 Methodology

Submission, reviewing and badging methodology:

• http://cTuning.org/ae/submission-2
0190109.html

• http://cTuning.org/ae/reviewing-201
90109.html

• https://www.acm.org/publications/p
olicies/artifact-review-badging

The code is available at https://github.com/Sam
uelFountain/FLStore.git.


