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A PROOF OF MAIN RESULTS

A.1 PROOF OF THEOREM 1

Theorem 1. Let the joint policy be the product of the individual policy {πi}ki=1, where πi with
respect to the individual flow function Fi(oi, ai), i.e.,

πi(ai|oi) =
Fi(oi, ai)

Fi(oi)
, ∀i = 1, · · · , k. (16)

Assume that the individual flow Fi(oi, ai) satisfies the condition in Definition 2. Define a flow
function F̂ , if all agents generate trajectories using independent policies πi, i = 1, ..., k and the
matching conditions

∀s′ > s0, F̂ (s′) =
∑

s∈P(s′)

F̂ (s → s′) and ∀s′ < sf , F̂ (s′) =
∑

s′′∈C(s′)

F̂ (s′ → s′′) (17)

are satisfied. Then, we have:
1) π(sf ) ∝ R(sf );
2) F̂ uniquely defines a Markovian flow F matching F̂ such that

F (τ) =

∏n+1
t=1 F̂ (st−1 → st)∏n

t=1 F̂ (st)
. (18)

Proof: We first prove the part 1). Since

F (st,at) =
∏
i

Fi(o
i
t, a

i
t),

then we have the global state flow as

F (st) =
∑
at∈A

F (st,at) =
∑
at∈A

∏
i

Fi(o
i
t, a

i
t). (19)

According to the flow definitions, the observation flow Fi(o
i
t) and individual observation flows have

the relationship:
Fi(o

i
t) =

∑
ai
t∈Ai

Fi(o
i
t, a

i
t). (20)

Hence, we have

k∏
i=1

Fi(o
i
t) =

k∏
i=1

 ∑
ai
t∈Ai

Fi(o
i
t, a

i
t)

 (21)

=
∑

a1
t∈A1

Fi(o
1
t , a

1
t ) · · ·

∑
ak
t ∈Ak

Fi(o
k
t , a

k
t ) (22)

=
∑

a1
t ,··· ,ak

t ∈A1×···×Ak

Fi(o
1
t , a

1
t ) · · ·Fi(o

k
t , a

k
t ) (23)

=
∑
at∈A

k∏
i=1

Fi(o
i
t, a

i
t), (24)

yielding F (st) =
∏

i Fi(o
i
t). Therefore, the joint policy

π(a|s) = F (st,at)

F (st)
=

∏
i Fi(o

i
t, a

i
t)

F (st)

=

∏
i Fi(o

i
t, a

i
t)∏

i Fi(oit)
=
∏
i

πi(ai|oi).
(25)
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Equation 25 indicates that if the conditions in Definition 2 is satisfied, we can establish the consis-
tency of joint and individual policies. Based on Lemma 1, we can conclude that the reward of the
generated state satisfies π(sf ) ∝ R(sf ) using the individual policy πi(ai|oi) of each agent.

Next, we prove the part 2). We first prove the necessity part. According to Definition 2 and Bengio
et al. (2021b) we have

F (s′) =
∏
i

Fi(o
i,′) =

∏
i

∑
oi∈P(oi,′)

Fi(o
i → oi,′) =

∑
o∈P(o′)

∏
i

Fi(o
i → oi,′),

F (s′) =
∏
i

Fi(o
i,′) =

∏
i

∑
oi,′′∈C(oi,′)

Fi(o
i,′ → oi,′′) =

∑
o′′∈C(o′)

∏
i

Fi(o
i,′ → oi,′′).

Then we prove the sufficiency part. We first present Lemma 3, which shows that∑
τ∈T0,s

PB(τ) =
∑

τ∈T0,s

∏
st→st+1∈τ

PB(st|st+1) = 1.

Lemma 3 (Independent Transition Probability) Define the independent forward and backward
transition respectively as

PF

(
oit+1|oit

)
:= Pi

(
oit → oit+1|oit

)
=

Fi

(
oit → oit+1

)
Fi

(
oit
) , (26)

and

PB

(
oit|oit+1

)
:= Pi

(
oit+1 → oit|oit+1

)
=

Fi

(
oit+1 → oit

)
Fi

(
oit+1

) . (27)

Then we have ∑
τ∈Ts,f

PF (τ) = 1,∀s ∈ S\{sf},∑
τ∈T0,s

PB(τ) = 1,∀s ∈ S\{s0},
(28)

where Ts,f is the set of trajectories starting in s and ending in sf and T0,s is the set of trajectories
starting in s0 and ending in s.

Define Ẑ = F̂ (s0) as the partition function and P̂F as the forward probability function. Then,
according to Proposition 18 in Bengio et al. (2021b), we have there exists a unique Markovian flow
F with forward transition probability function PF = P̂F and partition function Z, and such that

F (τ) = Ẑ

n+1∏
t=1

P̂F (st|st−1) =

∏n+1
t=1 F̂ (st−1 → st)∏n

t=1 F̂ (st)
, (29)

where sn+1 = sf . Thus, we have for s′ ̸= s0:

F (s′) = Ẑ
∑

τ∈T0,s′

∏
(st→st+1)∈τ

P̂F (st+1|st)

= Ẑ
F̂ (s′)

F̂ (s0)

∑
τ∈T0,s′

∏
(st→st+1)∈τ

P̂B(st|st+1) = F̂ (s′). (30)

Combining equation 30 with PF = P̂F , we have ∀s → s′ ∈ A, F (s → s′). Finally, for any Marko-
vian flow F ′ matching F̂ on states and edges, we have F ′(τ) = F (τ) according to Proposition 16
in Bengio et al. (2021b), which shows the uniqueness property. Then we complete the proof.
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A.2 PROOF OF LEMMA 2

Lemma 2. Suppose Assumption 1 holds and the environment has a tree structure, based on the IGC
and IGM conditions we have:
1) Qµ

tot(s,a) = F (s,a)f(s);
2) (argmaxai

Qi(oi, ai))
k
i=1 = (argmaxai

Fi(oi, ai))
k
i=1.

Proof: The proof is an extension of that of Proposition 4 in Bengio et al. (2021a). For any (s,a)
satisfies sf = T (s,a), we have Qµ

tot(s,a) = R(sf )f(s) and F (s,a) = R(sf ). Therefore, we have
Qµ

tot(s,a) = F (s,a)f(s). Then, for each non-final node s′, based on the action-value function in
terms of the action-value at the next step, we have by induction:

Qµ
tot(s,a) = R̂(s′) + µ(a|s′)

∑
a′∈A(s′)

Qµ
tot(s

′,a′; R̂)

(a)
= 0 + µ(a|s′)

∑
a′∈A(s′)

F (s′,a′;R)f(s′),
(31)

where R̂(s′) is the reward of Qµ
tot(s,a) and (a) is due to that R̂(s′) = 0 if s′ is not a final state.

Since the environment has a tree structure, we have

F (s,a) =
∑

a′∈A(s′)

F (s′,a′), (32)

which yields

Qµ
tot(s,a) = µ(a|s′)F (s,a)f(s′) = µ(a|s′)F (s,a)f(s)

1

µ(a|s′)
= F (s,a)f(s).

According to the IGC condition we have F (st,at) =
∏

i Fi(o
i
t, a

i
t), yielding

argmax
a

Qtot(s,a)
(a)
= argmax

a
logF (s,a)f(s)

(b)
= argmax

a

k∑
i=1

logFi(oi, ai)

(c)
=

(
arg max

a1∈Ai

F1(o1, a1), · · · , arg max
ak∈Ak

Fk(ok, ak)

)
,

(33)

where (a) is based on the fact F and f(s) are positive, (b) is due to the IGC condition. Combining
with the IGM condition

argmax
a∈A

Qtot(s,a) =

(
arg max

a1∈A1

Q1(o1, a1), · · · , arg max
ak∈Ak

Qk(ok, ak)

)
,∀s ∈ S. (34)

we can conclude that(
arg max

ai∈Ai

Fi(oi, ai)

)k

i=1

=

(
arg max

a1∈A1

Qi(oi, ai)

)k

i=1

.

Then we complete the proof.

A.3 PROOF OF LEMMA 3

Lemma 3 [Independent Transition Probability]. Define the independent forward and backward
transition respectively as

PF

(
oit+1|oit

)
:= Pi

(
oit → oit+1|oit

)
=

Fi

(
oit → oit+1

)
Fi

(
oit
) , (35)

and

PB

(
oit|oit+1

)
:= Pi

(
oit+1 → oit|oit+1

)
=

Fi

(
oit+1 → oit

)
Fi

(
oit+1

) . (36)
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Then we have ∑
τ∈Ts,f

PF (τ) = 1,∀s ∈ S\{sf},∑
τ∈T0,s

PB(τ) = 1,∀s ∈ S\{s0},
(37)

where Ts,f is the set of trajectories starting in s and ending in sf and T0,s is the set of trajectories
starting in s0 and ending in s.

Proof: When the maximum length of trajectories is not more than 1, we have∑
τ∈Ts,f

PF (τ) = 1. (38)

Then we have the following results by induction:∑
τ∈Ts,f

PF (τ) =
∑

s′∈C(s)

∑
τ∈Ts→s′,f

PF (τ) =
∑

o′∈C(o)

PF (o
′|o)

∑
τ∈Ts′,f

PF (τ)

=
∑
k

∑
o′i∈C(oi)

PF (o
′
i|oi)

∑
τ∈Ts′,f

PF (τ) = 1,
(39)

where C(·) is the children set of the current state or observation and the last equation is based on the
fact

∑
o′i∈C(oi) PF (o

′
i|oi) = 1. Since the proof process of PB is similar to that of PF , it is omitted

here.

B EXPERIMENTAL DETAILS

B.1 HYPER-GRID ENVIRONMENT

Here we present the experimental details on the Hyper-Grid environments. Figure 5 shows the curve
of the flow matching loss function with the number of training steps. The loss of our proposed
algorithm gradually decreases, ensuring the stability of the learning process. For some RL algo-
rithms based on the state-action value function estimation, the loss usually oscillates. This may be
because RL-based methods use experience replay buffer and the transition data distribution is not
stable enough. The method we propose uses an on-policy based optimization method, and the data
distribution changes with the current sampling policy, hence the loss function is relatively stable.
We set the same number of training steps for all algorithms for a fair comparison. Moreover, we list
the key hyperparameters of the different algorithms in Tables 2 3 4 5.
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Figure 5: The flow matching loss of different algorithm.

We study the effect of different reward in Figure 6. In particular, we set R0 = {10−1, 10−2, 10−4}
for different task challenge. A smaller value of R0 makes the reward function distribution more

15



Under review as a conference paper at ICLR 2023

0 5 10 15 20
Epochs

20

40

60

80

M
od

e 
Fo

un
d

CFN R0 = 10 1

CFN R0 = 10 2

CFN R0 = 10 4

FCN R0 = 10 1

FCN R0 = 10 2

FCN R0 = 10 4

0 5 10 15 20
Epochs

1.4

1.5

1.6

1.7

1.8

1.9

L1
 E

rro
r

CFN R0 = 10 1

CFN R0 = 10 2

CFN R0 = 10 4

FCN R0 = 10 1

FCN R0 = 10 2

FCN R0 = 10 4

Figure 6: The effect of different reward R0 on different algorithm according to L1 error and mode
found.

sparse, which makes policy optimization more difficult Bengio et al. (2021a); Riedmiller et al.
(2018); Trott et al. (2019). As shown in Figure 6, we found that our proposed method is robust
with the cases R0 = 10−1 and R0 = 10−2. When the reward distribution becomes sparse, the
performance of the proposed algorithm degrades slightly.

Table 2: Hyper-parameter of MAPPO under different environments

Hyper-Grid-v1 Hyper-Grid-v2 Hyper-Grid-v3

Train Steps 20000 20000 20000
Agent 2 2 3

Grid Dim 2 3 3
Grid Size [8,8] [8,8] [8,8]

Actor Network Hidden Layers [256,256] [256,256] [256,256]
Optimizer Adam Adam Adam

Learning Rate 0.0001 0.0001 0.0001
Batchsize 64 64 64

Discount Factor 0.99 0.99 0.99
PPO Entropy 1e-1 1e-1 1e-1

Table 3: Hyper-parameter of MASAC under different environments

Hyper-Grid-v1 Hyper-Grid-v2 Hyper-Grid-v3

Train Steps 20000 20000 20000
Grid Dim 2 3 3
Grid Size [8,8] [8,8] [8,8]

Actor Network Hidden Layers [256,256] [256,256] [256,256]
Critic Network Hidden Layers [256,256] [256,256] [256,256]

Optimizer Adam Adam Adam
Learning Rate 0.0001 0.0001 0.0001

Batchsize 64 64 64
Discount Factor 0.99 0.99 0.99

SAC Alpha 0.98 0.98 0.98
Target Network Update 0.001 0.001 0.001
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Table 4: Hyper-parameter of FCN under different environments

Hyper-Grid-v1 Hyper-Grid-v2 Hyper-Grid-v3

Train Steps 20000 20000 20000
R2 2 2 2
R1 0.5 0.5 0.5

Grid Dim 2 3 3
Grid Size [8,8] [8,8] [8,8]

Trajectories per steps 16 16 16
Flow Network Hidden Layers [256,256] [256,256] [256,256]

Optimizer Adam Adam Adam
Learning Rate 0.0001 0.0001 0.0001

ϵ 0.0005 0.0005 0.0005

Table 5: Hyper-parameter of CFN under different environments

Hyper-Grid-v1 Hyper-Grid-v2 Hyper-Grid-v3

Train Steps 20000 20000 20000
Trajectories per steps 16 16 16

R2 2 2 2
R1 0.5 0.5 0.5

Grid Dim 2 3 3
Grid Size [8,8] [8,8] [8,8]

Flow Network Hidden Layers [256,256] [256,256] [256,256]
Optimizer Adam Adam Adam

Learning Rate 0.0001 0.0001 0.0001
ϵ 0.0005 0.0005 0.0005
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